Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85283
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴亮全(Liang-Chung Lai)
dc.contributor.authorChia-Ming Liuen
dc.contributor.author劉家銘zh_TW
dc.date.accessioned2023-03-19T22:55:03Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-07-29
dc.identifier.citation1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021, 71:209-249. 2. Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL: Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer 2011, 104:120-127. 3. Albain KS, Paik S, van't Veer L: Prediction of adjuvant chemotherapy benefit in endocrine responsive, early breast cancer using multigene assays. Breast 2009, 18 Suppl 3:S141-145. 4. Shao C, Yang F, Miao S, Liu W, Wang C, Shu Y, Shen H: Role of hypoxia-induced exosomes in tumor biology. Mol Cancer 2018, 17:120. 5. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019, 18:157. 6. Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139:871-890. 7. Semenza GL: Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 2014, 9:47-71. 8. Hubbi ME, Semenza GL: Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol 2015, 309:C775-C782. 9. Carmeliet P, Dor Y, Herbert J-M, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P: Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998, 394:485-490. 10. Rankin EB, Giaccia AJ: Hypoxic control of metastasis. Science 2016, 352:175-180. 11. Anastasiadou E, Jacob LS, Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer 2018, 18:5-18. 12. Han P, Chang C-P: Long non-coding RNA and chromatin remodeling. RNA Biol 2015, 12:1094-1098. 13. Li W, Notani D, Rosenfeld MG: Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat Rev Genet 2016, 17:207-223. 14. Dykes IM, Emanueli C: Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 2017, 15:177-186. 15. Xu Y, Zheng Y, Liu H, Li T: Modulation of IGF2BP1 by long non-coding RNA HCG11 suppresses apoptosis of hepatocellular carcinoma cells via MAPK signaling transduction. Int J of Oncol 2017, 51:791-800. 16. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu Y-M, Dhanasekaran SM, Engelke CG, Cao X: The landscape of circular RNA in cancer. Cell 2019, 176:869-881. e813. 17. Zhang X-O, Dong R, Zhang Y, Zhang J-L, Luo Z, Zhang J, Chen L-L, Yang L: Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 2016, 26:1277-1287. 18. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M: CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 2017, 16:1-8. 19. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495:384-388. 20. Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, Yu H, Kong D: Overexpression of circular RNA ciRS‐7 abrogates the tumor suppressive effect of miR‐7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem 2018, 119:440-446. 21. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R: Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993, 73:1019-1030. 22. Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q: Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer 2018, 17:1-12. 23. Lu H, Han X, Ren J, Ren K, Li Z, Sun Z: Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small cell lung cancer through sponging miR-149. Cancer Biol Ther 2020, 21:113-121. 24. Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, Yang BB: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 2017, 24:357-370. 25. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014, 56:55-66. 26. Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J: miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA. EMBO J 2011, 30:4414-4422. 27. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015, 22:256-264. 28. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 2017, 66:22-+. 29. Luo Y, Huang C: CircSFMBT2 facilitates vascular smooth muscle cell proliferation by targeting miR-331-3p/HDAC5. Life Sci 2021, 264:118691. 30. Chang W, Shang Z, Ming X, Wu J, Xiao Y: Circ-SFMBT2 facilitates the malignant growth of acute myeloid leukemia cells by modulating miR-582-3p/ZBTB20 pathway. Histol Histopathol 2022, 37:137-149. 31. Li J, Zhang G, Wu G: Effect of paeonol on proliferation, apoptosis, migration, invasion and glutamine of gastric cancer cells via circSFMBT2/miR-665 axis. Cell Mol Biol 2020, 66:33-40. 32. Behm‐Ansmant I, Gatfield D, Rehwinkel J, Hilgers V, Izaurralde E: A conserved role for cytoplasmic poly (A)‐binding protein 1 (PABPC1) in nonsense‐mediated mRNA decay. EMBO J 2007, 26:1591-1601. 33. Zhang Y, Chen C, Liu Z, Guo H, Lu W, Hu W, Lin Z: PABPC1-induced stabilization of IFI27 mRNA promotes angiogenesis and malignant progression in esophageal squamous cell carcinoma through exosomal miRNA-21-5p. J Exp Clin Cancer Res 2022, 41:111. 34. Stupfler B, Birck C, Séraphin B, Mauxion F: BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat Commun 2016, 7:10811. 35. Boeckel JN, Jaé N, Heumüller AW, Chen W, Boon RA, Stellos K, Zeiher AM, John D, Uchida S, Dimmeler S: Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res 2015, 117:884-890. 36. Lemay J-F, Lemieux C, St-André O, Bachand F: Crossing the borders: poly (A)-binding proteins working on both sides of the fence. RNA Biol 2010, 7:291-295. 37. Hua J, Wang X, Ma L, Li J, Cao G, Zhang S, Lin W: CircVAPA promotes small cell lung cancer progression by modulating the miR-377-3p and miR-494-3p/IGF1R/AKT axis. Mol Cancer 2022, 21:123. 38. Yang L, Chen Y, Liu N, Lu Y, Ma W, Yang Z, Gan W, Li D: CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decay and upregulating SMAD3. Mol Cancer 2022, 21:23. 39. Chen Y, Ling Z, Cai X, Xu Y, Lv Z, Man D, Ge J, Yu C, Zhang D, Zhang Y, et al: Activation of YAP1 by N6-methyladenosine-modified circCPSF6 drives malignancy in hepatocellular carcinoma. Cancer Res 2022, 82:599-614. 40. Chen C, Yu H, Han F, Lai X, Ye K, Lei S, Mai M, Lai M, Zhang H: Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness. Mol Cancer 2022, 21:46. 41. Chen D, Zhou H, Cai Z, Cai K, Liu J, Wang W, Miao H, Li H, Li R, Li X, et al: CircSCAP interacts with SF3A3 to inhibit the malignance of non-small cell lung cancer by activating p53 signaling. J Exp Clin Cancer Res 2022, 41:120. 42. Song H, Tian D, Sun J, Mao X, Kong W, Xu D, Ji Y, Qiu B, Zhan M, Wang J: circFAM120B functions as a tumor suppressor in esophageal squamous cell carcinoma via the miR-661/PPM1L axis and the PKR/p38 MAPK/EMT pathway. Cell Death Dis 2022, 13:361. 43. Guo X-Y, Liu T-T, Zhu W-J, Liu H-T, Zhang G-H, Song L, Zhao R-N, Chen X, Gao P: CircKDM4B suppresses breast cancer progression via the miR-675/NEDD4L axis. Oncogene 2022, 41:1895-1906. 44. Xie F, Li Y, Wang M, Huang C, Tao D, Zheng F, Zhang H, Zeng F, Xiao X, Jiang G: Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol Cancer 2018, 17:1-12. 45. Yang R, Chen H, Xing L, Wang B, Hu M, Ou X, Chen H, Deng Y, Liu D, Jiang R: Hypoxia-induced circWSB1 promotes breast cancer progression through destabilizing p53 by interacting with USP10. Mol Cancer 2022, 21:1-20. 46. Behm-Ansmant I, Gatfield D, Rehwinkel J, Hilgers V, Izaurralde E: A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J 2007, 26:1591-1601. 47. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C, Zhou Y: N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer 2021, 20:1-25.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85283-
dc.description.abstract乳癌是女性中最常見的癌症,也是全球女性癌症相關死亡的第二大原因。在腫瘤形成的過程中,會產生缺氧的腫瘤微環境,從而導致腫瘤更加的惡性並產生治療抗性。而近期有許多報導指出非編碼核糖核酸 (non-coding RNAs),例如:環形核糖核酸 (circular RNAs, circRNAs),在癌細胞的分子調控路徑和機制中扮演著腫瘤抑制或是致癌基因的角色,進而影響細胞功能以及癌症的進程。並且,環型核糖核酸的表現量會在缺氧的環境下產生變化。然而,缺氧誘導的環形核糖核酸在乳癌中的調控和功能仍不清楚。因此,本研究的目的是探討缺氧誘導的環形核糖核酸circSFMBT2在乳癌細胞MCF-7中的調控機制及其功能。我們從先前實驗室的乳癌細胞次世代定序(next generation sequencing)資料中篩選出缺氧環境下表現量顯著上升的環狀核糖核酸circSFMBT2。接著確認其環形構造,並驗證在缺氧環境中的不同乳癌細胞株間表現量皆顯著上升。大量表現circSFMBT2 抑制了細胞增殖、遷移、侵襲和上皮間質轉換。接下來,為了研究 circSFMBT2 的調控機制,我們利用細胞核質分離的技術,顯示circSFMBT2主要位於細胞質,表明circSFMBT2的調控機制可能是通過與microRNA或RNA結合蛋白(RNA binding protein, RBP)的相互作用。首先我們利用生物信息學工具 RBPDB、ATtRACT 和 RBPmap 來預測候選 RBP,並通過 RNA pulldown技術進行驗證。 RNA結合蛋白PABPC1被證明與circSFMBT2結合。另一方面,我們用ENCORI 和 miRDB 預測了潛在的結合microRNA,然而qRT-PCR實驗中顯示沒有 microRNA 與 circSFMBT2 結合。最後,通過使用Affymetrix微陣列分析circSFMBT2下游基因。在qRT-PCR,在大量表現 circSFMBT2 的細胞中沒有基因顯示出顯著變化,這意味著 circSFMBT2 的調控機轉可能不在轉錄。目前,為了探索circSFMBT2的轉錄後調控,我們進行質譜分析以分析過表達circSFMBT2的MCF-7細胞中蛋白質的差異量。總之,我們的結果表明,circSFMBT2 能夠抑制乳腺癌的細胞功能並與 PABPC1 結合。隨著對circSFMBT2調控機制的深入了解,我們希望開發一種新的乳腺癌治療方案。zh_TW
dc.description.abstractBreast cancer is the most prevalent cancer among women, and the second major cause of cancer-related deaths in women worldwide. The hypoxic microenvironment of solid tumor is formed in the progress of carcinogenesis, which lead to more malignant and treatment resistance. Recently, circular RNAs (circRNA), a kind of noncoding RNAs, were discovered to influence the progress of tumorigenesis, and were induced under hypoxia. However, the regulation and functions of hypoxia-induced circRNA in breast cancer remains unclear. Therefore, the purpose of this study is to identify the regulatory mechanism and its function of a hypoxia-induced circRNAs, circSFMBT2, in breast cancer MCF-7 cells. Firstly, hypoxia-responsive circRNA candidates in breast cancer MCF-7 cells under different oxygen concentrations were identified by RNA-sequencing with the criteria of fold change ≥1.5X. Among the differentially expressed circRNAs, circSFMBT2 was chosen for further experiments. The up-regulation of circSFMBT2 under hypoxia was validated by quantitative RT-PCR. The functional assays showed that overexpression of circSFMBT2 inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition. Next, in order to investigate the regulatory mechanisms of circSFMBT2, nuclear and cytoplasm fractionation were performed. The results showed circSFMBT2 predominantly localized in the cytoplasm, indicating that the regulatory mechanism of circSFMBT2 might be via interaction with microRNA or RNA binding proteins (RBP). In order to identify the RBPs, bioinformatic tools, RBPDB, ATtRACT, and RBPmap, were first used to predict the candidate RBPs and validated by RNA pulldown assays. The RNA binding protein PABPC1 was proved to bind with circSFMBT2. On the other hand, the potential sponging-microRNAs were predicted by ENCORI and miRDB, followed by qRT-PCR. No miRNAs were shown to bind with circSFMBT2. Lastly, the functions of circSFMBT2 were explored by identifying its down-stream genes using Affymetrix microarrays with the criteria of fold change ≥1.5X and P value <0.05. The top 10 of 96 differentially expressed genes were chosen for validation by quantitative RT-PCR. However, no genes showed significantly changes in cells overexpressing circSFMBT2, implying the regulation of circSFMBT2 might not at the transcriptional level. In summary, circSFMBT2 was able to inhibit cellular function of breast cancer and bind to PABPC1. With deeper understanding of the regulatory mechanisms of circSFMBT2, I hope to develop a novel treatment regime for breast cancer.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:55:03Z (GMT). No. of bitstreams: 1
U0001-2707202217250300.pdf: 3112317 bytes, checksum: 0122c92b232106cd5564dfe9c36e64ff (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 I 摘要 II Abstract IV List of Tables VII List of Figures VIII Chapter 1. Introduction 1 1.1. The hypoxic microenvironment influences the molecular mechanism of tumor progression in breast cancer 1 1.2. Circular RNA is a kind of non-coding RNA that is involved in molecular functions 2 1.3. CircSFMBT2 in cancer 3 1.4. Poly(A) Binding Protein Cytoplasmic 1 (PABPC1) in cancer 4 1.5. The aims & hypothesis of this study 4 Chapter 2. Materials and Methods 6 2.1. Cell culture and hypoxia treatment 6 2.2. Genomic DNA extraction, RNA extraction, reverse transcription, and quantitative RT-PCR 7 2.3. CircSFMBT2 identification assay 7 2.4. RNase R treatment 8 2.5. Actinomycin D treatment 8 2.6. Plasmid construction, cell transfection, and RNA interference 8 2.7. MTT assay 9 2.8. Wound healing assay 10 2.9. Transwell migration assay 10 2.10. Animal Model and Bioluminescent Imaging 11 2.11. Western blotting 12 2.12. Nuclear-cytoplasmic fractionation 13 2.13. RNA pulldown assay 13 2.14. Silver stain 14 2.15. RNA immunoprecipitated (RIP) assay 14 2.16. Microarray analysis 15 2.17. Statistical analysis 16 Chapter 3. Results 17 3.1. Identification of a novel circular RNA, circSFMBT2, which was upregulated under hypoxia microenvironment in breast cancer cells 17 3.2. CircSFMBT2 acted as a tumor suppressor gene that inhibited cell proliferation, migration and metastasis 19 3.3. CircSFMBT2 located in cytoplasm but not acted as microRNA sponges 20 3.4. CircSFMBT2 interacted with RNA binding protein PABPC1 21 3.5. CircSFMBT2 involved in DNA double-strand break repaired. 22 Chapter 4. Discussion 24 References 51
dc.language.isoen
dc.title缺氧誘導之環形核糖核酸circSFMBT2抑制乳癌細胞中之腫瘤惡性發展zh_TW
dc.titleHypoxia-Induced Circular RNA circSFMBT2 Inhibits Tumor Malignancy in Breast Cancer Cellsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊鎧鍵(Kai-Chien Yang),蔡孟勳(Mong-Hsun Tsai),陳立涵(Li-Han Chen),蕭貴陽(Kuei-Yang Hsiao)
dc.subject.keyword乳癌,腫瘤抑制基因,circSFMBT2,缺氧,細胞功能,zh_TW
dc.subject.keywordbreast cancer,tumor suppressor gene,circSFMBT2,hypoxia,cell function,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202201795
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
dc.date.embargo-lift2022-10-03-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
U0001-2707202217250300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved