請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85243完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳小梨 | zh_TW |
| dc.contributor.advisor | Show-Li Chen | en |
| dc.contributor.author | 王昱舜 | zh_TW |
| dc.contributor.author | Yu-Shun Wang | en |
| dc.date.accessioned | 2023-03-19T22:52:30Z | - |
| dc.date.available | 2023-12-26 | - |
| dc.date.copyright | 2022-10-03 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Alhindi, A., Boehm, I., & Chaytow, H. (2021). Small junction, big problems: Neuromuscular junction pathology in mouse models of amyotrophic lateral sclerosis (ALS). Journal of anatomy, 10.1111/joa.13463.
Al-Chalabi, A., Hardiman, O., Kiernan, M. C., Chiò, A., Rix-Brooks, B., & van den Berg, L. H. (2016). Amyotrophic lateral sclerosis: moving towards a new classification system. The Lancet. Neurology, 15(11), 1182–1194. Andersen, PM., Sims, KB., Xin, WW., Kiely, R., O'Neill, G., Ravits, J., Pioro, E., Harati, Y., Brower, RD., Levine, JS., Heinicke, HU., Seltzer, W., Boss, M., Brown, RH Jr. (2003). Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other Motor Neuron Disord 4(2):62-73. Arber, S., Han, B., Mendelsohn, M., Smith, M., Jessell, T.M., Sockanathan, S. (1999). Requirement for the Homeobox Gene Hb9 in the Consolidation of Motor Neuron Identity. Neuron 23, 659–674. Bao, Z., Cui, Can., Chow, S.K., Qin, Ling., Wong, R.M., Cheung, W.-H. (2020). AChRs Degeneration at NMJ in Aging-Associated Sarcopenia–A Systematic Review. Frontiers in Aging Neuroscience 12. Barber, R. P., Phelps, P. E., Houser, C. R., Crawford, G. D., Salvaterra, P. M., & Vaughn, J. E. (1984). The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study. The Journal of comparative neurology, 229(3), 329–346. Barik, A., Lu, Y., Sathyamurthy, A., Bowman, A., Shen, C., Li, L., Xiong, W.-C., Mei, L. (2014). LRP4 Is Critical for Neuromuscular Junction Maintenance. The Journal of Neuroscience 34, 13892–13905. Belloni, E., Martucciello, G., Verderio, D., Ponti, E., Seri, M., Jasonni, V., Torre, M., Ferrari, M., Tsui, L. C., & Scherer, S. W. (2000). Involvement of the HLXB9 homeobox gene in Currarino syndrome. American journal of human genetics, 66(1), 312–319. Bergner, M., Bobbitt, R.A., Carter, W.B., Gilson, B.S. (1981). The sickness impact maceuticals, Inc., Tarrytown, NY. profile: development and final revision of a health status measure. Med Care 19:787–805. Bessou, P., Emonet-Dénand, F., & Laporte, Y. (1965). Motor fibres innervating extrafusal and intrafusal muscle fibres in the cat. The Journal of physiology, 180(3), 649–672. Blijham, P.J., Schelhaas, H.J., Ter Laak, H.J., Van Engelen, B.G.M., Zwarts, M.J. (2007). Early diagnosis of ALS: The search for signs of denervation in clinically normal muscles. Journal of the Neurological Sciences 263, 154–157. Bilsland, L.G., Sahai, E., Kelly, G., Golding, M., Greensmith, L., Schiavo, G. (2010). Deficits in axonal transport precede ALS symptoms in vivo. Proceedings of the National Academy of Sciences 107, 20523–20528. Boillée, S., Velde, C.V., Cleveland, D.W. (2006). ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors. Neuron 52, 39-59. Bolliger, M.F., Zurlinden, A., Lüscher, D., Bütikofer, L., Shakhova, O., Francolini, M., Kozlov, S.V., Cinelli, P., Stephan, A., Kistler, A.D., Rülicke, T., Pelczar, P., Ledermann, B., Fumagalli, G., Gloor, S.M., Kunz, B., Sonderegger, P. (2010). Specific proteolytic cleavage of agrin regulates maturation of the neuromuscular junction. Journal of Cell Science 123, 3944–3955. Bolis, A., Coviello, S., Bussini, S., Dina, G., Pardini, C., Previtali, S. C., Malaguti, M., Morana, P., Del Carro, U., Feltri, M. L., Quattrini, A., Wrabetz, L., & Bolino, A. (2005). Loss of Mtmr2 phosphatase in Schwann cells but not in motor neurons causes Charcot-Marie-Tooth type 4B1 neuropathy with myelin outfoldings. The Journal of neuroscience: the official journal of the Society for Neuroscience, 25(37), 8567–8577. Brown, R.H., Al-Chalabi, A. (2017). Amyotrophic Lateral Sclerosis. New England Journal of Medicine 377, 162–172. Bruce, G., & Hersh, L. B. (1987). Studies on detergent released choline acetyltransferase from membrane fractions of rat and human brain. Neurochemical research, 12(12), 1059–1066. Bruijn, LI., Miller, TM., Cleveland, DW. (2004). Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723-49. Buchtal, F., Schmalbruch, H. Motor Unit of Mammalian Muscle. (1980). Physiological Reviews. 60 (1): 90–142. Burbelo. P.D., Iadarola. M.J., Keller. J.M., Warner. B.M. (2021). Autoantibodies Targeting Intracellular and Extracellular Proteins in Autoimmunity. Frontiers in Immunology 12. Burden, S.J., Yumoto, N., Zhang, W. (2013). The Role of MuSK in Synapse Formation and Neuromuscular Disease. Cold Spring Harbor Perspectives in Biology 5, a009167–a009167. Burden, S., Huijbers, M., Remedio, L. (2018). Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. International Journal of Molecular Sciences 19, 490. Burke, R. E., Dum, R. P., Fleshman, J. W., Glenn, L. L., Lev-Tov, A., O'Donovan, M. J., & Pinter, M. J. (1982). A HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. The Journal of comparative neurology, 209(1), 17–28. Cappello, V., Francolini, M. (2017). Neuromuscular Junction Dismantling in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences 18, 2092. Castrillo-Viguera, C., Grasso, D.L., Simpson, E., Shefner, J., Cudkowicz, M.E. (2010). Clinical significance in the change of decline in ALSFRS-R. Amyotrophic Lateral Sclerosis 11, 178–180. Cedarbaum, J.M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., Nakanishi, A. (1999). The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. Journal of the Neurological Sciences 169, 13–21. Chang, S.-W., Tsao, Y.-P., Lin, C.-Y., Chen, S.-L. (2011). NRIP, a Novel Calmodulin Binding Protein, Activates Calcineurin To Dephosphorylate Human Papillomavirus E2 Protein. Journal of Virology 85, 6750–6763. Chen, P.-H., Tsao, Y.-P., Wang, C.-C., Chen, S.-L. (2007). Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Research 36, 51–66. Chen, H.-H., Chen, W.-P., Yan, W.-L., Huang, Y.-C., Chang, S.-W., Fu, W.-M., Su, M.-J., Yu, I.-S., Tsai, T.-C., Yan, Y.-T., Tsao, Y.-P., Chen, S.-L. (2015). NRIP is a novel Z-disc protein to activate calmodulin signaling for skeletal muscle contraction and regeneration. Journal of Cell Science 128, 4196–4209. Chen, H.-H., Fan, P., Chang, S.-W., Tsao, Y.-P., Huang, H.-P., Chen, S.-L. (2017). NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget 8, 21501–21515. Chen, H.-H., Tsai, L.-K., Liao, K.-Y., Wu, T.-C., Huang, Y.-H., Huang, Y.-C., Chang, S.-W., Wang, P.-Y., Tsao, Y.-P., Chen, S.-L. (2018). Muscle-restricted nuclear receptor interaction protein knockout causes motor neuron degeneration through down-regulation of myogenin at the neuromuscular junction. Journal of Cachexia, Sarcopenia and Muscle 9, 771–785. Chiò. A., Calvo. A., Moglia. C., Mazzini. L., Mora. G. (2011). PARALS study group. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 82(7):740-6. Clark, J.A., Southam, K.A., Blizzard, C.A., King, A.E., Dickson, T.C. (2016). Axonal degeneration, distal collateral branching and neuromuscular junction architecture alterations occur prior to symptom onset in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Chem Neuroanat 76(Pt A):35-47. Cossins, J. (2006). Diverse molecular mechanisms involved in AChR deficiency due to rapsyn mutations. Brain 129, 2773–2783. Cruz Pedro, M., Cossins, J., Beeson, D., Vincent, A. (2020). The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Frontiers in Molecular Neuroscience 13. Dadon-Nachum M, Melamed E, Offen D. The "dying-back" phenomenon of motor neurons in ALS. (2011). J Mol Neurosci 43(3):470-7. Dalakas, M.C. (2015). Inflammatory Muscle Diseases. New England Journal of Medicine 372, 1734–1747. Damelang, T., Rogerson, S.J., Kent, S.J., Chung, A.W. (2019). Role of IgG3 in Infectious Diseases. Trends in Immunology 40, 197–211. Eccles, J. C., Eccles, R. M., Iggo, A., & Lundberg, A. (1960). Electrophysiological studies on gamma motoneurones. Acta physiologica Scandinavica, 50, 32–40. Engel, A.G., Ohno, K., Sine, S.M. (2003). Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nature Reviews Neuroscience 4, 339–352. Escargueil, A. E., & Larsen, A. K. (2007). Mitosis-specific MPM-2 phosphorylation of DNA topoisomerase IIalpha is regulated directly by protein phosphatase 2A. The Biochemical journal, 403(2), 235–242. Ferrucci M, Lazzeri G, Flaibani M, Biagioni F, Cantini F, Madonna M, Bucci D, Limanaqi F, Soldani P, Fornai F. (2018). In search for a gold-standard procedure to count motor neurons in the spinal cord. Histol Histopathol 33(10): 1021-1046. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. (2004). Exp Neurol 185(2):232-40. Frail, D.E., Mclaughlin, L.L., Mudd, J., Merlie, J.P. (1988). Identification of the mouse muscle 43,000-dalton acetylcholine receptor-associated protein (RAPsyn) by cDNA cloning. Journal of Biological Chemistry 263, 15602–15607. Frey, D., Schneider, C., Xu, L., Borg, J., Spooren, W., Caroni, P. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. (2000). J Neurosci 20(7):2534-42. Friese, A., Kaltschmidt, J. A., Ladle, D. R., Sigrist, M., Jessell, T. M., & Arber, S. (2009). Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13588–13593. Froehner, S.C., Gulbrandsen, V., Jeng, A.Y., Neubig, R.R., Cohen, J.B. (1981). Immunofluorescence localization at the mammalian neuromuscular junction of the Mr 43,000 protein of Torpedo postsynaptic membranes. Proc. Natl. Acad. Sci. 78, 5230-5234. Gautam, M., Noakes, P.G., Mudd, J., Nichol, M., Chu, G.C., Sanes, J.R., Merlie, J.P. (1995). Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377, 232–236. Gasperi, C., Melms, A., Schoser, B., Zhang, Y., Meltoranta, J., Risson, V., Schaeffer, L., Schalke, B. & Kröger, S. (2014). Anti-agrin autoantibodies in myasthenia gravis. Neurology, 82 (22), 1976-1983. Genc, B., Gozutok, O., Kocak, N., & Ozdinler, P. H. (2020). The Timing and Extent of Motor Neuron Vulnerability in ALS Correlates with Accumulation of Misfolded SOD1 Protein in the Cortex and in the Spinal Cord. Cells, 9(2), 502. Ghazanfari, N., Fernandez, KJ., Murata, Y., Morsch, M., Ngo, ST., Reddel, SW., Noakes, PG., Phillips, WD. (2011). Muscle specific kinase: organiser of synaptic membrane domains. Int J Biochem Cell Biol 43(3):295-8. Gilhus, N.E., Skeie, G.O., Romi, F., Lazaridis, K., Zisimopoulou, P., Tzartos, S. (2016). Myasthenia gravis - autoantibody characteristics and their implications for therapy. Nature Reviews Neurology 12, 259–268. Girlanda, P., Vita, G., Nicolosi, C., Milone, S., Messina, C. (1992). Botulinum toxin therapy: distant effects on neuromuscular transmission and autonomic nervous system. Journal of Neurology, Neurosurgery & Psychiatry 55, 844–845. Glass, D.J., Yancopoulos, G.D. (1997). Sequential roles of agrin, MuSK and rapsyn during neuromuscular junction formation. Curr Opin Neurobiol 7(3):379-84. Gonzalez-Freire, M., De Cabo, R., Studenski, S. A., and Ferrucci, L. (2014). The Neuromuscular junction: aging at the crossroad between nerves and muscle. Front. Aging Neurosci. 6:208. Gordon, P.H., Moore, D.H., Gelinas, D.F., Qualls, C., Meister, M.E., Werner, J., Mendoza, M., Mass, J., Kushner, G., and Miller, R.G. (2004). Placebo-controlled phase I/II studies of minocycline in amyotrophic lateral sclerosis. Neurology 62, 1845–47. Grad, L.I., Rouleau, G.A., Ravits, J., Cashman, N.R. (2017). Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harbor Perspectives in Medicine 7, a024117. Granger, A.J., Wang, W., Robertson, K., El-Rifai, M., Zanello, A.F., Bistrong, K., Saunders, A., Chow, B.W., Nuñez, V., Turrero García, M., Harwell, C.C., Gu, C., Sabatini, B.L. (2020). Cortical ChAT+ neurons co-transmit acetylcholine and GABA in a target- and brain-region-specific manner. eLife 9. Greenberg, S. (2011). Inclusion body myositis. Current Opinion in Rheumatology, 23, 574-578. Grunseich, C., Fischbeck, K.H. (2015). Spinal and Bulbar Muscular Atrophy. Neurologic Clinics 33, 847–854. Gustafsson, B., and Lipski, J. (1979). Do γ-motoneurones lack a long-lasting after hyperpolarization? Brain Res. 172, 349–353. Hagan, D. M., Ross, A. J., Strachan, T., Lynch, S. A., Ruiz-Perez, V., Wang, Y. M., Scambler, P., Custard, E., Reardon, W., Hassan, S., Nixon, P., Papapetrou, C., Winter, R. M., Edwards, Y., Morrison, K., Barrow, M., Cordier-Alex, M. P., Correia, P., Galvin-Parton, P. A., Gaskill, S., Homfray, T. (2000). Mutation analysis and embryonic expression of the HLXB9 Currarino syndrome gene. American journal of human genetics, 66(5), 1504–1515. Harrison, K. A., Druey, K. M., Deguchi, Y., Tuscano, J. M., & Kehrl, J. H. (1994). A novel human homeobox gene distantly related to proboscipedia is expressed in lymphoid and pancreatic tissues. The Journal of biological chemistry, 269(31), 19968–19975. Hashizume, K., Kanda, K., and Burke, R. E. (1988). Medial gastrocnemius motor nucleus in the rat: age-related changes in the number and size of motoneurons. J. Comp. Neurol. 269, 425–430. Hillel. A.D., Miller. R. (1989). Bulbar amyotrophic lateral sclerosis: patterns of progression and clinical management. Head Neck 11(1):51-9. Ho-Thao, N.T., Abraham, N., Lewis, Richard, J. (2020). Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Frontiers in Neuroscience 14. Hopf, C., Hoch, W. (1998). Tyrosine phosphorylation of the muscle-specific kinase is exclusively induced by acetylcholine receptor-aggregating agrin fragments. European Journal of Biochemistry 253, 382–389. Huijbers, M.G., Zhang, W., Klooster, R., Niks, E.H., Friese, M.B., Straasheijm, K.R., Thijssen, P.E., Vrolijk, H., Plomp, J.J., Vogels, P., Losen, M., Van Der Maarel, S.M., Burden, S.J., Verschuuren, J.J. (2013). MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proceedings of the National Academy of Sciences 110, 20783–20788. Jaarsma, D., Teuling, E., Haasdijk, E. D., De Zeeuw, C. I., & Hoogenraad, C. C. (2008). Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(9), 2075–2088. Jonsson, P.A., Graffmo, K.S., Andersen, P.M., Brännström, T., Lindberg, M., Oliveberg, M., Marklund, S.L. (2006). Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain 129, 451–464. Karakatsani, A., Marichal, N., Urban, S., Kalamakis, G., Ghanem, A., Schick, A., Zhang, Y., Conzelmann, K.-K., Rüegg, M.A., Berninger, B., De Almodovar, C.R., Gascón, S., Kröger, S. (2017). Neuronal LRP4 regulates synapse formation in the developing CNS. Development 144, 4604–4615. Kemm, R. E., & Westbury, D. R. (1978). Some properties of spinal gamma-motoneurones in the cat, determined by micro-electrode recording. The Journal of physiology, 282, 59–71. Khosa, S., Trikamji, B., Khosa, G.S., Khanli, H.M., Mishra, S.K. (2019). An Overview of Neuromuscular Junction Aging Findings in Human and Animal Studies. Current Aging Science 12, 28–34. Kiernan MC., Vucic, S., Cheah, B.C., Turner, M.R., Eisen, A., Hardiman, O., Burrell, J.M. Zoing, M.C. (2011). Amyotrophic lateral sclerosis. Lancet 377, 942-55. Kim, N., Stiegler, A.L., Cameron, T.O., Hallock, P.T., Gomez, A.M., Huang, J.H., Hubbard, S.R., Dustin, M.L., Burden, S.J. (2008). Lrp4 Is a Receptor for Agrin and Forms a Complex with MuSK. Cell 135, 334–342. Kobelt, G., Eriksson, J., Phillips, G., Berg, J. (2017). The burden of multiple sclerosis 2015: Methods of data collection, assessment and analysis of costs, quality of life and symptoms. Multiple Sclerosis Journal 23, 4–16. Kordas, G., Lagoumintzis, G., Sideris, S., Poulas, K., Tzartos, S.J. (2014). Direct Proof of the In Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients. PLOS ONE 9, e108327. Krakora, D., Macrander, C., Suzuki, M. (2012). Neuromuscular Junction Protection for the Potential Treatment of Amyotrophic Lateral Sclerosis. Neurology Research International, 1–8. Kuffler, S. W., Hunt, C. C., & Quilliam, J. P. (1951). Function of medullated small-nerve fibers in mammalian ventral roots; efferent muscle spindle innervation. Journal of neurophysiology, 14(1), 29–54. Lalancette-Hebert, M., Sharma, A., Lyashchenko, A. K., and Shneider, N. A. (2016). Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS. PNAS 113, E8316–E8325. Lazaridis, Konstantinos., Tzartos. SJ. (2020). Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Frontiers in Immunology 11, 1664-3224. Lek, M., Quinlan, K.G.R., North, K.N. (2010). The evolution of skeletal muscle performance: gene duplication and divergence of human sarcomeric α-actinins. BioEssays 32, 17–25. Iyer, S.R., Shah, S.B., Lovering, R.M. (2021). The Neuromuscular Junction: Roles in Aging and Neuromuscular Disease. International Journal of Molecular Sciences 22, 8058. Li, L., Cao, Y., Wu, H., Ye, X., Zhu, Z., Xing, G., Shen, C., Barik, A., Zhang, B., Xie, X., Zhi, W., Gan, L., Su, H., Xiong, W.-C., Mei, L. (2016). Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation. Neuron 92, 1007–1019. Liu, J., Wang, L.-N. (2018). The efficacy and safety of riluzole for neurodegenerative movement disorders: a systematic review with meta-analysis. Drug Delivery 25, 43–48. Liu, W., Klose, A., Forman, S., Paris, N.D., Wei-Lapierre, L., Cortés-Lopéz, M., Tan, A., Flaherty, M., Miura, P., Dirksen, R.T., Chakkalakal, J.V. (2017). Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. eLife 6. Lo, L., Tiveron, M. C., & Anderson, D. J. (1998). MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development (Cambridge, England), 125(4), 609–620. Ma, H., Sandor, D.G., Beck, L.H. (2013). The Role of Complement in Membranous Nephropathy. Seminars in Nephrology 33, 531-542. Martin, L.J., Wong, M. (2020). Skeletal Muscle-Restricted Expression of Human SOD1 in Transgenic Mice Causes a Fatal ALS-Like Syndrome. Front Neurol 14; 11: 592851. Mehanna, R., Patton, E.L. Jr., Phan, C.L., Harati, Y. (2012). Amyotrophic lateral sclerosis with positive anti-acetylcholine receptor antibodies. Case report and review of the literature. J Clin Neuromuscul Dis 14(2):82-5 Michalk, A., Stricker, S., Becker, J., Rupps, R., Pantzar, T., Miertus, J., Botta, G., Naretto, V.G., Janetzki, C., Yaqoob, N., Ott, C.-E., Seelow, D., Wieczorek, D., Fiebig, B., Wirth, B., Hoopmann, M., Walther, M., Körber, F., Blankenburg, M., Mundlos, S., Mohajeri, M. H., Figlewicz, D. A., and Bohn, M. C. (1998). Selective loss of alpha motoneurons innervating the medial gastrocnemius muscle in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 150, 329–336. Heller, R., Hoffmann, K. (2008). Acetylcholine Receptor Pathway Mutations Explain Various Fetal Akinesia Deformation Sequence Disorders. The American Journal of Human Genetics 82, 464–476. Miller, R. G., Mitchell, J. D., & Moore, D. H. (2012). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). The Cochrane database of systematic reviews (3), CD001447. Mohamed, A.S., Swope, S.L. (1999). Phosphorylation and Cytoskeletal Anchoring of the Acetylcholine Receptor by Src Class Protein-tyrosine Kinases. Journal of Biological Chemistry 274, 20529–20539. Moloney, E.B., de Winter, F., Verhaagen, J., (2014). ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Frontiers in Neuroscience 8. Monti RJ, Roy RR, Edgerton VR. (2001). Role of motor unit structure in defining function. Muscle Nerve. 24(7): 848-66. Morgan, N.V., Brueton, L.A., Cox, P., Greally, M.T., Tolmie, J., Pasha, S., Aligianis, I.A., Van Bokhoven, H., Marton, T., Al-Gazali, L., Morton, J.E.V., Oley, C., Johnson, C.A., Trembath, R.C., Brunner, H.G., Maher, E.R. (2006). Mutations in the Embryonal Subunit of the Acetylcholine Receptor (CHRNG) Cause Lethal and Escobar Variants of Multiple Pterygium Syndrome. The American Journal of Human Genetics 79, 390–395. NACHMANSOHN, D., & BERMAN, M. (1946). Studies on choline acetylase; on the preparation of the coenzyme and its effect on the enzyme. The Journal of biological chemistry, 165(2), 551–563. Nijssen, J., Comley, L. H., & Hedlund, E. (2017). Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta neuropathologica, 133(6), 863–885. Noakes, P.G., Phillips, W.D., Hanley, T.A., Sanes, J.R., Merlie, J.P. (1993). 43K Protein and Acetylcholine Receptors Colocalize during the Initial Stages of Neuromuscular Synapse Formation in Vivo. Developmental Biology 155, 275–280. Norris, S. P., Likanje, M. N., & Andrews, J. A. (2020). Amyotrophic lateral sclerosis: update on clinical management. Current opinion in neurology, 33(5), 641–648. Oda Y. (1999). Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathology international, 49(11), 921–937. Peng, H.B., Froehner, S.C. (1985). Association of the postsynaptic 43K protein with newly formed acetylcholine receptor clusters in cultured muscle cells. Journal of Cell Biology 100, 1698–1705. Petrov, D., Mansfield, C., Moussy, A., Hermine, O. (2017). ALS Clinical Trials Review: 20 Years of Failure. Are We Any Closer to Registering a New Treatment? Front Aging Neurosci 22; 9:68. Pfaff, S. L., Mendelsohn, M., Stewart, C. L., Edlund, T., & Jessell, T. M. (1996). Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell, 84(2), 309–320. Poort, J.E., Rheuben, M.B., Breedlove, S.M., Jordan, C.L. (2016). Neuromuscular junctions are pathological but not denervated in two mouse models of spinal bulbar muscular atrophy. Human Molecular Genetics 25, 3768–3783. Punga, A.R., Maj, M., Lin, S., Meinen, S., Rüegg, M.A. (2011). MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. Eur J Neurosci 33(5):890-8. Punga, A.R., Ruegg, M.A. (2012). Signaling and aging at the neuromuscular synapse: lessons learnt from neuromuscular diseases. Curr Opin Pharmacol 12(3):340-6. Qu, Z.C.; Moritz, E.; Huganir, R.L. (1990). Regulation of tyrosine phosphorylation of the nicotinic acetylcholine receptor at the rat neuromuscular junction. Neuron 4, 367–378. Quarles, RH., Weiss, MD. (1999). Autoantibodies associated with peripheral neuropathy. Muscle Nerve 22(7):800-22. Querol, L., Devaux, J., Rojas-Garcia, R., Illa, I. (2017). Autoantibodies in chronic inflammatory neuropathies: diagnostic and therapeutic implications. Nature Reviews Neurology 13, 533–547. Ragagnin, A., Shadfar, S., Vidal, M., Jamali, M. S., & Atkin, J. D. (2019). Motor Neuron Susceptibility in ALS/FTD. Frontiers in neuroscience, 13, 532. Reif, R., Sales, S., Hettwer, S., Dreier, B., Gisler, C., Wölfel, J., Lüscher, D., Zurlinden, A., Stephan, A., Ahmed, S., Baici, A., Ledermann, B., Kunz, B., Sonderegger, P. (2007). Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. The FASEB Journal 21, 3468–3478. Rothstein, J.D. (1996). Therapeutic horizons for amyotrophic lateral sclerosis. Current Opinion in Neurobiology 6, 679–687. Rouleau, G.A., Clark, A.W., Rooke, K., Pramatarova, A., Krizus, A., Suchowersky, O., Julien, J.P., Figlewicz, D. (1996). SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann Neurol 39(1):128-31. Ross, A. J., Ruiz-Perez, V., Wang, Y., Hagan, D. M., Scherer, S., Lynch, S. A., Lindsay, S., Custard, E., Belloni, E., Wilson, D. I., Wadey, R., Goodman, F., Orstavik, K. H., Monclair, T., Robson, S., Reardon, W., Burn, J., Scambler, P., & Strachan, T. (1998). A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nature genetics, 20(4), 358–361. Rudolf, R., Khan, M.M., Labeit, S., Deschenes, M.R. (2014). Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci 22;6:99. Rivner, M.H., Liu, S., Quarles, B., Fleenor, B., Shen, C., Pan, J., Mei, L. (2017). Agrin and low-density lipoprotein-related receptor protein 4 antibodies in amyotrophic lateral sclerosis patients. Muscle & Nerve 55, 430–432. Saha, M. S., Miles, R. R., & Grainger, R. M. (1997). Dorsal-ventral patterning during neural induction in Xenopus: assessment of spinal cord regionalization with xHB9, a marker for the motor neuron region. Developmental biology, 187(2), 209–223. Salajegheh, M., Lam, T., Greenberg, S.A. (2011). Autoantibodies against a 43 KDa Muscle Protein in Inclusion Body Myositis. PLOS ONE 6, e20266. Sanes, J.R., Lichtman, J.W. (1999). Development of the vertebrate neuromuscular junction. Annual Review of Neuroscience 22, 389–442. Savarese, M., Palmio, J., Poza, J.J., Weinberg, J., Olive, M., Cobo, A.M., Vihola, A., Jonson, P.H., Sarparanta, J., García‐Bragado, F., Urtizberea, J.A., Hackman, P., Udd, B. (2019). Actininopathy: A new muscular dystrophy caused by ACTN2 dominant mutations. Annals of Neurology 85, 899–906. Sharma, K., Sheng, H. Z., Lettieri, K., Li, H., Karavanov, A., Potter, S., Westphal, H., & Pfaff, S. L. (1998). LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell, 95(6), 817–828. Shellikeri, S., Karthikeyan, V., Martino, R., Black, S.E., Zinman, L., Keith, J., Yunusova, Y. (2017). The neuropathological signature of bulbar-onset ALS: A systematic review. Neuroscience & Biobehavioral Reviews 75, 378–392. Shneider, N. A., Brown, M. N., Smith, C. A., Pickel, J., & Alvarez, F. J. (2009). Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural development, 4, 42. Simon, M., Destombes, J., Horcholle-Bossavit, G., & Thiesson, D. (1996). Postnatal development of alpha- and gamma-peroneal motoneurons in kittens: an ultrastructural study. Neuroscience research, 25(1), 77–89. Sinmaz, N., Nguyen, T., Tea, F., Dale, R.C., Brilot, F. (2016). Mapping autoantigen epitopes: molecular insights into autoantibody-associated disorders of the nervous system. Journal of Neuroinflammation 13. Stifani N. (2014). Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci 8:293. Swash, M., & Fox, K. P. (1972). The effect of age on human skeletal muscle. Studies of the morphology and innervation of muscle spindles. Journal of the neurological sciences, 16(4), 417–432. Swinnen, B., Robberecht, W. (2014). The phenotypic variability of amyotrophic lateral sclerosis. Nature Reviews Neurology 10, 661–670. Tanabe, Y., & Jessell, T. M. (1996). Diversity and pattern in the developing spinal cord. Science (New York, N.Y.), 274(5290), 1115–1123. Tanabe, Y., William, C., & Jessell, T. M. (1998). Specification of motor neuron identity by the MNR2 homeodomain protein. Cell, 95(1), 67–80. Tandan, R., Hiser, J.R., Thornton, L., Krusinski, P.B., Barsotti, S., Howard D.B., Griggs, R.C., (1998). Dual energy X-ray absorptiometry in amyotrophic lateral sclerosis. Neurology 50; A290-30. Tsai, L., Chen, I., Chao, C., Hsueh, H., Chen, H., Huang, Y., Weng, R., Lai, T., Tsai, Y., Tsao, Y., Chen, S. (2021). Autoantibody of NRIP, a novel AChR‐interacting protein, plays a detrimental role in myasthenia gravis. Journal of Cachexia, Sarcopenia and Muscle 12, 665–676. Tsai, T.-C., Lee, Y.-L., Hsiao, W.-C., Tsao, Y.-P., Chen, S.-L. (2005). NRIP, a Novel Nuclear Receptor Interaction Protein, Enhances the Transcriptional Activity of Nuclear Receptors. Journal of Biological Chemistry 280, 20000–20009. Tzartos, S.J., Kokla, A., Walgrave, S.L., Conti-Tronconi, B.M. (1988). Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67-76 of the alpha subunit. Proceedings of the National Academy of Sciences 85, 2899–2903. Ustyantseva, E.I., Medvedev, S.P., Zakian, S.M. (2020). Studying ALS: Current Approaches, Effect on Potential Treatment Strategy, in: Advances in Experimental Medicine and Biology. Advances in Experimental Medicine and Biology, pp. 195–217. Verma, S., Khurana, S., Vats, A., Sahu, B., Ganguly, N.K., Chakraborti, P., Gourie-Devi, M., Taneja, V. (2022). Neuromuscular Junction Dysfunction in Amyotrophic Lateral Sclerosis. Molecular Neurobiology 59, 1502–1527. Vidarsson, G., Dekkers, G., & Rispens, T. (2014). IgG subclasses and allotypes: from structure to effector functions. Frontiers in immunology, 5, 520. Wang, L., Sharma, K., Deng, H.X., Siddique, T., Grisotti, G., Liu, E., Roos, R.P. (2008). Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology. Neurobiol Dis 29(3):400-8. Walker, J.H., Boustead, C.M., Witzemann, V. (1984). The 43-K protein, v1, associated with acetylcholine receptor containing membrane fragments is an actin-binding protein. The EMBO Journal 3, 2287–2290. Walsh, M.P. (1983). Review Article Calmodulin and its roles in skeletal muscle function. Canadian Anaesthetists’ Society Journal 30, 390–398. Weatherbee, S.D., Anderson, K.V., Niswander, L.A. (2006). LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133, 4993–5000. Wirtz, P.W. (2002). Difference in distribution of muscle weakness between myasthenia gravis and the Lambert-Eaton myasthenic syndrome. Journal of Neurology, Neurosurgery & Psychiatry 73, 766–768. Witzemann, V. (2006). Development of the neuromuscular junction. Cell and Tissue Research 326, 263–271. Wong, M., Martin, L.J. (2010). Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Human Molecular Genetics 19, 2284–2302. Wu, H., Xiong, WC., Mei, L. (2010). To build a synapse: signaling pathways in neuromuscular junction assembly. Development. 137:1017–103. Xing, G., Jing, H., Zhang, L., Cao, Y., Li, L., Zhao, K., Dong, Z., Chen, W., Wang, H., Cao, R., Xiong, W.-C., Mei, L. (2019). A mechanism in agrin signaling revealed by a prevalent Rapsyn mutation in congenital myasthenic syndrome. eLife 8. Xing, G., Xiong, W.-C., Mei, L. (2020). Rapsyn as a signaling and scaffolding molecule in neuromuscular junction formation and maintenance. Neuroscience Letters 731, 135013. Yamamoto, A.M., Gajdos, P., Eymard, B., Tranchant, C., Warter, J.-M., Gomez, L., Bourquin, C., Bach, J.-F., Garchon, H.-J. (2001). Anti-Titin Antibodies in Myasthenia Gravis. Archives of Neurology 58, 885. Yan, M., Liu, Z., Fei, E., Chen, W., Lai, X., Luo, B., Chen, P., Jing, H., Pan, J,-X., Rivner, MH., Xiong, W,-C., Mei, L. (2018). Induction of Anti-agrin Antibodies Causes Myasthenia Gravis in Mice. Neuroscience 373, 113-121. Yanagisawa, N., Tashiro, K., Tohgi, H., Mizuno, Y., Kowa, H., Kimuma, J. (1997). Efficacy and safety of riluzole in patients with amyotrophic lateral sclerosis: double-blind placebo-controlled study in Japan. Igakuno Ayumi 182:851-66. Yang, KC., Chuang, KW., Yen, WS., Lin, SY., Chen, HH., Chang, SW., Lin, YS., Wu, WL., Tsao, YP., Chen, WP., Chen, SL. (2019). Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration. J Mol Cell Cardiol 137:9-24. Yang, X., Arber, S., William, C., Li, L., Tanabe, Y., Jessell, T. M., Birchmeier, C., & Burden, S. J. (2001). Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron, 30(2), 399–410. Youinou, P., Dueymes, M., Shoenfeld, Y. (2007). 9 – Autoantibodies subclasses. Autoantibodies (second edition). 61-67 Yumoto, N., Kim, N., Burden, S.J. (2012). Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature 489, 438–442. Zhang, B., Luo, S., Wang, Q., Suzuki, T., Xiong, WC., Mei, L. (2008). LRP4 serves as a coreceptor of agrin. Neuron 60:285–297 Zhou, H., Glass, D.J., Yancopoulos, G.D., Sanes, J.R. (1999). Distinct Domains of Musk Mediate Its Abilities to Induce and to Associate with Postsynaptic Specializations. Journal of Cell Biology 146, 1133–1146. Zong, Y., Jin, R. (2013). Structural mechanisms of the agrin-LRP4-MuSK signaling pathway in neuromuscular junction differentiation. Cellular and molecular life sciences: CMLS, 70(17), 3077–3088. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85243 | - |
| dc.description.abstract | 接受體交互作用蛋白 (Nuclear receptor interaction protein, NRIP) 由860個胺基酸所組成,包含7個WD40 domain與1個IQ motif。NRIP為乙醯膽鹼受體 (acetylcholine receptor, AChR) 複合物的一個單元蛋白,參與神經肌肉接合處 (neuromuscular junction, NMJ) 的形成。肌肉的NRIP會透過成肌蛋白 (myogenin) 調控運動神經元 (motoneuron) 的存活。在本篇研究中,我們藉由在運動神經剔除NRIP基因,分析小鼠運動神經元中NRIP的功能,發現到在運動神經元剃除NRIP會造成脊髓中腰椎部位的大體積運動神經元數量下降。
肌萎縮性脊髓側索硬化症 (Amyotrophic lateral sclerosis, ALS) 是一種致命性的神經退化疾病。運動神經元會逐漸失去進而造成肌肉萎縮與骨骼肌無力。自體免疫缺陷經常與神經病變有關。重症肌無力 (Myasthenia gravis, MG) 屬於一種發生在NMJ的自體免疫疾病,在我們之前的研究中顯示,NRIP的自體抗體存在於MG病患並且與疾病進展有關。在本篇研究的87位ALS病患中,我們發現NRIP的自體抗體存在26位ALS病患體內(29.9%)。我們檢測NRIP抗體在ALS病例中的影響,發現到四肢發病的ALS (Limb-onset ALS) 受試者在有NRIP自體抗體的情況下,相較於無NRIP自體抗體的受試者表現出較快速的疾病進程。接著我們將NRIP抗體力價 (titer) 與疾病進程進行相關性分析,發現到NRIP抗體力價與病程發展速度呈現正相關,尤其是在四肢發病的ALS。此外,我們發現NRIP抗體力價與ALS存活率具有高度相關。接著,為了釐清NRIP抗體所引起的免疫反應,我們鑑定出NRIP抗體的抗原結合位 (epitope) 位於NRIP的IQ motif。並且發現到NRIP抗體屬於IgG亞族群中的IgG1與IgG3分支。 綜上所述,NRIP會表現在運動神經元並且影響大體積運動神經元的表現。NRIP自體抗體為一種新發現的ALS疾病相關性自體抗體,與ALS疾病的進展具有高度正相關。 | zh_TW |
| dc.description.abstract | Nuclear receptor interaction protein (NRIP) composes of 860 amino acids, includes 7 WD40 domains and 1 IQ motif. NRIP is a member of acetylcholine receptor (AChR) complex which plays an important role in the formation of neuromuscular junction (NMJ). Muscular NRIP regulates the survival of motoneuron through myogenin at the NMJ. In this study, we analyzed the function of NRIP in motoneuron by Hb9-cKO mice. Motoneuron-restricted NRIP knockout caused the number of large size motoneurons decreased in the spinal cord lumbar region.
Amyotrophic lateral sclerosis (ALS) is a fetal neurodegenerative disease. Progressive motoneuron loss leads to muscle atrophy and weakness of skeletal muscle. Autoimmune deficiency is often associated with neuropathy. Myasthenia gravis (MG) is an autoimmune disease of the NMJ. In our previous study, we found anti-NRIP autoantibody existed in MG and correlated with disease progression. In this study, we identified the existence of anti-NRIP autoantibody in 26 out of 87 ALS patients (29.9%). We investigated the effect of anti-NRIP autoantibody in ALS cases. In limb-onset ALS patients, subjects having anti-NRIP autoantibody showed significantly more rapid disease progression than those without anti-NRIP autoantibody. We then correlated the titers of anti-NRIP autoantibody to speed of disease progression, finding the titers of anti-NRIP autoantibody positively correlated with the speed of disease progression, especially in the limb-onset ALS. Besides, we found that the survival conditions were significantly associated with titers of anti-NRIP autoantibody. Next, to clarify the underlying immune response of anti-NRIP autoantibody, we identified the epitope of anti-NRIP autoantibody was on the IQ motif of NRIP. Plus, we discovered the IgG subclass of anti-NRIP autoantibody belonged to IgG1 and IgG3 subclasses. In conclusion, NRIP in motoneuron regulates the number of large size motoneuron. Anti-NRIP autoantibody is a newly identified ALS-related autoantibody, which positively correlates with the ALS disease progression. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:52:30Z (GMT). No. of bitstreams: 1 U0001-0208202210501100.pdf: 3255250 bytes, checksum: 61bdaf92646f71e827849f4e38a3a6fc (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II Chapter 1. Introduction 1 1.1 Characteristics of nuclear receptor interaction protein (NRIP) 1 1.2 The role of NRIP in muscle tissues 2 1.3 Neuromuscular junction 2 1.3.1 Agrin 3 1.3.2 LRP4 3 1.3.3 MuSK 4 1.3.4 Rapsyn 5 1.3.5 AChR 6 1.4 The role of NRIP in neuromuscular junction 6 1.5 Autoantibodies in neuromuscular junction disease 7 1.6 Amyotrophic lateral sclerosis (ALS) 7 1.6.1 Pathogenesis of ALS 8 1.6.2 Diagnosis and treatment of ALS 9 1.7 Characteristic of somatic motoneuron (MN) 10 1.7.1 Alpha MN 11 1.7.2 Beta MN 11 1.7.3 Gamma MN 12 1.8 Homeobox gene Mnx1 (Hb9) 12 1.9 Aims of this study 13 Chapter 2. Material and Methods 15 2.1 Patients 15 2.2 Study approval 15 2.3 Hb9-cKO mice 16 2.4 Spinal cord tissue isolation and store 17 2.5 Immunofluorescence assay of spinal cord 17 2.6 Cell culture and transfection 18 2.7 Protein extraction and Western blot 18 2.8 Statistical analysis 19 Chapter 3. Results 20 3.1 Thirty percent of ALS patients had anti-NRIP autoantibody 20 3.2 The titer of anti-NRIP autoantibody correlates with ALS progression 21 3.3 The titer of anti-NRIP autoantibody correlates with lifespan of ALS patients 22 3.4 Anti-NRIP autoantibody against the IQ domain of NRIP 23 3.5 Most anti-NRIP autoantibodies belong to the IgG1 subclass 24 3.6 The significance of NRIP in vertebrate evolution 25 3.7 Generation of Hb9-cKO mice 27 3.8 Large motoneurons lose in Hb9-cKO mice 28 Chapter 4. Discussion 30 Chapter 5. Figures 36 Chapter 6. Table 49 Chapter 7. Supplementary information 51 Chapter 8. Appendix 52 Chapter 9. Reference 54 | - |
| dc.language.iso | en | - |
| dc.subject | 核受體交互作用蛋白 | zh_TW |
| dc.subject | 核受體交互作用蛋白 | zh_TW |
| dc.subject | 運動神經元 | zh_TW |
| dc.subject | 肌萎縮性脊髓側索硬化症 | zh_TW |
| dc.subject | 運動神經元 | zh_TW |
| dc.subject | 肌萎縮性脊髓側索硬化症 | zh_TW |
| dc.subject | 自體抗體 | zh_TW |
| dc.subject | IgG亞族群 | zh_TW |
| dc.subject | 自體抗體 | zh_TW |
| dc.subject | IgG亞族群 | zh_TW |
| dc.subject | IgG subclass | en |
| dc.subject | NRIP | en |
| dc.subject | motoneuron | en |
| dc.subject | amyotrophic lateral sclerosis | en |
| dc.subject | autoantibodies | en |
| dc.subject | IgG subclass | en |
| dc.subject | NRIP | en |
| dc.subject | motoneuron | en |
| dc.subject | amyotrophic lateral sclerosis | en |
| dc.subject | autoantibodies | en |
| dc.title | NRIP自體抗體在肌萎縮性脊髓側索硬化症所扮演的角色 | zh_TW |
| dc.title | The Role of NRIP Autoantibody in Amyotrophic Lateral Sclerosis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡力凱;王培育 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Kai Tsai;Pei-Yu Wang | en |
| dc.subject.keyword | 核受體交互作用蛋白,運動神經元,肌萎縮性脊髓側索硬化症,自體抗體,IgG亞族群, | zh_TW |
| dc.subject.keyword | NRIP,motoneuron,amyotrophic lateral sclerosis,autoantibodies,IgG subclass, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202201959 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-08-02 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 微生物學研究所 | - |
| dc.date.embargo-lift | 2027-08-02 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 3.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
