Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85276
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道(Yuh-Dauh Lyuu)
dc.contributor.authorBo-Cheng Chenen
dc.contributor.author陳柏丞zh_TW
dc.date.accessioned2023-03-19T22:54:36Z-
dc.date.copyright2022-08-10
dc.date.issued2022
dc.date.submitted2022-07-29
dc.identifier.citationAchdou, Y., & Pironneau, O. (2005). Computational methods for option pricing. Philadelphia: SIAM. Amin, K. I. (1993). Jump diffusion option valuation in discrete time. Journal of Finance, 48(5), 1833–1863. Andersen, L., & Brotherton‐Ratcliffe, R. (1997). The equity option volatility smile: An implicit finite‐difference approach. Journal of Computational Finance, 1(2), 5–37. Atkinson, K. (1989). An introduction to numerical analysis (2nd ed.). New York: John Wiley & Sons. Ayache, E., Henrotte, P., Nassar, S., & Wang, X. (2004). Can anyone solve the smile problem? Wilmott Magazine, 1, 78–96. Barle, S., & Cakici, N. (1999). How to grow a smiling tree. Journal of Financial Engineering, 7(2), 127–146. Bennett, C. (2014). Trading volatility: Trading volatility, correlation, term structure and skew. CreateSpace. Retrieved from http://www.trading‐volatility.com Boyle, P., & Lau, S. (1994). Bumping up against the barrier with the binomial method. Journal of Derivatives, 1(4), 6–14. Boyle, P., & Thangaraj, D. (2000). Volatility estimation from observed option prices. Decisions in Economics and Finance, 23(1), 31–52. Caprio, G. (2012). The evidence and impact of financial globalization (2nd ed.). San Diego: Elsevier. Chance, D. M. (2008). A synthesis of binomial option pricing models for lognormally distributed asset. Journal of Applied Finance, 18(1), 38–56. Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to algorithms (3rd ed.). Cambridge, MA: MIT Press. Cox, J. C. (1975). Notes on option pricing I: Constant elasticity of variance diffusion. Unpublished Note, Graduate School of Business, Stanford University. Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385–407. Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229–263. Crépey, S. (2003). Calibration of the local volatility in a generalized Black‐Scholes model using Tikhonov regularization. SIAM Journal on Mathematical Analysis, 34(5), 1183–1206. Crépey, S. (2004). Delta‐hedge vega risk. Quantitative Finance, 4(5), 559–579. Dai, T.‐S., Liu, L.‐M., & Lyuu, Y.‐D. (2008). Linear‐time option pricing algorithms by combinatorics. Computers and Mathematics with Applications, 55(9), 2142–2157. Dai, T.‐S., & Lyuu, Y.‐D. (2010). The bino‐trinomial tree: A simple model for efficient and accurate option pricing. Journal of Derivatives, 17(4), 7–24. Derman, E., & Kani, I. (1994). Riding on a smile. Risk, 7(2), 32–39. Derman, E., Kani, I., & Chriss, N. (1996). Implied trinomial trees of the volatility smile. Journal of Derivatives, 3(4), 7–22. Derman, E., Miller, M., & Park, D. (2016). The volatility smile. Hoboken, NJ: John Wiley & Sons. Duffie, D. (2001). Dynamic asset pricing theory (3rd ed.). Princeton, NJ: Princeton University Press. Dumas, B., Fleming, J., & Whaley, R. (1998). Implied volatility functions: Empirical tests. Journal of Finance, 53(6), 2059–2106. Dupire, B. (1994). Pricing with a smile. Risk, 7(1), 18–20. Fengler, M. R. (2005). Semiparametric modeling of implied volatility. Berlin: Springer. Gatheral, J. (2006). The volatility surface: A practitioner’s guide. Hoboken, NJ: John Wiley & Sons. Gatheral, J., & Jacquier, A. (2014). Arbitrage‐free SVI volatility surfaces. Quantitative Finance, 14(1), 59–71. Geman, H., & Yor, M. (1996). Pricing and hedging double‐barrier options: A probabilistic approach. Mathematical Finance, 6(4), 365–378. Guthrie, G. (2011). Learning options and binomial trees. Wilmott Magazine, 3(1), 1–23. Heston, S. L. (1993). A closed‐form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343. Hull, J., & Suo, W. (2002). A methodology for assessing model risk and its application to the implied volatility function model. Journal of Financial and Quantitative Analysis, 37(2), 297–318. Jackwerth, J. (1997). Generalized binomial tree. Journal of Derivatives, 5(2), 7–17. Kamp, R. (2009). Local volatility modelling. Master’s Thesis, University of Twente, Enschede, the Netherlands. Kunitomo, N., & Ikeda, M. (1992). Pricing options with curved boundaries. Mathematical Finance, 2(4), 275–298. Levendorskiǐ, S. (2017). Ultra‐fast pricing barrier options and CDSs. International Journal of Theoretical and Applied Finance, 20(5), 1–27. Li, Y. (2000). A new algorithm for constructing implied binomial trees: Does the implied model fit any volatility smile? Journal of Financial Engineering, 4(2), 69–95. Lim, K. G., & Zhi, D. (2002). Pricing options using implied trees: Evidence from FTSE‐100 options. Management Science, 22(7), 601–626. Linaras, H., & Skiadopoulos, G. (2005). Implied volatility trees and pricing performance: Evidence from the S&P 100 options. International Journal of Theoretical and Applied Finance, 8(8), 1085–1106. Lok, U. H., & Lyuu, Y.‐D. (2017). The waterline tree for separable local‐volatility models. Computers and Mathematics with Applications, 73(4), 537–559. Lok U. H., & Lyuu, Y.‐D. (2020). Efficient trinomial trees for local‐volatility models in pricing double‐barrier options. Journal of Futures Markets, 40(4), 556–574. Lu, R., & Hsu, Y.‐H. (2005). Valuation of standard options under the constant elasticity of variance model. International Journal of Business and Economics, 4(2), 157–165. Luo, L. (2001). Various types of double barrier options. Journal of Computational Finance, 4(3), 125–138. Lyuu, Y.‐D. (2002). Financial engineering and computation: Principles, mathematics, algorithms. Cambridge: Cambridge University Press. Marco, S. D., Friz, P., & Gerhold, S. (2013). Rational shapes of local volatility. Risk, 26(2), 82–87. Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics andManagement, 4(1), 141–183. Nelson, D., & Ramaswamy, K. (1990). Simple binomial processes as diffusion approximations in financial models. Review of Financial Studies, 3(3), 393–430. Rebonato, R. (2004). Volatility and correlation. West Sussex, UK: John Wiley & Sons. Ritchken, P. (1995). On pricing barrier options. Journal of Derivatives, 3(2), 19–28. Rubinstein, M. (1994). Implied binomial tree. Journal of Finance, 49(3), 771–818. Rubinstein, M., & Reiner, E. (1991). Breaking down the barriers. Risk, 4(8), 28–35. Schöbel, R., & Zhu, J. (1999). Stochastic volatility with an Ornstein‐Uhlenbeck process: An extension. Review of Finance, 3(1), 23–46. Sidenius, J. (1998). Double barrier options: Valuation by path counting. Journal of Computational Finance, 1(3), 63–79. Tan, G., Chiu, E., & Tseng, S. (2005). Structured products in Taiwan: A dynamic market. In C. Cockerill & R. Morrow (Eds.), Structured products handbook 2005. London: Euromoney. Tavella, D., & Randall, C. (2000). Pricing financial instruments: The finite difference method. New York: John Wiley & Sons.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85276-
dc.description.abstract隱含樹(implied tree)是一種計算區域波動度的方法,本文章基於Lok 與Lyuu提出的三元隱含樹演算法進行改良,將樹分為上下兩半計算,讓雙重障礙三元隱含樹計算區域波動度能更好的貼近原本的區域波動度平面,這是首次有研究針對從雙重障礙選擇權價格建構隱含三元樹的演算法進行探討。zh_TW
dc.description.abstractImplied tree is a method to calculate the local volatility (LV). This thesis, based on the implied trinomial tree of Lok and Lyuu, presents an efficient and valid smile-consistent tree for the LV model. This is the first attempt at building an implied trinomial tree with double-barrier options.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:54:36Z (GMT). No. of bitstreams: 1
U0001-2907202212414600.pdf: 4532613 bytes, checksum: 56834de3c47ccd4f80e8bbfd710c0c31 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 緒論 1 1-1研究動機 1 1-2研究目的 3 1-3論文架構 3 第二章 文獻回顧 5 ㄧ 、隨機過程 5 二、三元樹 5 三、雙重障礙選擇權的三元樹 8 四、隱含理論與隱含三元樹 11 第三章 實驗方法 16 3.1 雙重障礙三元樹 16 3.2 從雙重障礙選擇權價格建構隱含三元樹 19 第四章 實驗數據 22 第五章 結論 26 參考文獻 27
dc.language.isozh-TW
dc.subject局部波動度模型zh_TW
dc.subject選擇權定價zh_TW
dc.subject三元樹zh_TW
dc.subject雙重障礙選擇權zh_TW
dc.subjectLV modelen
dc.subjectdouble option pricingen
dc.subjecttrinomial treeen
dc.title隱含三元樹演算法之雙重障礙選擇權的應用zh_TW
dc.titlePricing Double-Barrier Options and Implied Trinomial from Such Optionsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee金國興(Gow-Hsing King),陸裕豪(U Hou Lok)
dc.subject.keyword選擇權定價,局部波動度模型,三元樹,雙重障礙選擇權,zh_TW
dc.subject.keyworddouble option pricing,LV model,trinomial tree,en
dc.relation.page31
dc.identifier.doi10.6342/NTU202201874
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2022-08-10-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-2907202212414600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved