Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王翰聰(Han-Tsung Wang)
dc.contributor.authorYi-Wen Fangen
dc.contributor.author方怡文zh_TW
dc.date.accessioned2023-03-19T22:52:53Z-
dc.date.copyright2022-08-10
dc.date.issued2022
dc.date.submitted2022-08-01
dc.identifier.citation中華食物網。2022。大宗飼料穀物現貨交易平台。檢自:http://m.foodchina.com.tw/mobile/now.aspx (May 21, 2022)。 黃煜成。2011。廚餘、豆渣及蔬菜廢棄物混和堆肥化。國立高雄第一科技大學環境與安全衛生工程系碩士論文。 AOAC. 2000. 923.03. Ash of flour. Official Methods of Analysis of AOAC International. AOAC International. Maryland, USA p.32.1.05. Abd-EI-AI, A. T. H., and H. J. Phaff. 1968. Exo-β-glucanase in yeast. Biochem. J. 109:347-360. doi: 10.1042/bj1090347 Agricultural Research Council. 1984. The Nutrient Requirements of Ruminant Livestock. Commonwealth Agric. Bureau, Farnham Royal, UK Arasu, M. V., M. W. Jung, D. H. Kim, S. Ilavanil, M. Jane, H. S. Park, N. A. Al-Dhabi, B. T. Jeon, and K. C. Choi. 2014. Enhancing nutritional quality of silage by fermentation with Lactobacillus plantarum. Indian J. Microbiol. 54:396-402. doi: 10.1007/s12088-014-0473-9 Aschenbach, J. R., G. B. Penner, F. Stumpff, and G. Gabel. 2011. Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci. 89:1092-1107. doi:10.2427/jas.2010-3301 Bach, A., S. Calsamiglia, and M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88:E9-E21. doi: 10.3168/jds.S0022-0302(05)73133-7 Bhunia, B., B. Basak, and A. Dey. 2012. A review on production of serine alkaline protease by Bacillus spp. J. Biochem. Tech. 3:448-457. doi: 10.1016/S0032-9592(00)00275-2 Brafold, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilization the principle of protein-dye binding. Anal. Biochem. 72:248-254. doi: 10.1016/0003-2697(76)90527-3 Broderick, G. A., and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75 doi: 10.3168/jds.S0022-0302(80)82888-8 Chen, L., X. J. Yuan, J. Zhang, A. Y. Wen, H. X. Sun, and T. Shao. 2017. Effect of ensiling whole crop oat with lucerne in different ratios on fermentation quality, aerobic stability and in vitro digestibility on the Tibetan plateau. J. of Anim. Physiol. Anim. Nutr. 101: e144-e153. doi: 10.1111/jpn.12577 Chi, C. -H., and S. -J. Cho. 2015. Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobaccilus spp. and Saccharomyces cerevisiae. LWT - Food Sci. Technol. 68:619-625. doi: 10.1016/j.lwt.2015.12.002 Colletti, A., A. Attrovio, L. Boffa, S. Mantegna, and G. Cravotto. 2020. Valorisation of by-products from soybean (Glycine max (L.) Merr.) processing. Molecules 25:2129. doi: 10.3390/molecules25092129 Cone, J. W., M. A. M. Rodrigues, C. M. Guedes, and M. C. Blok. 2009. Comparison of protein fermentation characteristics in rumen fluid determined with the gas production technique and the nylon bag technique. Anim. Feed Sci. Technol. 153:28-38. doi: 10.1016/j.anifeedsci.2009.05.008 Cooker, B. A., C. J. Sniffen, W. H. Hoover, and L. L. Johnson. 1978. Solvents for soluble nitrogen measurements in feedstuffs. J. Dairy Sci. 61:437-447. doi: 10.3168/jds.S00220302(78)83618-2 Dewhurst, R. J., D. R. Davies, and R. J. Merry. 2000. Microbial protein supply from the rumen. Anim. Feed Sci. Technol. 85:1-21. doi:10.1016/S0377-8401(00)00139-5 Diaz-Vargas, M., A. E. Murakami, I. C. Ospina-Rojas, L. H. Zanetti, M. M. Puzotti, and A. F. Q. G. Guerra. 2016. Use of okara (aqueous extract residue) in the diet of starter broilers. Can. J. Anim. Sci. 96:416-424. doi: 10.1139/cjas-2015-0064 Di Marco, O. N., M. A. Ressia, S. Arias, M. S. Aello, and M. Arzadum. 2009. Digestibility of forage silages from grain, sweet and bmr sorghum types: comparison of in vivo, in situ and in vitro data. Anim. Feed Sci. Technol. 153:161-168. doi: 10.1016/j.anifeedsci.2009.06.003 Dijkstra, J. 1994. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 39:61-69. doi. 10.1016/0301-6226(94)90154-6 Dong, N. T. K., K. Elwinger, J. E. Lindberg, and R. B. Ogle. 2005. Effect of replacing soybean meal with soya waste and fish meal with ensiled shrimp waste on the performance of growing crossbred ducks. Asian-Aust. J. Anim. Sci. 18:825-834. doi: 10.5713/ajas.2005.825 Dorion, K., P. Yu, J. J. McKinnon, and D. A. Christensen. 2009. Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. J. Dairy Sci. 92:3319-3330. doi: 10.3168/jds.2008-1946 Dreywood, R. 1946. Qualitative test for carbohydrate material. Int. Eng. Chem. Anal. Ed. 18:499 10.1021/i560156a015 Driehuis, F., and S. J. Oude Elferink. 2000. The impact of the quality of silage on animal health and food safety: a review. Vet. Q. 22:212-217. doi: 10.1080/01652176.2000.9695061 Durman, T., L. S. de Lima, M. O. A. Rufino, A. L. C. Gurgel, J. A. Horst, L. C. V. Itavo, and G. T. dos Santos. 2022. Feeding okara, a soybean by-product, to dairy cow as partial protein source enhances economic indexed and preserves milk quality, intake, and digestibility of nutrients. Trop. Anim. Health Prod. 54:14. doi: 10.1007/s11250-021-03010-9 Edmunds, E., K. -H. Sudekum, H. Spiekers, and F. J. Schwarz. 2012. Estimating ruminal crude protein degradation of forages using in situ and in vitro techniques. Anim. Feed Sci. Technol. 175:95-105. Doi: 10.1016/j.anifeedsci.2012.04.003 Fox, D. G., L. O. Tedesch, T. P. Tylutki, J. B Russell, M. E. Van Amburgh, L. E. Chas, A. N. Pell, and T. R. Overton. 2004. The Cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 112:29-78. doi: 10.1016/j.anifeedsci.2003.10.006 Gerlachm K., F. Rob, K. Buscher, and K. -H. Sudekum. 2014. Aerobic exposure of grass silages and its impact on dry matter intake and preference by goats. Small Rumin. Res. 117:131-141. doi: 10.1016/j.smallrumres.2013.12.033 Hupta, S., J. J. L. Lee, and W. N. Chen. 2018. Analysis of improved nutritional composition of potential functional food (okara) after probiotic solid-state fermentation. J. Agric. Food Chem. 66:5373-5381. doi: 10.1021/acs.jafc.8b00971 Harjanti, D. W., Y. Sugawara, M. Al-Mamum, and H. Sano. 2012. Effects of replacing concentrate with soybean curd residue silage on ruminal characteristics, plasma leucine and glucose turnover rates in sheep. J. Anim. Sci. Adv. 2:361-374. Harthan L. B., and D. J. R. Cherney. 2017. Okara as a protein supplement affects feed intake and milk composition of ewes and growth performance of lambs. Anim. Nutr. 3:171-174. doi: 10.1016/j.aninu.2017.04.001 Hayek, S. A., and S. A. Ibrahim. 2013. Current limitations and challenges with lactic acid bacteria: a review. Nutr. Food Sci. 4:73-87. doi: 10.4236/fns.2013.411A010 Hiwatashi, M., S. Kano, and T. Kato. 2015. Development of a preservation method for okara using lactic acid fermentation. J. Jpn. Soc. Food. Sci. Technol. 62:572-578. doi: 10.3136/nskkk.62.572 Hotz, C., and R. S. Gibson. 2007. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J. Nutr. 137:1097-1100. doi: 10.1093/jn/137.4.1097 Hristov, N. A., A. Bannink, L. A. Crompton, P. Huhtanen, M. Kreuzer, M. McGee, P. Nozière, C. K. Reynolds, A. R. Bayat, D. R. Yáñez-Ruiz , J. Dijkstra, E. Kebreab, A. Schwarm, K. J. Shingfield , and Z. Yu. 2019. Invited review: nitrogen in ruminant nutrition: a review of measurement techniques. J. Dairy Sci. 102:5811-5852. doi:10.3168/jds.2018-15829 Hu, Y., C. Piao, Y. Chen, Y. Zhou, D. Wang, H. Yu, and B. Xu. 2019. Soybean residue (okara) fermentation with the yeast Kluyveromyces marxianus. Food Biosci. 31:100439. doi: 10.1016/j.fbio.2019.100439 Hvelplund, T., and M. R. Weisbjerg. 1998. In vitro techniques to replace in vivo methods for estimating amino acid supply. BSAP Occas. Publ. 22:131-144. doi: 10.1017/S0263967X00032419 Kato, T., I. Shiga, and K. Terasawa. 1986. Preservation of okara (soybean residue from soy mash) by lactic acid fermentation. J. Jpn. Soc. Food. Sci. Technol. 33:837-841. doi: 10.3136/nskkk1962.33.12_837 Kim, H. J., J. J. Choung, and D. G. Chamberlain. 1999. Effects of varying the degree of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in lactating dairy cows consuming a diet of grass silage and a cereal-based concentrate. J. Sci. Food Agic. 79:1441-1447. doi:10.1002/(SICI)1097-0010(199908)79:11<1441::AID-JSFA385>3.0.CO;2-Z Kim, K. H., Kin, S. J., B. T. Jeon, D. H. Kim, M. R. Oh, P. J. Park, H. J. Kweon, B. Y. Oh, S. J. Hur, and S. H. Moon. 2012. Effects of dietary soybean curd residue on the growth performance and carcass characteristics in Hanwoo (Bos taurus coreanae) steer. Afr. J. Agric. Res. 7:4331-4336. doi: 10.5897/AJAR12.1127 Krizsan, S. J., L. Nyholm, J. Nousiainen, K. -H. Sudekum, and P. Huhtanen. 2012. Comparison of in vitro and in situ methods in evaluation of forage digestibility in ruminants. J. Anim. Sci. 90:3162-3173. doi: 10.2527/jas2011-4347 Kung, L., and N. K. Ranjit. 2001. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 84:1149-1155. doi: 10.3168/jds.S0022-0302(01)74575-4 Lanzas, C., C. J. Sniffen, S. Seo, L. O. Tedeschi., and D. G. Fox. 2007. A revised CNCPS feed carbohydrate fractionation scheme for formulating rations for ruminants. Anim. Feed Sci. Technol. 136:167-190. doi: 10.1016/j.anifeedsci.2006.08.025 Li, S., D. Zhu, K. Li, Y. Yang, Z. Lei, and Z. Zhang. 2013. Soybean curd residue: composition, utilization, and related limiting factors. ISRN Ind. Eng. 2013:1-8. doi: 10.1155/2013/423590 Licitra, G. P. J. Van Soest, I. Schadt, S. Carpino, and C. J. Sniffen. 1999. Influence of the concentration of the protease from Streptomyces griseus relative to ruminal protein degradability. Anim. Feed Sci. Technol. 77:99-113. doi: 10.1016/S0377-8401(98)00233-8 Lin, X. Z. Hu, S. Zhang, G. Cheng, Q. Hou, Y. Wang, Z. Yan, K. Shi, and Z. Wang. 2020. A study on the mechanism regulating acetate to propionate ratio in rumen fermentation by dietary carbohydrate type. Adv. Biosci. Biotechnol. 11:369-390. doi: 10.4236/abb.2020.118026 Ma, C. -Y., W. -S. Liu, K. C. Kwok, and F. Kwok. 1997. Isolation and characterization of proteins from soymilk residue (okara). Food Res. Int. 29:799-805. doi: 10.1016/0963-9969(95)00061-5 Makkar, H. P. S., O. P. Sharma, R. K. Dawra, and S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170-2173. doi: 10.3168/jds.S0022-0302(82)82477-6 Mateos-Aparicio, I., C. Mateos-Peinado, A. Jiménez-Escrig, and P. Rupérez. 2010. Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara. Carbohydr. Polym. 82:245-250. doi: 10.1016/j.carbpol.2010.04.020 Matsuda, T., T. Yano, A. Maruyama, and H. Kumagai. 1994. Antimicrobial activities of organic acids determined by minimum inhibitory concentrations at different pH ranged from 4.0 to 7.0. Jpn. Soc. Food. Sci. Technol. 41:687-702. doi: 10.3136/nskkk1962.41.687 McAllister, T. A., H. D. Bae, G. A. Jones, and K. -J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018. doi: 10.2527/1994.72113004x McDonald, I. 1981. A revised model for the estimation of protein degradability in the rumen. J. Agric. Sci.96:251-252. doi: 10.1017/S0021859600032081 McDonald, P., R, A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, and R. G. Wilkinson. 2011. Animal Nutrition seven edition. New York: Pearson. Mehrez, A. Z., and E. R. Ørskov. 1977. A study of artificial fiber bag technique for determining the digestibility of feeds in the rumen. J. Agri. Sci. 88:645-650. doi: 10.1017/S0021859600037321 Mohamed, R., and A. S. Chaudhry. 2008. Methods to study degradation of ruminant feeds. Nutr. Res. Rev. 21:68-81. doi: 10.1017/S0954422408960674 Morris, D. L. 1948. Quantitative determination of carbohydrate with Dreywood’s anthrone reagent. Sci. 107:254-255. doi: 10.1126/science.107.2775.254 Motawe, H. F. A., A. M. El Shinnawy, T. M. El-Afifi, N. A. Hashem, and A. A. M. A. Zaid. 2012. Utilization of okara meal as a resource of plant protein in broiler diets. J. Anim. Poult. Prod. 3:127-136. doi: 10.21608/jappmu.2012.82782 Mould, F. L., K. E. Kliem, R. Morgan, and R. M. Mauricio. 2005. In vitro microbial inoculum: a review of its function and properties. Anim. Feed Sci. Technol. 123-124:31-50. doi: 10.1016/j.anifeedsci.2005.04.028 Muck, R. E., E. M. G. Nadeau, T. A. McAllister, F. E. Conteras-Govea, M. C. Santos, and L. Kung Jr. 2018. Silage review: recent advances and future uses of silage additives. J. Dairy Sci. 101:3980-4000. doi: 10.3168/jds.2017-13839 Nagamine, I., K. Sunagawa, and T. Kina. 2013. Use of awamori-pressed lees and tofu lees as feed ingredients for growing male goats. Asian-Aust. J. Anim. Sci. 26:1262-1275. doi: 10.5713/ajas.2012.12717 Nagamine, I., Y. Matsumura, and K. Sunagawa. 2015. Use of tofu lees silage for growing male goats. J. Warm Regional Soci. 58:61-73 Nombela, C., M. Molina, R. Cenamor, and M. Sanchez. 1988. Yeast beta-glucanases: a complex system of secreted enzymes. Microbiol. Sci. 5:328-332. doi: NRC. 2001. Nutrient Requirements of Dairy Cattle. National Academy Press, Washinton, D. C., USA. Oh, S. M., C. S. Kim, and S. P. Lee. 2006. Characterization of the functional properties of soy milk cake fermented by Bacillus sp. Food Sci. Biotechnol. 15:704-709. doi: 10.3746/jkfn.2006.35.1.115 Ørskov, E. R., and I. McDonald. 1970. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503 doi: 10.1017/S0021859600063048 O’Toole, D. k. 1999. Characteristic and use of okara, the soybean residue from soy milk production – a review. J. Agric. Food Chem. 47:363-371. doi: 10.1021/jf9807541 Putri, E. M., M. Zain, L. Warly, and H. Hermon. 2021. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Vet. World 14:640-648. doi: 10.14202/vetworld.2021.640-648 Qiao, G. H., Z. G. Xiao, Y. Li, G. J. Li, L. C. Zhao, T. M. Xie, and D. W. Wang. 2019. Effect of diet synchrony on rumen fermentation, production performance, immunity status and endocrine in Chinese Holstein cows. Anim. Prod. Sci. 59:664-672. doi:10.1071/AN17113 Rahman, M. M., K. Mat, G. Ishigaki, and R. Akashi. 2021. A review of okara (soybean curd residue) utilization as animal feed: nutritive value and animal performance aspects. Anim Sci. J. 92:e13594. doi: 10.1111/asj.13594 Rahmoa, M. M., M. R. Rahman, T. Nakagawa, and R. B. Abdullah. 2015. Effects of wet soya waste supplementation on the intake, growth and reproduction of goats fed Napier grass. Anim. Feed Sci. Technol. 199:104-112. doi: 10.1016/j.anifeedsci.2014.11.007 Rahman, M. M., R. B. Abdullah, K. B. Mat, G. Ishigaki, M. M. Nor, and R. Akashi. 2020. Replacement of soybean meal with levels of inclusion of soya waste in the diet of growing goats. Trop. Anim. Health Prod. 52:3085-3090. doi: 10.1007/s11250-020-02330-6 Redondo-Cuenca, A., M. J. Villanueva-Suarez, and I. Mateos-Aparicio. 2008. Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chem. 108:1099-1105. doi: 10.1016/j.foodchem.2007.11.061 Roca-Mesa, H., S. Sendra, A. Mras, G. Beltran, and M. J. Torija. 2020. Nitrogen preferences during alcoholic fermentation of different non-Saccharomyces yeast of oenological interest. Microorganisms 8:157. doi: 10.3390/microorganisms8020157 Rojan, P. J., K. M. Nampoothiri, A. S. Nair, and A. Pandey. 2005. L(+)-lactic acid production using Lactobacillus casei in solid-state fermentation. Biotechnol. Lett. 27:1685-1688. doi:10.1007/s10529-005-2731-8 Russell, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81:3222-3230. doi: 10.3168/jds.S0022-0302(98)75886-2 Russell, J. B., J. D. O’Connor, D. G. Fox, P. J. Van Soest, and C. J. Sniffen. 2014. A net carbohydrate and protein system for evaluating cattle diets: I. ruminal fermentation. J. Anim. Sci. 70:3551-3561. doi: 10.2527/1992.70113551x Russell, J. B., and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Sci. 292:1119-1122. doi: 10.1126/science.1058830 Santana, R. A. V., A. F. Brito, D. C. Moura, C. P. Ghedni, J. G. B. Galvao, F. A. Barbosa, A. S. Oliveira, A. B. D. Pereira, S. F. Reis, I. A. Souza, and K. A. Juntwait. 2016. Okara meal can completely replace soybean meal in diets of early to mid-lactation dairy cows. J. Anim. Sci. 94:683. doi: 10.2527/lam2016-1409 Santos, F. A. P., J. E. P. Santos, C. B. Theurer, and J. T. Huber. 1998. Effects of rumen-undegradable protein on dairy cow performance: a 12-year literature review. J. Dairy Sci. 81:3182-3213. doi: 10.3168/jds.S0022-0302(98)75884-9 Santos, V. A. Q., C. G. Nascimento, C. A. P. Schmidt, D. Mantovani, R. F. H. Dekker, and M. A. A. da Cunha. 2018. Solid-state fermentation of soybean okara: isoflavones biotransformation, antioxidant activity and enhancement of nutritional quality. LWT - Food Sci. Technol. 92:509-515. doi: 10.1016/j.lwt.2018.02.067 Seo, J. K., H. J. Kim, S. D. Upadhaya, W. M. Cho, and J. K. Ha. 2010. Effects of synchronization of carbohydrate and protein supply on ruminal fermentation, nitrogen metabolism and microbial protein synthesis in Holstein steers. Asian-Aust. J. Anim. Sci. 23:1455-1461. doi:10.5713/ajas.2010.10247 Shabi, Z. H., M. Tagari, M. R. Murphy, I. Bruckental, S. J. Mabjeesh, S. Zamwel, K. Celik, and A. Arieli. 2000. Partitioning of amino acids flowing to the abomasum into feed, bacterial protozoal, and endogenous fractions. J. Dairy Sci. 83:2326-2334. doi: 10.3168/jds.S0022-0302(00)75120-4 Shannak, S., K. -H. Sudekum, and A. Susenbeth. 2000. Estimating ruminal crude protein degradation with in situ and chemical fractionation procedures. Anim. Feed Sci. Technol. 85:195-214. doi: 10.1016/S0377-8401(00)00181-4 Shi, H., M. Zhang, W. Wang, and S. Devahastin. 2020. Solid-state fermentation with probiotics and mixed yeast on properties of okara. Food Biosci. 36:100610. doi: 10.1016/j.fbio.2020.100610 Sinclair, L. A., P. C. Garnsworthy, J. R. Newbold, and P. J. Buttery. 1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. 120:251-263. doi: 10.1017/S002185960007430X Sniffen, C. J., J. D. O’Connor, P. J. Van Soest, D. G. Fox, and J. B. Russell. 1992. Net carbohydrate and protein system for evaluating cattle diets: II. carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577. doi: 10.2527/1992.70113562x Storm, E., and E. R. Ørskov. 1983. The nutritive value of rumen microorganisms in ruminants. 1. Large-scale isolation and chemical composition of rumen microorganisms. Br. J. Nutr. 50:463-470 doi: 10.1079/BJN19830114 Sumarna. 2008. Changes of raffinose and stachyose in soy milk fermentation by lactic acid bacteria from local fermented foods of Indonesian. Malays. J. Microbiol. 4:26-34. doi: 10.21161/mjm.12208 Takenaka, T., and T. Echigo. 1992. Storages and chemical changes of lactic fermented okara. J. Food Process. Preserv. 18:112-115. doi: 10.5891/jafps1987.18.112 Tassone, S., R. Fortina, and P. G. Peirettu. 2020. In vitro techniques using the DaisyII incubator for the assessment of digestibility: a review. Animals 10:775. doi: 10.3390/ani10050775 Thomas, L., C. Larroche, and A. Pandey. 2013. Current developments in solid-state fermentation. Biochem. Eng. J. 81:146-161. doi: 10.1016/j.bej.2013.10.013 Tian, Z., D. Deng, Y. Cui, W. Chen, M. Yu, and X. Ma. 2020. Diet supplemented with fermented okara improved growth performance, meat quality, and amino acid profiles in growing pigs. Food Sci. Nutr. 8:5650-5659. doi: 10.1002/fsn3.1857 Tres, T. T., C. C. Jobim, T. G. Diaz, J. J. P. Daniel, and F. A. Jacovaci. 2020. Okara or soybean grain added to the rehydrated corn grain silage for cattle: digestibility, degradability and ruminal parameters. Acta Sci. Anim. Sci. 42:e48586. doi: 10.4025/actascianimsci.v42i1.48586 Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991 Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. doi: 0.3168/jds.S0022-0302(91)78551-2 Vanzant, E.S., R.C. Cochran, and E.C. Titgemeyer. 1998. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 76:2717-2729. doi: 10.2527/1998.76102717x Vong, W. C., K. L. C. Au Yang, and S. -Q. Liu. 2016. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica. Int. J. Food Microbiol. 235:1-9. doi: 10.1016/j.ijfoodmicro. 2016.09.039 Vong, W. C., and S. -Q. Liu. 2016. Biovalorisation of okara (soybean residue) for food and nutrition. Trends Food Sci. Technol. 52:139-147. doi: 10.1016/j.tifs.2016.04.011 Vong, W. C., and S. -Q. Liu. 2017. Changes in volatile profile of soybean residue (okara) upon solid-state fermentation by yeasts. J. Sci. Food Agric. 97:135-143. doi: 10.1002/jsfa.7700 Waliszewski, K. N., V. Pardio, and E. Carreon. 2006. Physicochemical and sensory properties of corn tortillas made from nixtamalized corn flour fortified with spent soymilk residue (okara). 67:3194-3197. J. Food Sci. doi: 10.1111/j.1365-2621.2002.tb08881.x Wang, F., and N. Nishino. 2008. Ensiling of soybean curd residue and wet brewers grains with or without other feeds as a total mixed ration. J. Dairy Sci. 91:2380-2387. doi: 10.3168/jds.2007-0821 Wee, Y. J., J. N. Kim, and H. W. Ryu. 2006. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44:163-172. Wegkamp, A., B. Teusink, W. M. De Vos, E. J. Smid. 2009. Development of a minimal growth medium for Lactobacillus plantarum. Lett. Appl. Microbiol. 50:57-64. doi:10.1111/j.1472-765x.2009.02752.x Weisbjerg, M. R., T. Hvelplund, S. Hellberg, S. Olsson, and S. Sanne. 1996. Effective rumen degradability and intestinal digestibility of individual amino acids in different concentrates determined in situ. Anim. Feed Sci. Technol. 62:179-188. doi: 10.1016/S0377-8401(96)00970-4 Wilkinson, J. K., and D. R. Davies. 2012. The aerobic stability of silage: key findings and recent developments. Grass Forage Sci. 68:1-19. doi: 10.1111/j.1365-2494.2012.00891.x Xu, C. C., S. Hiroyuki, and K. Toyokawa. Characteristics of ruminal fermentation of wethers fed tofu cake silage with ethanol. Anim. Sci. J. 72:299-305. doi: 10.2508/chikusan.72.299 Yao, Y., S. Pan, K. Wang, and X. Xu. 2010. Fermentation process improvement of a Chinese traditional food: soybean residue cake. J. Food Sci. 75:417-421. doi: 10.1111/j.1750-3841.2010.01726.x Yang, C. -M. J. 2004. Soybean milk residue ensiled with peanut hulls: fermentation acids, cell wall composition, and silage utilization by mixed ruminal microorganisms. Bioresour. Technol. 96:1419-1424. doi: 10.1016/j.biortech.2004.10.013 Zandril, F., and H. Brunet. 1981. Investigation of physical parameters important for solid-state fermentation of straw by white rot fungi. Eur. J. Appl. Microbiol. Biotechnol. 11:183-188. doi: 10.1007/BF00511259 Zang, Y., R. A. V. Santana, D. C. Moura, J. G. B. Galvao Jr., and A. F. Brito. 2021. Replacement soybean meal with okara meal: effects on production, milk fatty acid and plasma amino acid profile, and nutrient utilization in dairy cows. J. Dairy Sci. 104:3109-3122. doi: 10.3168/jds.2020-19182 Zhu, Y. P., J. F. Fan, Y. Q. Cheng and L. T. Li. 2008. Improvement of the antioxidant activity of Chinese traditional fermented okara (Meitauza) using Bacillus substilis B2. Food control 19:654-661. doi: 10.1016/j.foodcont.2007.7.009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85249-
dc.description.abstract豆渣為豆漿加工過程中的副產物,豆渣乾物質中含有近 30% 的蛋白質,具有成為飼料中蛋白質原料之潛力,卻因水分含量高而難以保存和利用。因此,本研究目的在利用發酵法保存豆渣,以利用乳酸菌產生的乳酸降低豆渣 pH 值來延緩腐敗,並評估豆渣發酵成品應用在反芻動物餵飼之價值,以增加豆渣之利用性。 試驗第一部分以商用乳酸菌及酵母菌混合菌粉進行接種,以三種水分含量(60、70 與 80%)與接種濃度(106、107 與 108 CFU/g)進行四個不同時間點 (3、6、12 與 24 天)的先期組合評估,並分析發酵期間成品之 pH 值、氨態氮、乳酸及揮發性脂肪酸濃度,配合微生物計數來評估發酵品質,以評估適合之發酵條件。成品於開封時進行有氧穩定性試驗,最後以最佳條件進行小規模(20公斤)與大規模(80公斤)量產發酵。試驗結果發現豆渣發酵第 24 天時,pH 值在所有處理組中皆可降至 4.5以下,其中以 106 CFU/g 接種濃度搭配 80% 水分的組別,pH 值最低且乳酸含量顯著較高,因此選擇此條件進行放大規模發酵。小規模(20 公斤)量產發酵試驗結果顯示,第 2 週後成品 pH 值顯著下降,但乳酸、乙酸及粗蛋白質含量在各週無差異,但貯存第 6 及 8 週的 pH 值、氨及乙酸含量顯著提高,顯示在此條件下發酵後,維持品質穩定之天數仍有限制。好氣穩定性結果顯示,氨含量在開封後第 24 小時顯著高於第 12 小時,而 48 小時的總生菌數也顯著較高。大規模(80 公斤)量產試驗中,發酵 1 週後成品 pH 值即降到 4.5 以下,發酵成品化學成分在發酵開始後4週內無顯著差異。 第二部分試驗以固定乳酸菌接種濃度(106 CFU/g)並搭配不同水分條件發酵之成品,透過體外消化試驗來評估發酵豆渣於乳牛飼糧的利用性。試驗結果顯示,發酵豆渣與原料各組別在試管內乾物質消化率(in vitro true dry matter digestibility, IVTDMD)、中洗纖維消化率(in vitro neutral detergent fiber digestibility, IVNDFD)與總產氣量和未發酵豆渣無顯著差異,但發酵豆渣組可降解部分(degradable fraction)含量與體外發酵後氨含量則顯著較高。原位(in situ)試驗結果顯示發酵豆渣之有效降解率(effective degradability, ED)較低(52.82 - 58.78%),然而蛋白質中快速降解部分、降解速率(kd)、瘤胃中可降解蛋白(rumen degradable protein,RDP)與瘤胃中不可降解蛋白(rumen undegradable protein,RUP)數值並無顯著差異。進一步將新鮮豆渣與發酵豆渣取代飼糧中大豆粕成分之 25、50、75 與 100% ,進行體外消化結果顯示,當各配方含有相似之粗蛋白、能量、RDP 與 RUP下,各組在 IVTDMD 與 IVNDFD 無顯著差異。在體外產氣評估顯示,發酵豆渣取代豆粕 25%、50% 組的總產氣量與可降解部分顯著較高,和控制組最接近。原位試驗結果則顯示,各組混合飼糧的降解速率及 ED 皆無顯著差異。 綜合上述,以適當發酵條件保存豆渣可以降低 pH 值,延長可使用期限,且在放大製程後也能達到效果,並可維持豆渣的營養價值。在體外試驗中,以不同比例之發酵豆渣取代大豆粕後不會影響體外消化率,且瘤胃中降解速率及有效降解率也無差異,顯示發酵豆渣具有取代乳牛飼糧中豆粕的潛力,作為穩定的替代性飼糧蛋白質的來源。zh_TW
dc.description.abstractOkara is a by-product of soymilk manufacture. It contains about 30% of crude protein and shows the potential to be a protein feedstuff. However, okara has difficulties in preservation and transportation due to its high moisture content. Therefore, the purpose of this research is to improve the preservation of okara through lactic acid bacteria fermentation and decrease the pH value by lactate. The feeding value of okara is also evaluated for future application in ruminant diets. In the first experiment, commercial lactic acid bacteria and yeast mixture product was used as a starter to ferment okara under different moisture content (80, 70, and 60%) and starter inoculation levels (108, 107, and 106 CFU/g) for 3, 6, 12, and 24 days. The pH value, ammonia, lactate, volatile fatty acid content, and microbial counts were analyzed to investigate the optimal fermentation condition. The aerobic stability after opening was also evaluated. Subsequently, the small-scale (20 kg) and large-scale (80 kg) okara fermentation was carried out under optimal fermentation conditions. The condition test results showed the pH value of all test groups was less than 4.5 on the 24th day of fermentation. Among all treatments, the okara fermented with 106 CFU/g inoculation level with 80% moisture condition had the lowest pH value and higher lactate, and this condition was chosen for scale-up fermentation. The results of the small-scale (20 kg) fermentation test indicated that after 2nd week of fermentation, the pH value decreased significantly. The content of lactate, ammonia, and acetate showed no difference during fermentation. However, in the 6th and 8th weeks, the pH value, ammonia, and acetate content were increased significantly. It implied that fermentation treatment still had limitations on maintaining quality in a longer preserved time. The aerobic stability showed that only the ammonia content was higher in the 24 hr after opening and the total bacteria count was higher in 48 hr. The large scale (80 kg) fermentation results showed that the pH value was decreased to less than 4.5 after 1 week of fermentation, and no difference was shown in the chemical composition of the fermented product within 4 weeks. In the second experiment, the fermented product (with 106 CFU/g inoculation level) with different moisture conditions was used to evaluate the utilization of fermented okara in the dairy cow diet through in vitro and in situ experiments. The results indicated that the in vitro true dry matter digestibility (IVTDMD), in vitro neutral detergent fiber digestibility (IVNDFD), and the in vitro gas production volume of each group had no differences, but fermented okara groups had higher degradable fraction (b) and ammonia content during in vitro rumen fluid fermentation experiment. The result of in situ tests showed that the effective degradability (ED) of fermented okara was lower (52.82 – 58.78%), but no significant difference was shown in the rapidly degradable fraction of protein, degradation rate (Kd), rumen degradable protein (RDP), and rumen undegradable protein (RUP). Finally, fresh okara and fermented okara (under 106 CFU/g inoculation level, 80% moisture, fermented for 24 days) were applied to replace 25, 50, 75, and 100% of the soybean meal in the total mixed ration (TMR) of dairy cows. All test TMRs contained similar crude protein, energy, RDP, and RUP level. The results showed no differences in IVTDMD and IVNDFD among all test TMRs. The TMR with fermented okara in 25 and 50% replacement ratios had higher in vitro gas production volume and soluble fraction, and the value was similar to the control group. The result of the in situ tests also indicated that the degradation rate and ED of all groups were similar. In conclusion, the okara under optimal fermentation operations could effectively reduce the pH value of okara and improved its preservation in both laboratory-scale and larger-scale fermentation, and it also benefited to maintain the nutritional value of okara. According to the in vitro and in situ results, replacing soybean meal with different ratios of fermented okara had no effect on the in vitro digestibility, rumen degradation rate, and effective degradability. It suggested that the fermented okara had the potential to replace soybean meal in dairy cow diets as a stable alternative protein source.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:52:53Z (GMT). No. of bitstreams: 1
U0001-0108202213501200.pdf: 3699003 bytes, checksum: 9b489d8ed8a51c13e2a2cb269d5fc89e (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 I Abstract III 圖次 X 表次 XI 前言 1 壹、文獻探討 3 一、豆渣 3 (一)產業現況 3 (二)豆渣成分 4 (三)豆渣於動物飼糧利用上之限制因素 8 (四)豆渣保存方法 9 二、豆渣之發酵利用 11 (一)真菌發酵 11 (二)芽孢桿菌發酵 12 (三)乳酸菌發酵 12 三、豆渣在動物飼糧上之應用 13 (一)未發酵豆渣 13 (二)發酵豆渣 14 (三)取代大豆粕之潛力 16 四、反芻動物蛋白質飼糧評估方法 17 (一)瘤胃功能及降解作用 17 (二)反芻動物之氮代謝 18 (三)微生物蛋白質合成 20 (四)體內試驗 21 (五)原位試驗 22 (六)體外試驗 24 五、能氮平衡 27 (一)能氮同步性 27 (二)康乃爾淨碳水化合物—淨蛋白質系統 28 貳、材料與方法 31 一、發酵製程建立 31 (一)試驗材料 31 (二)不同水分和接種濃度條件測試 32 (三)發酵成品評估 33 (四)不同規模測試 35 (五)好氣穩定性試驗 35 二、豆渣原料與發酵成品之成分分析 35 (一)乾物質 35 (二)粗脂肪 36 (三)中洗纖維 37 (四)酸洗纖維 38 (五)酸洗木質素 38 (六)灰分 39 (七)粗蛋白 39 (八)可溶性碳水化合物 42 三、發酵成品分析方法 43 (一) pH 值 43 (二)微生物計數 43 (三)揮發性脂肪酸與乳酸 44 (四)氨態氮 45 (五)微生物菌體蛋白質定量 45 (六)蛋白質分子量分佈測定 46 四、飼糧利用性評估 47 (一)動物飼養 47 (二)體外乾物質消化率和中洗纖維消化率 47 (三)體外產氣法 49 (四)原位消化試驗 51 五、完全混合日糧之配製 53 六、統計分析 56 參、結果與討論 57 一、發酵豆渣製程建立 57 (一)豆渣 57 (二)不同發酵條件對成品之影響 59 (三)發酵規模測試 67 二、發酵豆渣之餵飼價值評估 76 (一)體外真乾物質消化率和中洗纖維消化率 76 (二)體外產氣動力學 78 (三)原位試驗與降解率測定 82 (四)蛋白質分子量分佈 87 三、不同豆粕取代率之完全混合日糧配方體外營養價值評估 89 (一)體外真乾物質消化率和中洗纖維消化率 89 (二)體外產氣動力學 92 (三)原位試驗 99 肆、結論 102 伍、參考文獻 103
dc.language.isozh-TW
dc.subject體外消化率zh_TW
dc.subject發酵豆渣zh_TW
dc.subject替代性蛋白質原料zh_TW
dc.subject原位試驗zh_TW
dc.subject乳酸菌發酵zh_TW
dc.subjectAlternative protein sourceen
dc.subjectFermented okaraen
dc.subjectLactic acid bacteria fermentationen
dc.subjectIn vitro digestibilityen
dc.subjectIn situ testen
dc.title豆渣之發酵保存及其在乳牛飼糧應用之體外評估zh_TW
dc.titleFermentation Preservation of Okara and the in vitro Evaluation of its Application in Dairy Cattle Diet Formulaen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐濟泰(Jih-Tau Hsu),楊价民(Che-Ming Yang),李春芳(Chun-Fang Li),張俊明(Jun-Ming Chang)
dc.subject.keyword發酵豆渣,乳酸菌發酵,體外消化率,原位試驗,替代性蛋白質原料,zh_TW
dc.subject.keywordFermented okara,Lactic acid bacteria fermentation,In vitro digestibility,In situ test,Alternative protein source,en
dc.relation.page117
dc.identifier.doi10.6342/NTU202201932
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-01
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
dc.date.embargo-lift2022-08-10-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
U0001-0108202213501200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved