Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85216
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝叔蓉(Grace S Shieh)
dc.contributor.authorYiuwai Ngen
dc.contributor.author吳耀緯zh_TW
dc.date.accessioned2023-03-19T22:50:50Z-
dc.date.copyright2022-08-10
dc.date.issued2022
dc.date.submitted2022-08-03
dc.identifier.citationFabrizio Antonangeli, Ambra Natalini, Marina Chiara Garassino, Antonio Sica, Angela Santoni, and Francesca Di Rosa. Regulation of PD-L1 expression by NF-κB in cancer. Frontiers in Immunology, page 2346, 2020. Mark Ayers, Jared Lunceford, Michael Nebozhyn, Erin Murphy, Andrey Loboda, David R. Kaufman, Andrew Albright, Jonathan D. Cheng, S. Peter Kang, Veena Shankaran, Sarina A. Piha-Paul, Jennifer Yearley, Tanguy Y. Seiwert, Antoni Ribas, et al. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. The Journal of Clinical Investigation, 127(8):2930–2940, 2017. Arjun V Balar, Matthew D Galsky, Jonathan E Rosenberg, Thomas Powles, Daniel P Petrylak, Joaquim Bellmunt, Yohann Loriot, Necchi, rea, Jean Hoffman-Censits, Jose Luis Perez-Gracia, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. The Lancet, 389(10064):67–76, 2017. Romain Banchereau, Ning Leng, Oliver Zill, Ethan Sokol, Gengbo Liu, Dean Pavlick, Sophia Maund, Li-Fen Liu, Edward Kadel, Nicole Baldwin, et al. Molecular determinants of response to PD-L1 blockade across tumor types. Nature Communications, 12 (1):1–11, 2021. Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1):289–300, 1995. Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5):525–527, 2016. Lieping Chen and Xue Han. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. The Journal of Clinical Investigation, 125(9):3384–3391, 2015. Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGDKK international conference on knowledge discovery and data mining, pages 785–794, 2016. Francis Crick. On protein synthesis. Symposia of the Society for Experimental Biology, 12:138–163, 1958. Francis Crick. Central dogma of molecular biology. Nature, 227(5258):561–563, 1970. Razvan Cristescu, Robin Mogg, Mark Ayers, Andrew Albright, Erin Murphy, Jennifer Yearley, Xinwei Sher, Xiao Qiao Liu, Hongchao Lu, Michael Nebozhyn, et al. Pantumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science, 362(6411):eaar3593, 2018. Carsten F. Dormann, Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel Carré, Jaime R. García Marquéz, Bernd Gruber, Bruno Lafourcade, Pedro J. Leitão, Tamara Münkemüller, Colin McClean, Patrick E. Osborne, and other. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1):27–46, 2013. Sandrine Dudoit, Jane Fridlyand, and Terence P. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457):77–87, 2002. Louis Fehrenbacher, Alexander Spira, Marcus Ballinger, Marcin Kowanetz, Johan Vansteenkiste, Julien Mazieres, Keunchil Park, David Smith, Angel Artal-Cortes, Conrad Lewanski, et al. Atezolizumab versus Docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. The Lancet, 387(10030):1837–1846, 2016. Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1): 119–139, 1997. Jun Gong, Alexander Chehrazi-Raffle, Srikanth Reddi, and Ravi Salgia. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. Journal for Immunotherapy of Cancer, 6(1):1–18, 2018. Jonathan J Havel, Diego Chowell, and Timothy A Chan. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews Cancer, 19(3): 133–150, 2019. Roy S Herbst, Jean-Charles Soria, Marcin Kowanetz, Gregg D Fine, Omid Hamid, Michael S Gordon, Jeffery A Sosman, David F McDermott, John D Powderly, Scott N Gettinger, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528):563–567, 2014. Daniel Horspool. An overview of the (basic) central dogma of molecular biochemistry with all enzymes labeled. [online]. https://commons.wikimedia.org/wiki/File:Central_Dogma_of_Molecular_Biochemistry_with_Enzymes.jpg, 2008. Bijay Jassal, Lisa Matthews, Guilherme Viteri, Chuqiao Gong, Pascual Lorente, Antonio Fabregat, Konstantinos Sidiropoulos, Justin Cook, Marc Gillespie, Robin Haw, Fred Loney, Bruce May, Marija Milacic, Karen Rothfels, Cristoffer Sevilla, Veronica Shamovsky, Solomon Shorser, Thawfeek Varusai, Joel Weiser, Guanming Wu, Lincoln Stein, Henning Hermjakob, and Peter D’Eustachio. The Reactome pathway knowledgebase. Nucleic Acids Research, 48(D1):D498–D503, 2020. Peng Jiang, Shengqing Gu, Deng Pan, Jingxin Fu, Avinash Sahu, Xihao Hu, Ziyi Li, Nicole Traugh, Xia Bu, Bo Li, et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nature medicine, 24(10):1550–1558, 2018. Saskia Le Cessie and Johannes C. Van Houwelingen. Ridge estimators in logistic regression. Journal of the Royal Statistical Society: Series C (Applied Statistics), 41(1): 191–201, 1992. Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):1– 21, 2014. Sanjeev Mariathasan, Shannon J. Turley, Dorothee Nickles, Alessandra Castiglioni, Kobe Yuen, Yulei Wang, Edward E. Kadel III, Hartmut Koeppen, Jillian L. Astarita, Rafael Cubas, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 554(7693):544–548, 2018. David F McDermott, Mahrukh A Huseni, Michael B Atkins, Robert J Motzer, Brian I Rini, Bernard Escudier, Lawrence Fong, Richard W Joseph, Sumanta K Pal, James A Reeves, et al. Clinical activity and molecular correlates of response to Atezolizumab alone or in combination with Bevacizumab versus Sunitinib in renal cell carcinoma. Nature Medicine, 24(6):749–757, 2018. Habshah Midi, Saroje Kumar Sarkar, and Sohel Rana. Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics, 13(3):253–267, 2010. Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011. Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31, 2018. Jason A. Reuter, Damek V. Spacek, and Michael P. Snyder. High-throughput sequencing technologies. Molecular Cell, 58(4):586–597, 2015. Michael S Rooney, Sachet A Shukla, Catherine J Wu, Gad Getz, and Nir Hacohen. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 160(1-2):48–61, 2015. Kate Schroder, Paul J Hertzog, Timothy Ravasi, and David A Hume. Interferon-γ: an overview of signals, mechanisms and functions. Journal of Leukocyte Biology, 75(2): 163–189, 2004. Lawrence H Schwartz, Saskia Litière, Elisabeth De Vries, Robert Ford, Stephen Gwyther, Sumithra Mandrekar, Lalitha Shankar, Jan Bogaerts, Alice Chen, Janet Dancey, et al. RECIST 1.1 - update and clarification: From the RECIST committee. European Journal of Cancer, 62:132–137, 2016. Duncan E Scott, Andrew R. Bayly, Chris Abell, and John Skidmore. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nature Reviews Drug Discovery, 15(8):533–550, 2016. Xiu-Qing Shen, Qiu-Mei Wu, Cai-Hong Yang, Qin-Dan Yan, Peng-Ju Cao, and Fa-Lin Chen. Four low expression LncRNAs are associated with prognosis of human lung adenocarcinoma. Clinical Laboratory, 66(10), 2020. Owen Tan, Rupendra Shrestha, M Cunich, and Deborah Schofield. Application of nextgeneration sequencing to improve cancer management: A review of the clinical effectiveness and cost-effectiveness. Clinical Genetics, 93(3):533–544, 2018. Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996. Gunter P. Wagner, Koryu Kin, and Vincent J. Lynch. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences, 131(4):281–285, 2012. Xiaoxia Wang, Nivedita Mitra, Ismael Secundino, Kalyan Banda, Pedro Cruz, Vered Padler-Karavani, Verhagen, rea, Chris Reid, Martina Lari, Ermanno Rizzi, et al. Specific inactivation of two immunomodulatory SIGLEC genes during human evolution. National Acad Sciences, 109(25):9935–9940, 2012. Paula R Wolf and Hidde L Ploegh. How MHC class II molecules acquire peptide cargo: biosynthesis and trafficking through the endocytic pathway. Annual Review of Cell and Developmental Biology, 11(1):267–306, 1995. Chia-Chin Wu, Y Alan Wang, J Andrew Livingston, Jianhua Zhang, and P Andrew Futreal. Prediction of biomarkers and therapeutic combinations for anti-PD-1 immunotherapy using the global gene network association. Nature Communications, 13(1):1–14, 2022. Wenyong Zhou, Tao Liu, Gaowa Saren, Li Liao, Wentao Fang, and Heng Zhao. Comprehensive analysis of differentially expressed long non-coding RNAs in non-small cell lung cancer. Oncology Letters, 18(2):1145–1156, 2019. Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85216-
dc.description.abstract免疫治療的其中一種方法是用藥物阻斷PD-1/PD-L1的蛋白質交互作用,激活免疫系統,使其攻擊腫瘤細胞。然而,該療法效於超過五成的病人無效。如果我們能夠找到導致藥物無效的生物標記基因,就可以辨認出適合使用免疫療法的病患。 我們發展了一個使用基因表現量作為變量的模型,用於預測癌症病人接受Atezolizumab (一種PD-L1 抑製劑)藥物治療後的臨床反應。我們用的分類方法是logistic ridge regression。並使用DESeq2、BSS-WSS ratio、及一種領域自適應的方法選取基因。訓練資料集是泌尿上皮癌(mUC)患者。該模型在另一組mUC病人的測試資料集中的預測AUC為0.76。同一組的mUC病人訓練資料集亦用於建立非小細胞肺癌(NSCLC)和腎癌(RCC)患者適用的分類器,並分別預測AUC為 0.69及0.70。這項研究發現了一些生物標記基因,包括 CXCL9、LURAP1、LYRM1、SIGLEC17P 和 UST。此外,我們比較不同的分類器用於單一癌症資料集的表現,發現線性模型(包括logistic ridge和SVM-linear)優於非線性模型(包括SVM-RBF、AdaBoost、CatBoost和XGBoost)。 再者,我們研究那一種分類方法能預測mUC、NSCLC和RCC三種癌症的病人(一組跨癌症的資料集),並與Banchereau et al. (2021) 發表的研究比較。該研究的分類方法是logistic LASSO regression,預測AUC是0.62。我們發現XGBoost的AUC是0.64,使用提升法(boosting)可以提高模型的表現。 它優於一個使用logistic ridge、SVM-linear、SVM-RBF、AdaBoost、CatBoost和XGBoost的堆疊法(stacking)分類器,其預測AUC為0.61。zh_TW
dc.description.abstractImmunotherapy by PD-1/PD-L1 blockade induces durable clinical responses in cancer patients. However, a portion of patients are resistant to this medication treatment. If we could find the biomarker genes causing the failure, we could stratify patients who would respond to the therapy. We proposed a gene-based classifier which takes gene expression as input for clinical response prediction to a PD-L1 inhibitor, Atezolizumab. It is a logistic ridge regression classifier using genes identified by DESeq2, ranked by the BSS-WSS ratio, and filtered by a domain adaptation technique. The training set is a dataset of metastasis urothelial cancer (mUC) patients. The classifier has an AUC of 0.76 in a test set of mUC patients. Two other classifiers were developed using the same training set of mUC patients, and have test sets of non-small cell lung cancer (NSCLC) or renal cell cancer (RCC) patients. The models have AUCs of 0.69 and 0.70, respectively. Some biomarkers, including CXCL9, LURAP1, LYRM1, SIGLEC17P, and UST, have been discovered. Moreover, multiple machine learning methods are examined in this study. We have found that the linear models (such as logistic ridge and SVM-linear) outperform the non-linear models (such as SVM-RBF, AdaBoost, CatBoost, and XGBoost) in cancer-specific datasets. In addition, we investigated classification methods using a cross-cancer dataset of mUC, NSCLC, and RCC patients, and compared them to that in Banchereau et al. (2021), which is a logistic LASSO classifier with an AUC of 0.62. We found that XGBoost has an AUC of 0.64. The boosting technique can improve the model's performance. It is superior to a stacking classifier that aggregates logistic ridge, SVM-linear, SVM-RBF, AdaBoost, CatBoost, and XGBoost, which has an AUC of 0.61.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:50:50Z (GMT). No. of bitstreams: 1
U0001-2207202211065300.pdf: 10325270 bytes, checksum: 2a3adeaca128f29d51c46cf0d6c1ae64 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsAcknowledgements (page i) 摘要 (page ii) Abstract (page iv) Contents (page vi) List of Figures (page viii) List of Tables (page ix) Denotation (page xi) Chapter 1 Introduction (P.1) 1.1 Motivation and Objective (P.1) 1.2 Mechanism of PD-L1 Blockade for Cancer Treatment (P.4) 1.3 Related Works (P.6) Chapter 2 Materials (P.8) 2.1 Datasets of mUC, NSCLC, and RCC Patients (P.8) 2.2 Preprocessing (P.9) Chapter 3 Methods (P.10) 3.1 Feature Selection (P.10) 3.2 Classification Methods (P.12) 3.3 Ensemble Learning (P.12) Chapter 4 Classifiers for Cancer Specific Predictions (P.13) 4.1 Gene-based Classifiers & Biomarkers (P.13) 4.2 Principal-component-based Classification Results (P.19) 4.3 Ensemble Classifiers (P.20) Chapter 5 Classifiers for Cross Cancer Prediction (P.21) 5.1 Gene-based Classifiers & Biomarkers (P.21) 5.2 Principal-component-based Classification Results (P.22) 5.3 Ensemble Classifiers (P.24) Chapter 6 Conclusion (P.26) Chapter 7 Data Availability (P.28) References (P.29) Appendix A — Details of the Classification Process (P.36) Appendix B — Gene-based Classifiers (P.47) Appendix C — Discussion on Cross-cancer Biomarkers (P.61) Appendix D — Details of the Ensemble Classifier (P.72) Appendix E — Supplementary Tables (P.75)
dc.language.isoen
dc.subject免疫治療zh_TW
dc.subject生物標記zh_TW
dc.subject藥物反應預測zh_TW
dc.subject集成學習zh_TW
dc.subject基因表現量zh_TW
dc.subjectBiomarkeren
dc.subjectImmunotherapyen
dc.subjectGene Expression Dataen
dc.subjectEnsemble Learningen
dc.subjectDrug Response Predictionen
dc.title用機器學習方法尋找生物標記以預測PD-L1抑製劑於治療癌症的臨床反應zh_TW
dc.titleIdentifying biomarkers for clinical responses of cancer patients to PD-L1 inhibitor by machine learning methodsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-6608-8787
dc.contributor.coadvisor王偉仲(Weichung Wang)
dc.contributor.oralexamcommittee查岱龍(Tai-Lung Cha),曹昱(Yu Tsao)
dc.subject.keyword生物標記,藥物反應預測,集成學習,基因表現量,免疫治療,zh_TW
dc.subject.keywordBiomarker,Drug Response Prediction,Ensemble Learning,Gene Expression Data,Immunotherapy,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202201627
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
dc.date.embargo-lift2022-08-10-
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
U0001-2207202211065300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved