請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85225完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文超(Wen-Chau Wu) | |
| dc.contributor.author | Tsing-Tue Liu | en |
| dc.contributor.author | 劉星語 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:51:23Z | - |
| dc.date.copyright | 2022-08-24 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-01 | |
| dc.identifier.citation | 1. Govindaraju, Varanavasi, Karl Young, and Andrew A. Maudsley. 'Proton NMR chemical shifts and coupling constants for brain metabolites.' NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo 13.3 (2000): 129-153. 2. Soares, D. P., and M. Law. 'Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications.' Clinical radiology 64.1 (2009): 12-21. 3. Shonk, Truda K., et al. 'Probable Alzheimer disease: diagnosis with proton MR spectroscopy.' Radiology 195.1 (1995): 65-72. 4. Öz, Gülin, et al. 'Clinical proton MR spectroscopy in central nervous system disorders.' Radiology 270.3 (2014): 658-679. 5. Provencher, Stephen W. 'Estimation of metabolite concentrations from localized in vivo proton NMR spectra.' Magnetic resonance in medicine 30.6 (1993): 672-679. 6. Provencher, Stephen W. 'Automatic quantitation of localized in vivo 1H spectra with LCModel.' NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo 14.4 (2001): 260-264. 7. Stefan, D. D. C. F., et al. 'Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package.' Measurement Science and Technology 20.10 (2009): 104035. 8.Pedrosa de Barros, Nuno, et al. 'Automatic quality control in clinical 1H MRSI of brain cancer.' NMR in Biomedicine 29.5 (2016): 563-575. 9. Kyathanahally SP, Doring A, Kreis R. Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy. Magn Reson Med. 2018;80:851–863. 10.Jang, Joon, et al. 'Unsupervised anomaly detection using generative adversarial networks in 1H-MRS of the brain.' Journal of Magnetic Resonance 325 (2021): 106936. 11. Gurbani SS, Schreibmann E, Maudsley AA, et al. A convolutional neural network to filter artifacts in spectroscopic MRI. Magn Reson Med. 2018;80:1765–1775. 12. Das D, Coello E, Schulte RF, Menze BH. Quantification of metabolites in magnetic resonance spectroscopic imaging using machine learning. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, Quebec, Canada; 2017:462–470. 13. Hatami N, Sdika M, Ratiney H. Magnetic resonance spectroscopy quantification using deep learning. In Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 2018. pp. 467–475. 14. Lee HH, Kim H. Intact metabolite spectrum mining by deep learning in proton magnetic resonance spectroscopy of the brain. Magn Reson Med. 2019;82:33–48. 15. Lee, Hyeong Hun, and Hyeonjin Kim. 'Deep learning‐based target metabolite isolation and big data‐driven measurement uncertainty estimation in proton magnetic resonance spectroscopy of the brain.' Magnetic resonance in medicine 84.4 (2020): 1689-1706. 16. Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. 'Deep inside convolutional networks: Visualising image classification models and saliency maps.' arXiv preprint arXiv:1312.6034 (2013). 17. Yosinski, Jason, et al. 'Understanding neural networks through deep visualization.' arXiv preprint arXiv:1506.06579 (2015). 18. Provencher, Stephen W. 'LCModel & LCMgui user’s manual.' LCModel version 6.3 (2014). 19. Pfeuffer, Josef, et al. 'Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain.' Journal of magnetic resonance 141.1 (1999): 104-120. 20. Mlynárik, Vladimír, Stephan Gruber, and Ewald Moser. 'Proton T 1 and T 2 relaxation times of human brain metabolites at 3 Tesla.' NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo 14.5 (2001): 325-331. 21. Ganji, Sandeep K., et al. 'T2 measurement of J‐coupled metabolites in the human brain at 3T.' NMR in biomedicine 25.4 (2012): 523-529. 22. Li, Y., et al. 'T1 and T2 metabolite relaxation times in normal brain at 3T and 7T.' J Mol Imaging Dynam S 1.002 (2012). 23.Terpstra M, Cheong I, Lyu T, et al. Test-retest reproducibility of neurochemical profiles with short-echo, single-voxel MR spectroscopy at 3T and 7T. Magnetic Resonance in Medicine 2016;76:1083-1091. 24. Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR in Biomedicine 2004;17:361-381. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85225 | - |
| dc.description.abstract | 磁振頻譜可用於量測大腦中代謝物之濃度,然而定量代謝物之濃度需要取得詳細完整的信號,並經過一連串的信號處理,誤差可能會從中不斷累積。近年來已有許多研究將深度學習應用在信號強度之預測。本研究使用了卷積神經網路搭配電腦模擬生成之頻譜進行腦中代謝物之絕對定量,包含五種常見代謝物: Cr、 tCho、tNAA、Glu、mI,並且與常用之定量軟體LCMODEL比較定量結果。一般很難解釋深度學習模型所學到的事物,本研究使用saliency map 與filter activation嘗試將CNN模型學習到的特徵視覺化。在電腦模擬生成之頻譜中,上述五種代謝物之理想信號先以線性組合疊加,再增加譜線寬度、加上複雜起伏的基線以及不同程度的雜訊與相位誤差模擬實際信號的缺陷,每個頻譜會搭配一個未壓抑之水訊號以計算代謝物之絕對濃度。本研究預測了模擬頻譜以及真實人類大腦的頻譜中代謝物之絕對濃度,並以五種代謝物之總均方根誤差(RMSE)以及每一種代謝物之平均絕對百分誤差 (MAPE)、RMSE、皮爾森相關係數與t檢定評估模型之預測準確度。Saliency map透過將損失函數對影像中的每一個像素做偏微分,可以看見模型在做預測時,影像中的哪些地方會有顯著的影響。而filter activation視覺化了模型中每層卷積層中filter的輸出。若只使用模擬頻譜訓練模型,定量真實頻譜之平均總RMSE為32%左右。然而在將占總訓練資料數約2%之真實data加入訓練資料後,平均總RMSE明顯降低至23%左右。當使用模擬頻譜作為訓練資料的數目在1000~10000時,可達到較準確的定量結果,模擬頻譜過多或過少均會使準確度下降。Saliency map的結果顯示使用模擬頻譜能幫助模型找出所預測代謝物之位置,否則在mI這種信雜比較低之代謝物中模型的預測可能會被其他信號「誤導」。在filter activation的結果中,強度較高的訊號較容易被保留下來,但是強度較高且非代謝物訊號的假影也可能被保留下來。本研究提出了一個磁振頻譜定量之模型,可預測五種主要代謝物之絕對濃度且準確度能與傳統方法比較,並提出了簡化方法,最後將模型視覺化解釋其所學習之特徵。 | zh_TW |
| dc.description.abstract | MRS is a technique for in-vivo measurement of metabolite concentrations. Quantification of metabolite concentrations from magnetic resonance spectroscopy requires detailed signal formulae and a series of signal processing, through which error may propagate. Recently, convolutional neural network (CNN) has been explored for its ability to estimate signal intensity/contrast without explicitly specified biophysical models. The goal of this study is to estimate the absolute metabolite concentrations of the brain by using synthetic data and convolutional neural network (CNN), then provide comparison with LCMODEL. However, it remains unclear how the network learns from the data. This study aimed to understand the pick-up of features by using the gradient-based saliency map and filter activations. In this study, five metabolites were included: creatine (Cre), glutamate (Glu), myo-inositol (mI), total choline (tCho), and total N-acetylaspartate (tNAA). In synthetic spectra, the ideal spectra of the abovementioned five metabolites were linearly combined and then corrupted by line broadening, complex baseline, and varied levels of noise and phase shift. The performances of the models were evaluated by total root mean square percentage error (RMSE) of five metabolites, RMSE, mean absolute percent error (MAPE) and Pearson’s correlation coefficient for each metabolite. A student’s t-test was performed. For quantification of in-vivo spectra, data show that if only simulated spectra were used for training, the total RMSE between the labeled and predicted concentrations is ~32%. However, with a small number of in-vivo spectra in the training set (~2%), the total RMSE is ~23% over five cerebral metabolites, which is notably lower. In this study, the ideal range for number of simulated spectra in training set is 1000~10000. The quantification error increased if the number of simulated spectra in training set was too little or too much. The saliency map further indicated that synthetic data helped directing the model to “look at” the metabolite whose concentration was to be predicted. The improvement was most noticeable for mI which the model seemed to ignore likely due to the distraction from Cho and/or Cr. In conclusion, we proposed a CNN model, which is able to predict five cerebral metabolites that are commonly investigated in neurological diseases with an overall performance comparable with that of conventional model-based fitting. We demonstrated the visualizations of CNN models by saliency maps and filter activations to understand the pick-up of features from the in-vivo data. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:51:23Z (GMT). No. of bitstreams: 1 U0001-2807202213402400.pdf: 3744879 bytes, checksum: 2e258dc48ec176184c38a66ee7193d3e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | CONTENTS 口試委員審定書 i 謝辭 ii 中文摘要 iii ABSTRACT v LIST OF FIGURES viiii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Purpose 4 1.3 Literature Review 5 Chapter 2. Materials and Methods 7 2.1 Computer simulation 7 2.1.1 Basis set and water scaling 9 2.1.2 Line broadening 12 2.1.3 Complex baseline 14 2.1.4 Phase shift 17 2.1.5 Noise adding 17 2.2 MR experiment 19 2.3 Convolutional neural network model 20 2.3.1 Basic architecture of Convolutional Neural Networks 20 2.3.2 CNN experiments 22 2.3.3 Proposed CNN Architecture 24 2.3.4 CNN model evaluation 25 2.3.5 CNN model visualization 26 Chapter 3. Results 27 3.1 Quantification in simulated data 27 3.2 Quantification in in-vivo data 31 3.2.1 CNN model trained by simulated data only 31 3.2.2 CNN model trained by simulated data + real data 34 3.2.3 CNN models trained by different amount of simulated data + real data 37 3.3 visualization of CNN models 40 3.3.1 Saliency map of CNN models for in-vivo data 40 3.3.2 filter activations of CNN model for in-vivo data 46 Chapter 4 Discussion 49 4.1 MRS quantification 49 4.2 Model visualization 51 Chapter 5 Conclusion and Future Work 53 References 54 LIST OF FIGURES Figure 1. overview of the simulation of MR spectra 8 Figure 2. The basis set of the five metabolites 11 Figure 3. Linebroadening in simulated spectra 14 Figure 4. Simulation and summation of complex baseline in simulated spectra.. 16 Figure 5. phase shift and random noise in simulated spectra 18 Figure 6. Overview of basic architecture in CNN for 1d data 21 Figure 7. Overview of the CNN training process for MRS quantification 23 Figure 8. Plots of training curve for CNN experiments 23 Figure 9. Overview of the proposed CNN architecture 24 Figure 10. SNR and total phase error distribution in simulated data 27 Figure 11. Bar chart of RMSE and MAPE in simulated data. 28 Figure 12. Scatter plots of quantification in simulated spectra. 28 Figure 13. Plots of RMSE to SNR level in simulated spectra. 29 Figure 14. Plots of RMSE to total phase error levels in simulated spectra 30 Figure 15. Bar chart of RMSE and MAPE in in-vivo data (1) 32 Figure 16. Scatter plots of quantification in in-vivo spectra (1) 33 Figure 17. Bar chart of RMSE and MAPE in in-vivo data (2) 35 Figure 18. Scatter plots of quantification in in-vivo spectra (2) 36 Figure 19. total RMSE versus different amount of training data 37 Figure 20. RMSE and MAPE versus different amount of training data 39 Figure 21. Saliency maps of CNN models for NAA 41 Figure 22. Saliency maps of CNN models for Cre 42 Figure 23. Saliency maps of CNN models for Cho 43 Figure 24. Saliency maps of CNN models for Glu 44 Figure 25. Saliency maps of CNN models for mI 45 Figure 26. In-vivo data with normal quality and the result of filter activations (1) 47 Figure 27. In-vivo data with poor quality and the result of filter activations (2) 48 LIST OF TABLES Table 1. Characteristics of metabolite signals 12 Table 2. Range of metabolite concentrations in normal human brain 12 Table 3. Characteristics of background signals 15 | |
| dc.language.iso | en | |
| dc.subject | 可解釋人工智慧 | zh_TW |
| dc.subject | 磁振頻譜 | zh_TW |
| dc.subject | 代謝物之絕對定量 | zh_TW |
| dc.subject | 信號處理 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 大腦代謝物 | zh_TW |
| dc.subject | explainable AI | en |
| dc.subject | MR spectroscopy | en |
| dc.subject | cerebral metabolites | en |
| dc.subject | absolute quantification of metabolites | en |
| dc.subject | signal processing | en |
| dc.subject | deep learning | en |
| dc.subject | convolutional neural network | en |
| dc.title | 利用電腦模擬磁振頻譜與可解釋特徵之卷積神經網路預測腦中代謝物之濃度 | zh_TW |
| dc.title | Estimation of cerebral metabolite concentration using synthetic MR spectroscopy data and CNN directed to explainable features | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0003-1601-0804 | |
| dc.contributor.advisor-orcid | 吳文超(0000-0002-4040-2771) | |
| dc.contributor.oralexamcommittee | 鍾孝文 (Hsiao-Wen Chung),陳雅芳(Ya-Fang Chen),蔡尚岳(Shang-Yueh Tsai),莊子肇(Tzu-Chao Chuang) | |
| dc.contributor.oralexamcommittee-orcid | 鍾孝文 (0000-0001-7127-1244),陳雅芳(0000-0003-2995-9189),蔡尚岳(0000-0002-6310-4750) | |
| dc.subject.keyword | 磁振頻譜,大腦代謝物,代謝物之絕對定量,信號處理,深度學習,卷積神經網路,可解釋人工智慧, | zh_TW |
| dc.subject.keyword | MR spectroscopy,cerebral metabolites,absolute quantification of metabolites,signal processing,deep learning,convolutional neural network,explainable AI, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU202201824 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-24 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202213402400.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
