請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85265完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾雪峰(Snow H. Tseng) | |
| dc.contributor.author | Kai-Wen Yu | en |
| dc.contributor.author | 俞凱文 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:53:54Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-30 | |
| dc.identifier.citation | [1] Yariv, A. 'Phase conjugate optics and real-time holography.' IEEE Journal of Quantum Electronics 14(9): 650-660. (1978). [2] Pepper, D. M. 'Applications of optical phase conjugation.' Scientific American 254(1): 74-83. (1986). [3] Fisher, R. A. Optical phase conjugation, Academic press. 1-5 (2012). [4] Vellekoop, I. M., et al. 'Digital optical phase conjugation of fluorescence in turbid tissue.' Applied Physics Letters 101(8): 081108. (2012). [5] Wang, D., et al. 'Focusing through dynamic tissue with millisecond digital optical phase conjugation.' Optica 2(8): 728-735. (2015). [6] Lei, Y., et al. 'A 2-D pseudospectral time-domain (PSTD) simulator for large-scale electromagnetic scattering and radar sounding applications.' IEEE Transactions on Geoscience and Remote Sensing 58(6): 4076-4098. (2020). [7] Hu, S., et al. 'Light-scattering model for aerosol particles with irregular shapes and inhomogeneous compositions using a parallelized pseudo-spectral time-domain technique.' Chinese Physics B 27(5): 054215. (2018). [8] Komai, Y. and T. Ushiki 'The three-dimensional organization of collagen fibrils in the human cornea and sclera.' Investigative ophthalmology & visual science 32(8): 2244-2258. (1991). [9] Rada, J. A. S., et al. 'The sclera and myopia.' Experimental eye research 82(2): 185-200. (2006). [10] Kolata, G. 'What Causes Nearsightedness? Long the subject of debate on the' genes versus environment' theme, an animal model now shows that at least some myopia may be acquired.' Science 229(4719): 1249-1250. (1985). [11] Liu, Q. H. The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell's equations. IEEE Antennas and Propagation Society International Symposium 1997. Digest, IEEE. 122-125 (1997). [12] Jerri, A. J. 'The Shannon sampling theorem—Its various extensions and applications: A tutorial review.' Proceedings of the IEEE 65(11): 1565-1596. (1977). [13] Berenger, J.-P. 'A perfectly matched layer for the absorption of electromagnetic waves.' Journal of Computational Physics 114(2): 185-200. (1994). [14] Gedney, S. D. 'An Anisotropic PML Absorbing Media for the FDTD Simulation of Fields in Lossy and Dispersive Media.' Electromagnetics 16(4): 399-415. (1996). [15] Pepper, D. M. and A. Yariv 'Compensation for phase distortions in nonlinear media by phase conjugation.' Optics letters 5(2): 59-60. (1980). [16] Shkunov, V. V. and B. Y. Zel'Dovich 'Optical phase conjugation.' Scientific American 253(6): 54-59. (1985). [17] Kuperman, W., et al. 'Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror.' The journal of the Acoustical Society of America 103(1): 25-40. (1998). [18] Eichler, H. J. and O. Mehl 'Phase conjugate mirrors.' Journal of Nonlinear Optical Physics & Materials 10(01): 43-52. (2001). [19] Lukosz, W. 'Equivalent-lens theory of holographic imaging.' JOSA 58(8): 1084-1091. (1968). [20] Yariv, A. and D. M. Pepper 'Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing.' Optics Letters 1(1): 16. (1977). [21] Yariv, A. 'Four wave nonlinear optical mixing as real time holography.' Optics Communications 25(1): 23-25. (1978). [22] Cronin-Golomb, M., et al. 'Theory and applications of four-wave mixing in photorefractive media.' IEEE Journal of Quantum Electronics 20(1): 12-30. (1984). [23] He, G. S. 'Optical phase conjugation: principles, techniques, and applications.' Progress in Quantum Electronics 26(3): 131-191. (2002). [24] Glass, A. i. 'The photorefractive effect.' Optical Engineering 17(5): 470-479. (1978). [25] Mittra, R. and T. Habashy 'Theory of wave-front-distortion correction by phase conjugation.' JOSA A 1(11): 1103-1109. (1984). [26] Campos, I. and J. Jimenez 'About Poynting's theorem.' European journal of physics 13(3): 117. (1992). [27] Yaqoob, Z., et al. 'Optical phase conjugation for turbidity suppression in biological samples.' Nature photonics 2(2): 110-115. (2008). [28] Liu, Q. Finite-difference and pseudospectral time-domain methods for subsurface radar applications. IEEE Antennas and Propagation Society International Symposium 1997. Digest, IEEE. 990-993 (1997). [29] Liu, Y., et al. 'Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation.' Optica 4(2): 280-288. (2017). [30] Vellekoop, I. M., et al. 'Digital optical phase conjugation of fluorescence in turbid tissue.' Applied physics letters 101(8): 081108. (2012). [31] Hellwarth, R. 'Generation of time-reversed wave fronts by nonlinear refraction.' JOSA 67(1): 1-3. (1977). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85265 | - |
| dc.description.abstract | 光學相位共軛 ( Optical Phase Conjugation ) 為非線性光學、生醫光學等相關領域中,研究光學散射的重要議題之一。本研究利用時域擬譜法 ( Pseudospectral time-domain, PSTD ) 模擬生物體內的光學相位共軛現象。主要研究的方向為模擬反向的共軛波在振幅以及相位改變的過程中會具有的不同特性,並且針對不同的張角以及光訊號分析。背景的生物體介質設定為鞏膜以及角膜細胞,本研究針對兩者差異以及上述的條件進行一系列的研究。 | zh_TW |
| dc.description.abstract | Optical phase conjugation is an important issue in nonlinear optics and biomedical optics. We employed the pseudospectral time-domain method (PSTD) in this study to simulate the optical phase conjugation phenomenon. The research aims to simulate the different features of the reverse conjugate wave by modifying amplitude and phase. Then focus on different divergence angles and light signals. Finally, set up the biological medium as sclera and cornea cells. This study conducted a series of simulations in both above cases. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:53:54Z (GMT). No. of bitstreams: 1 U0001-2907202212113500.pdf: 2394090 bytes, checksum: 966c3ef7d37e2932b69ede66b2f73dd5 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 致謝 i 中文摘要 ii 英文摘要 iii 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機以及目的 3 第二章 模擬方法—擬譜時域分析法 4 2.1 擬譜時域分析法 5 2.1.1 馬克士威方程式 5 2.1.2 程式輸入形式 6 2.2 奈奎斯特定律 11 2.3 單軸完美匹配層 14 第三章 光學相位共軛法 18 3.1 光學相位共軛 18 3.1.1 光學相位共軛背景 18 3.1.2 四波混頻 20 3.1.3 光學相位共軛的應用 22 3.2 散射介質內的光學相位共軛 23 第四章 模擬參數以及模擬介質 25 4.1 模擬介質 25 4.2 模擬參數 27 第五章 研究結果 28 5.1 正向傳播 28 5.1.1 鞏膜與角膜的正向傳播 28 5.1.2 光頻率對於模擬的影響性 30 5.2 反向傳播 31 5.2.1 角膜的反向傳播 31 5.2.2 鞏膜的反向傳播 33 5.2.3 光頻率對於反向傳播的影響性 35 5.2.4 膠原纖維密度對於反向傳播的影響性 36 5.3 不同相位以及振幅的反向傳播 37 5.3.1 角膜細胞的電磁場參數在固定常數的影響 37 5.3.2 鞏膜細胞的電磁場參數在固定常數的影響 42 第六章 研究結論與未來展望 46 6.1 研究結論 46 6.2 未來展望 46 參考文獻 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 角膜 | zh_TW |
| dc.subject | 光學相位共軛 | zh_TW |
| dc.subject | 時域擬譜法 | zh_TW |
| dc.subject | 鞏膜 | zh_TW |
| dc.subject | Optical phase conjugation | en |
| dc.subject | cornea | en |
| dc.subject | sclera | en |
| dc.subject | PSTD | en |
| dc.title | 透過時域擬譜法模擬光學相位共軛法在散射介質的相關研究 | zh_TW |
| dc.title | Employ PSTD method to simulate optical phase conjugation method in scattering medium | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃升龍(Sheng-Lung Huang),蕭惠心(Hui-Hsin Hsiao) | |
| dc.subject.keyword | 光學相位共軛,時域擬譜法,鞏膜,角膜, | zh_TW |
| dc.subject.keyword | Optical phase conjugation,PSTD,sclera,cornea, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU202201873 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-18 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202212113500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
