請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林招松(Chao-Sung Lin) | |
| dc.contributor.author | Cian-Huei Shih | en |
| dc.contributor.author | 施芊卉 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:53:51Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-29 | |
| dc.identifier.citation | 1. Song, G. and A. Atrens, Understanding magnesium corrosion—a framework for improved alloy performance. Advanced engineering materials, 2003. 5(12): p. 837-858. 2. Mordike, B. and T. Ebert, Magnesium: properties—applications—potential. Materials Science and Engineering: A, 2001. 302(1): p. 37-45. 3. Kojima, Y. Platform science and technology for advanced magnesium alloys. in Materials Science Forum. 2000. Trans Tech Publ. 4. Kaiser, F. and K. Kainer, Magnesium alloys and technology. 2003: John Wiley & Sons. 5. Kainer, K.U. and B.L. Mordike, Magnesium alloys and their applications. 2000: Wiley-Vch Weinheim, Germany. 6. Gu, X.-N. and Y.-F. Zheng, A review on magnesium alloys as biodegradable materials. Frontiers of Materials Science in China, 2010. 4(2): p. 111-115. 7. Witte, F., The history of biodegradable magnesium implants: a review. Acta biomaterialia, 2010. 6(5): p. 1680-1692. 8. Gray, J. and B. Luan, Protective coatings on magnesium and its alloys—a critical review. Journal of alloys and compounds, 2002. 336(1-2): p. 88-113. 9. Umehara, H., M. Takaya, and S. Terauchi, Chrome-free surface treatments for magnesium alloy. Surface and Coatings Technology, 2003. 169: p. 666-669. 10. Han, E.-H., et al., Chemical conversion coating on AZ91D and its corrosion resistance. Magnesium Technology, 2004. 11. Sankara Narayanan, T., Surface pretretament by phosphate conversion coatings-A review. Reviews in Advanced Materials Science, 2005. 9: p. 130-177. 12. Zhou, Y.-r., et al., Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China, 2016. 26(11): p. 2976-2987. 13. Hamdy Makhlouf, A.S., Intelligent Stannate-Based Coatings of Self-Healing Functionality for Magnesium Alloys. 2015, Elsevier. p. 537-555. 14. Zeng, R.-C., et al., Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features. Corrosion Science, 2014. 79: p. 69-82. 15. Frankel, G.S., Pitting Corrosion of Metals: A Review of the Critical Factors. Journal of The Electrochemical Society, 1998. 145(6): p. 2186-2198. 16. Rao, A.C.U., et al., Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review. Transactions of Nonferrous Metals Society of China, 2016. 26(6): p. 1447-1471. 17. Atrens, A., et al., Stress corrosion cracking (SCC) of magnesium alloys, in Stress Corrosion Cracking. 2011. p. 341-380. 18. Winzer, N., et al., Fractography of Stress Corrosion Cracking of Mg-Al Alloys. Metallurgical and Materials Transactions A, 2008. 39(5): p. 1157-1173. 19. Winzer, N., et al., A Critical Review of the Stress Corrosion Cracking (SCC) of Magnesium Alloys. Advanced Engineering Materials, 2005. 7(8): p. 659-693. 20. Esmaily, M., et al., Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017. 89: p. 92-193. 21. Iranshahi, F., et al., Corrosion behavior of electron beam processed AZ91 magnesium alloy. Journal of Magnesium and Alloys, 2020. 8(4): p. 1314-1327. 22. G. L. Song, A.A., Corrosion Mechanisms of Magnesium Alloys. Advanced Engineering Materials, 1999. 1: p. 11-33. 23. Coy, A.E., et al., Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion. Corrosion Science, 2010. 52(12): p. 3896-3906. 24. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions. 1966: National Association of Corrosion Engineers. 25. Taheri, M., M. Danaie, and J.R. Kish, TEM Examination of the Film Formed on Corroding Mg Prior to Breakdown. Journal of The Electrochemical Society, 2013. 161(3): p. C89-C94. 26. Chu, P.-W. and E.A. Marquis, Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior. Corrosion Science, 2015. 101: p. 94-104. 27. Song, G., A. Atrens, and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science, 1998. 41(2): p. 249-273. 28. Petty, R.L., A.W. Davidson, and J. Kleinberg, The Anodic Oxidation of Magnesium Metal: Evidence for the Existence of Unipositive Magnesium1,2. Journal of the American Chemical Society, 1954. 76(2): p. 363-366. 29. Samaniego, A., B.L. Hurley, and G.S. Frankel, On the evidence for univalent Mg. Journal of Electroanalytical Chemistry, 2015. 737: p. 123-128. 30. Taheri, M., et al., Towards a Physical Description for the Origin of Enhanced Catalytic Activity of Corroding Magnesium Surfaces. Electrochimica Acta, 2014. 116: p. 396-403. 31. Persaud-Sharma, D. and A. McGoron, Biodegradable Magnesium Alloys: A Review of Material Development and Applications. Journal of Biomimetics, Biomaterials and Tissue Engineering, 2012. 12: p. 25-39. 32. Yang, Y., F. Scenini, and M. Curioni, A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution. Electrochimica acta, 2016. 198: p. 174-184. 33. Curioni, M., et al., Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta, 2015. 166: p. 372-384. 34. Makar, G. and J. Kruger, Corrosion of magnesium. International materials reviews, 1993. 38(3): p. 138-153. 35. Esmaily, M., et al., New insights into the corrosion of magnesium alloys — The role of aluminum. Scripta Materialia, 2016. 115: p. 91-95. 36. Danaie, M., et al., The role of aluminum distribution on the local corrosion resistance of the microstructure in a sand-cast AM50 alloy. Corrosion Science, 2013. 77: p. 151-163. 37. Gusieva, K., et al., Corrosion of magnesium alloys: the role of alloying. International Materials Reviews, 2015. 60(3): p. 169-194. 38. T.B. Massalski, H.O., P. Subramanian, and L. Kacprzak, Phase Diagrams for Binary Alloys. 1485 (1986). 39. Guangling Song, A.A., XianliangWu, BoZhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Science, 1998. 40(10): p. 1769-1791. 40. Singh, I.B., M. Singh, and S. Das, A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. Journal of Magnesium and Alloys, 2015. 3(2): p. 142-148. 41. Stjohn, D.H., et al., Grain refinement of magnesium alloys. Metallurgical and Materials Transactions A, 2005. 36(7): p. 1669-1679. 42. Li, Z., et al., Microstructure and Corrosion of Cast Magnesium Alloy ZK60 in NaCl Solution. Materials (Basel), 2020. 13(17). 43. Cheng, Y.-l., et al., Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. Transactions of Nonferrous Metals Society of China, 2009. 19(3): p. 517-524. 44. Emley, E.F., Principles of magnesium technology. 1966. 45. Wang, C., et al., Improvement in grain refinement efficiency of Mg–Zr master alloy for magnesium alloy by friction stir processing. Journal of Magnesium and Alloys, 2014. 2(3): p. 239-244. 46. Song, G., Recent Progress in Corrosion and Protection of Magnesium Alloys. Advanced Engineering Materials, 2005. 7(7): p. 563-586. 47. Brady, M.P., et al., Tracer Film Growth Study of the Corrosion of Magnesium Alloys AZ31B and ZE10A in 0.01% NaCl Solution. Journal of The Electrochemical Society, 2017. 164(7): p. C367-C375. 48. Neil, W., et al., Corrosion of magnesium alloy ZE41–The role of microstructural features. Corrosion science, 2009. 51(2): p. 387-394. 49. Neil, W., et al., Corrosion of heat treated magnesium alloy ZE41. Corrosion Science, 2011. 53(10): p. 3299-3308. 50. Pereira, G.S., et al., Corrosion resistance of WE43 Mg alloy in sodium chloride solution. Materials Chemistry and Physics, 2021. 272. 51. Bütev Öcal, E., et al., Comparison of the short and long-term degradation behaviors of as-cast pure Mg, AZ91 and WE43 alloys. Materials Chemistry and Physics, 2020. 241. 52. Arrabal, R., et al., Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corrosion Science, 2008. 50(6): p. 1744-1752. 53. Wang, J., et al., Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Materials Science and Engineering: A, 2007. 456(1-2): p. 78-84. 54. Mordike, B.L., Creep-resistant magnesium alloys. Materials Science and Engineering: A, 2002. 324(1-2): p. 103-112. 55. Zhu, S.M., et al., The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scripta Materialia, 2010. 63(7): p. 698-703. 56. Xie, J., et al., Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. Journal of Magnesium and Alloys, 2021. 9(1): p. 41-56. 57. Takenaka, T., et al., Improvement of corrosion resistance of magnesium metal by rare earth elements. Electrochimica Acta, 2007. 53(1): p. 117-121. 58. Yao, H.B., Y. Li, and A.T.S. Wee, Passivity behavior of melt-spun Mg–Y Alloys. Electrochimica Acta, 2003. 48(28): p. 4197-4204. 59. Zhang, X., et al., Corrosion and electrochemical behavior of Mg–Y alloys in 3.5% NaCl solution. Transactions of Nonferrous Metals Society of China, 2013. 23(5): p. 1226-1236. 60. Pike, T. and B. Noble, The formation and structure of precipitates in a dilute magnesium-neodymium alloy. Journal of the Less Common Metals, 1973. 30(1): p. 63-74. 61. Nie, J.-F., Precipitation and Hardening in Magnesium Alloys. Metallurgical and Materials Transactions A, 2012. 43(11): p. 3891-3939. 62. Natarajan, A.R., et al., On the early stages of precipitation in dilute Mg–Nd alloys. Acta Materialia, 2016. 108: p. 367-379. 63. Yan, J., et al., Microstructure and mechanical properties in cast magnesium–neodymium binary alloys. Materials Science and Engineering: A, 2008. 476(1-2): p. 366-371. 64. Song, Y.L., et al., Effect of neodymium on microstructure and corrosion resistance of AZ91 magnesium alloy. Journal of Materials Science, 2007. 42(12): p. 4435-4440. 65. Rokhlin, L.L., et al., Peculiarities of the phase relations in Mg-rich alloys of the Mg–Nd–Y system. Journal of Alloys and Compounds, 2004. 367(1-2): p. 17-19. 66. Okamoto, H., Mg-Nd. Journal of Phase Equilibria and Diffusion, 2007. 28(4): p. 405-405. 67. Huang, Y., et al., Understanding effects of microstructural inhomogeneity on creep response – New approaches to improve the creep resistance in magnesium alloys. Journal of Magnesium and Alloys, 2014. 2(2): p. 124-132. 68. Antion, C., et al., Hardening precipitation in a Mg–4Y–3RE alloy. Acta Materialia, 2003. 51(18): p. 5335-5348. 69. Liu, X., et al., Influence of yttrium element on the corrosion behaviors of Mg–Y binary magnesium alloy. Journal of Magnesium and Alloys, 2017. 5(1): p. 26-34. 70. Sudholz, A.D., et al., Electrochemical behaviour and corrosion of Mg–Y alloys. Corrosion Science, 2011. 53(6): p. 2277-2282. 71. Ardelean, H., et al., Corrosion processes of Mg–Y–Nd–Zr alloys in Na2SO4 electrolyte. Corrosion Science, 2013. 73: p. 196-207. 72. Williams, G., N. Birbilis, and H.N. McMurray, Controlling factors in localised corrosion morphologies observed for magnesium immersed in chloride containing electrolyte. Faraday Discuss, 2015. 180: p. 313-30. 73. Zeng, R.-c., et al., Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006. 16: p. s763-s771. 74. Song, Y., et al., The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corrosion Science, 2012. 65: p. 322-330. 75. Song, G., et al., The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion Science, 1997. 39(10-11): p. 1981-2004. 76. Wang, L., T. Shinohara, and B.-P. Zhang, Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2010. 496(1-2): p. 500-507. 77. Chen, J., et al., Corrosion behavior of AZ91D magnesium alloy in sodium sulfate solution. Materials and Corrosion, 2006. 57(10): p. 789-793. 78. Cao, F., et al., The inhibitive effect of artificial seawater on magnesium corrosion. Advanced Engineering Materials, 2019. 21(8): p. 1900363. 79. Rzychoń, T. and A. Kiełbus, Microstructure of WE43 casting magnesium alloy. Journal of Achievements of Materials and Manufacturing Engineering, 2007. 21(1). 80. Song, G.-L. and Z. Xu, The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochimica acta, 2010. 55(13): p. 4148-4161. 81. Pawar, S., et al., The Role of Intermetallics on the Corrosion Initiation of Twin Roll Cast AZ31 Mg Alloy. Journal of The Electrochemical Society, 2015. 162(9): p. C442-C448. 82. Zhao, M.-C., et al., Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41. Corrosion Science, 2008. 50(11): p. 3168-3178. 83. Haynes, W.M., D.R. Lide, and T.J. Bruno, CRC handbook of chemistry and physics. 2016: CRC press. 84. Song, Y., et al., Corrosion characterization of Mg–8Li alloy in NaCl solution. Corrosion Science, 2009. 51(5): p. 1087-1094. 85. Ascencio, M., M. Pekguleryuz, and S. Omanovic, An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time. Corrosion Science, 2014. 87: p. 489-503. 86. Wu, L., et al., Effect of applied potential on the microstructure, composition and corrosion resistance evolution of fluoride conversion film on AZ31 magnesium alloy. Journal of Materials Science & Technology, 2018. 34(11): p. 2084-2090. 87. Li, L.-X., et al., Excellent fluoride removal properties of porous hollow MgO microspheres. New J. Chem., 2014. 38(11): p. 5445-5452. 88. Mai, L., et al., Water assisted atomic layer deposition of yttrium oxide using tris(N,N′-diisopropyl-2-dimethylamido-guanidinato) yttrium(iii): process development, film characterization and functional properties. RSC Advances, 2018. 8(9): p. 4987-4994. 89. Wang, X.M., et al., Early oxidation behaviors of Mg–Y alloys at high temperatures. Journal of Alloys and Compounds, 2008. 460(1-2): p. 368-374. 90. Chu, P.-W., E. Le Mire, and E.A. Marquis, Microstructure of localized corrosion front on Mg alloys and the relationship with hydrogen evolution. Corrosion Science, 2017. 128: p. 253-264. 91. Nordlien, J.H., et al., A TEM investigation of naturally formed oxide films on pure magnesium. Corrosion science, 1997. 39(8): p. 1397-1414. 92. Su, H.Y., W.J. Li, and C.S. Lin, Effect of Acid Pickling Pretreatment on the Properties of Cerium Conversion Coating on AZ31 Magnesium Alloy. Journal of The Electrochemical Society, 2012. 159(5): p. C219-C225. 93. Ghali, E., Activity and passivity of magnesium (Mg) and its alloys. 2011, Elsevier. p. 66-114. 94. Cramer, S.D. and B.S. Covino, Corrosion: fundamentals, testing and protection. Vol. 13. 2003: ASM international. 95. Leleu, S., et al., On the stability of the oxides film formed on a magnesium alloy containing rare-earth elements. Electrochimica Acta, 2018. 290: p. 586-594. 96. McCafferty, E., Sequence of steps in the pitting of aluminum by chloride ions. Corrosion Science, 2003. 45(7): p. 1421-1438. 97. Santos, S.C., et al., Rheological Study of Yttrium Oxide Aqueous Suspensions. Materials Science Forum, 2010. 660-661: p. 712-717. 98. Wu, S., et al., Enhancement in dye-sensitized solar cells based on MgO-coated TiO(2) electrodes by reactive DC magnetron sputtering. Nanotechnology, 2008. 19(21): p. 215704. 99. Leleu, S., et al., Corrosion rate determination of rare-earth Mg alloys in a Na2SO4 solution by electrochemical measurements and inductive coupled plasma-optical emission spectroscopy. Journal of Magnesium and Alloys, 2019. 7(1): p. 47-57. 100. Pardo, A., et al., Corrosion behaviour of magnesium/aluminium alloys in 3.5wt.% NaCl. Corrosion Science, 2008. 50(3): p. 823-834. 101. Mutombo, K. and M. Du, Corrosion Fatigue Behaviour of Aluminium 5083-H111 Welded Using Gas Metal Arc Welding Method. 2011, InTech. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85264 | - |
| dc.description.abstract | 鎂合金因其具低密度與高比強度特性,使其成為機械構件輕量化的優先選擇,同時鎂合金具有生物相容性,為可生物降解植入物的潛在應用材料。然而鎂的高化學活性,使其在使用過程中易受到腐蝕。因此,深入了解鎂合金的腐蝕機理有助於我們找到解決此問題的有效途徑。 在本研究中以AZ31B及WE43兩種商用鎂合金作為研究材料,探討其浸泡於3.5wt% NaCl 水溶液中的 24 小時之腐蝕行為。根據析氫試驗、失重測量、橫截面觀察、電化學量測結果顯示,WE43浸泡在3.5 wt% NaCl水溶液中24小時,表現出較佳之抗蝕性,同時在即時攝影觀察中發現,WE43於浸泡24小時內並未表現出腐蝕產物breakdown之現象,為了瞭解WE43具較佳抗蝕性之原因,對浸泡24小時後的AZ31B與WE43腐蝕產物進行TEM分析,二者腐蝕產物主要皆由MgO與Mg(OH)2所組成,透過XPS與TEM line-scan分析得到WE43腐蝕產物內層有Y2O3 和 Y(OH)3 的富集,而AZ31B在TEM line-scan分析中並未顯示出在氧化膜層中具有Al的富集。 WE43腐蝕產物層內層中的富釔層,可歸因於底材中富釔析出物的存在,Mg和Y擁有相同電位,但Y2O3相較於MgO更能穩定存在於中性環境中,因此會優先形成。WE43相較於AZ31B具有較佳抗蝕性的原因有三:WE43為均勻腐蝕,且其主要二次相Mg24Y5並不會造成嚴重的伽凡尼腐蝕,因此具有連續且均勻的腐蝕產物層;內層Y2O3 和 Y(OH)3因擁有合適之PB ratio,因此提升了腐蝕產物層緻密度,同時Y2O3 因擁有較低之IEP,在中性及鹼性環境中不利於氯離子吸附,進而降低後續反應發生之機率。 | zh_TW |
| dc.description.abstract | Magnesium alloy attracts attention in many engineering metals due to its low density (Mg ~1.7g.cm-3 ) and high specific strength and stiffness. As a consequence, magnesium alloys have found many applications where the weight of the structure is of great importance, such as 3C, bicycle, and automotive transportation industries. Moreover, magnesium is biocompatible and has potential applications for biodegradable implants. However, magnesium is chemically active and most magnesium alloys tend to suffer corrosion during services. Therefore, gaining insight into the corrosion mechanism of magnesium alloys helps us to find out an effective way to solve this problem. In this study, two commercial magnesium alloys, AZ31B and WE43 were used as materials to investigate the corrosion behaviors immersed in 3.5wt% NaCl solution for 24 hours. According to the results of hydrogen evolution measurement, weight loss measurement, cross-sectional observation, and electrochemical measurement, WE43 showed a better corrosion resistance in 3.5 wt% NaCl solution for 24 hours. The breakdown of the corrosion film formed on WE43 was not observed in 24 hours. TEM analysis was performed on the corrosion products of AZ31B and WE43 after immersion for 24 hours to understand the main reason for WE43 has better corrosion resistance. The corrosion products of AZ31B and WE43 were mainly composed of MgO and Mg(OH)2. The XPS and TEM line-scan analysis indicated that the inner layer of the WE43 corrosion film was enriched with Y2O3 and Y(OH)3, while the Al-rich layer did not detect in AZ31B corrosion film. The yttrium-rich layer in the inner layer of the WE43 corrosion film can be attributed to the presence of yttrium-rich precipitates in the matrix. Mg and Y had the same standard electrode potential, but Y2O3 formed preferentially due to its higher stability than MgO in a neutral environment. WE43 exhibited a better corrosion resistance attributed to the following mechanism: (1) WE43 showed general corrosion and the main secondary phase Mg24Y5 did not cause serious Galvanic corrosion, resulting in a continuous and uniform corrosion film. (2) The Y-rich layer with a moderate PB ratio in the inner layer of the corrosion film increased the compactness. (3) Adsorption of Cl− was less favored on the Y2O3 surface due to its low IEP, which limited the possibility for further corrosion reaction. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:53:51Z (GMT). No. of bitstreams: 1 U0001-2907202222245500.pdf: 7666334 bytes, checksum: 3fbebcd13e315b7b058e052f521ad464 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1 Chapter 2 Paper Review 2 2.1 Introduction of magnesium alloy 2 2.2 Type of corrosion 2 2.3 The corrosion reaction of the magnesium alloy 9 2.3.1 The corrosion product of magnesium alloy 9 2.4 Effect of alloying element in magnesium 18 2.4.1 Effect of aluminum alloying 18 2.4.2 Effect of zinc alloying 20 2.4.4 Effect of rare earth element alloying 24 2.5 Influence of different anions on magnesium corrosion 30 2.5.1 The role of chloride 30 Chapter 3 Experimental Procedure 33 3.1 Sample preparation 33 3.2 Hydrogen evolution and real-time imaging 34 3.3 Weight loss measurements 34 3.4 Electrochemical analysis 35 3.5 Characterization of corrosion products 36 Chapter 4 Results 39 4.1 Microstructure 39 4.2 Hydrogen Evolution and Real Time image 42 4.3 Weight Loss and surface morphology observation 44 4.4 SEM observation 50 4.5 Open circuit potential evolution 55 4.6 Polarization curve measurement 57 4.7 EIS analysis of the corrosion products 58 4.8 XPS 63 4.9 TEM characterization 69 4.9.1AZ31B 69 4.9.2 WE43 73 Chapter 5 Discussion 79 Chapter 6 Conclusion 87 Chapter 7 Reference 88 | |
| dc.language.iso | en | |
| dc.subject | AZ31B鎂合金 | zh_TW |
| dc.subject | WE43鎂合金 | zh_TW |
| dc.subject | 電化學分析 | zh_TW |
| dc.subject | 抗蝕性 | zh_TW |
| dc.subject | 稀土元素 | zh_TW |
| dc.subject | electrochemical analysis | en |
| dc.subject | AZ31B magnesium alloys | en |
| dc.subject | WE43 magnesium alloys | en |
| dc.subject | rare earth elements | en |
| dc.subject | corrosion resistance | en |
| dc.title | AZ31B 和 WE43 鎂合金在氯化鈉水溶液中的腐蝕行為對比研究 | zh_TW |
| dc.title | Comparative studies of corrosion of AZ31B and WE43 magnesium alloys in sodium chloride solution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡文達(Wen-Ta Tsai),林景崎(Jing-Chie Lin),葛明德(Ming-Der Ger),朱鵬維(Peng-Wei Chu) | |
| dc.subject.keyword | AZ31B鎂合金,WE43鎂合金,稀土元素,抗蝕性,電化學分析, | zh_TW |
| dc.subject.keyword | AZ31B magnesium alloys,WE43 magnesium alloys,rare earth elements,corrosion resistance,electrochemical analysis, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202201891 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2907202222245500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
