請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85173完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭貽生 | zh_TW |
| dc.contributor.advisor | Yi-Sheng Cheng | en |
| dc.contributor.author | 于庭懿 | zh_TW |
| dc.contributor.author | Ting-Yi Yu | en |
| dc.date.accessioned | 2023-03-19T22:48:09Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2022-08-12 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Arner, E.S., and Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267, 6102-6109.
Arsova, B., Hoja, U., Wimmelbacher, M., Greiner, E., Üstün, Ş., Melzer, M., Petersen, K., Lein, W., and Börnke, F. (2010). Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22, 1498-1515. Awan, M.U.N., Yan, F., Mahmood, F., Bai, L.P., Liu, J.Y., and Bai, J. (2021). The functions of thioredoxin 1 in neurodegeneration. Antioxid Redox Sign 36, 13-15. Bacete, L., Melida, H., Miedes, E., and Molina, A. (2018). Plant cell wall‐mediated immunity: cell wall changes trigger disease resistance responses. Plant J 93, 614-636. Balmer, Y., Koller, A., del Val, G., Manieri, W., Schürmann, P., and Buchanan, B.B. (2003). Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci U.S.A. 100, 370-375. Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254. Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583-1592. Chang Li. (2021). The role of plant A20/AN1 protein in the salicylic aicd-mediated antiviral immunity and RNA interference. Unpublished doctoral dissertation, National Taiwan University, Taiwan. Chang, L., Chang, H.-H., Chang, J.-C., Lu, H.-C., Wang, T.-T., Hsu, D.-W., Tzean, Y., Cheng, A.-P., Chiu, Y.-S., and Yeh, H.-H. (2018). Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathogen 14, e1007288. Chang, E.-J., Ha, J., Kang, S.-S., Lee, Z.H., and Kim, H.-H. (2011). AWP1 binds to tumor necrosis factor receptor-associated factor 2 (TRAF2) and is involved in TRAF2-mediated nuclear factor-kappaB signaling. Int J Biochem Cell Biol 43, 1612-1620. Chen, Z., Silva, H., and Klessig, D.F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 262, 1883-1886. Choi, H., Han, S., Shin, D., and Lee, S. (2012). Polyubiquitin recognition by AtSAP5, an A20-type zinc finger containing protein from Arabidopsis thaliana. Biochem Biophys Res Commun 419, 436-440. Da Fonseca-Pereira, P., Daloso, D.M., Gago, J., de Oliveira Silva, F.M., Condori-Apfata, J.A., Florez-Sarasa, I., Tohge, T., Reichheld, J.P., Nunes-Nesi, A., Fernie, A.R., and Araujo, W.L. (2019). The mitochondrial thioredoxin system contributes to the metabolic responses under drought episodes in Arabidopsis. Plant Cell Physiol 60, 213-229. Ding, Y., Sun, T., Ao, K., Peng, Y., Zhang, Y., Li, X., and Zhang, Y. (2018). Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173, 1454-1467. Ding, B., and Wang, G.L. (2015). Chromatin versus pathogens: the function of epigenetics in plant immunity. Front Plant Sci 6, 675. Dixit, A.R., and Dhankher, O.P. (2011). A novel stress-associated protein 'AtSAP10' from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. Plos One 6, e20921. Dixit, V., Green, S., Sarma, V., Holzman, L.B., Wolf, F.W., O'Rourke, K., Ward, P.A., Prochownik, E., and Marks, R.M. (1990). Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem 265, 2973-2978. Durner, J., and Klessig, D.F. (1995). Inhibition of ascorbate peroxidase by salicylic acid and 2, 6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci U.S.A. 92, 11312-11316. Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu Rev Phytopathol 42, 185-209. Fass, D., and Thorpe, C. (2018). Chemistry and enzymology of disulfide cross-linking in proteins. Chem Rev 118, 1169-1198. Fu, Z.Q., Yan, S.P., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S.H., Tada, Y., Zheng, N., and Dong, X.N. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228-232. Gelhaye, E., Rouhier, N., and Jacquot, J.P. (2004a). The thioredoxin h system of higher plants. Plant Physiol Biochem 42, 265-271. Grant, M.R., and Jones, J.D. (2009). Hormone (dis) harmony moulds plant health and disease. Science 324, 750-752. Guharoy, M., and Chakrabarti, P. (2007). Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein–protein interactions. Bioinformatics 23, 1909-1918. Haddad, R., Heidari-Japelaghi, R., and Eslami-Bojnourdi, N. (2018). Isolation and functional characterization of two thioredoxin h isoforms from grape. Int J Biol Macromol 120, 2545-2551. Hopkins, B.L., and Neumann, C.A. (2019). Redoxins as gatekeepers of the transcriptional oxidative stress response. Redox Biology 21, 101104. Hwang, S.-Y., Kim, J.-Y., Kim, K.-W., Park, M.-K., Moon, Y., Kim, W.-U., and Kim, H.-Y. (2004). IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-κB-and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther 6, 1-9. Islam, S., and Mohammad, F. (2020). Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions. Physiol Mol Biol Pla 26, 871-883. Jimenez-Hidalgo, M., Kurz, C.L., Pedrajas, J.R., Naranjo-Galindo, F.J., Gonzalez-Barrios, M., Cabello, J., Saez, A.G., Lozano, E., Button, E.L., Veal, E.A., Fierro-Gonzalez, J.C., Swoboda, P., and Miranda-Vizuete, A. (2014). Functional characterization of thioredoxin 3 (TRX-3), a Caenorhabditis elegans intestine-specific thioredoxin. Free Radic Biol Med 68, 205-219. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329. Jung, Y.J., Chi, Y.H., Chae, H.B., Shin, M.R., Lee, E.S., Cha, J.Y., Paeng, S.K., Lee, Y., Park, J.H., Kim, W.Y., Kang, C.H., Lee, K.O., Lee, K.W., Yun, D.J., and Lee, S.Y. (2013). Analysis of Arabidopsis thioredoxin-h isotypes identifies discrete domains that confer specific structural and functional properties. Biochem J 456, 13-24. Kang, G., Wang, C., Sun, G., and Wang, Z. (2003). Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50, 9-15. Kang, M., Fokar, M., Abdelmageed, H., and Allen, R.D. (2011). Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Mol Biol 75, 451-466. Kang, M., Lee, S., Abdelmageed, H., Reichert, A., Lee, H.K., Fokar, M., Mysore, K.S., and Allen, R.D. (2017). Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. Plant Cell Environ. 40, 702-716. Kang, M.Y., Abdelmageed, H., Lee, S., Reichert, A., Mysore, K.S., and Allen, R.D. (2013). AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5. Plant J 76, 481-493. Klessig, D.F., Choi, H.W., and Dempsey, D.M.A. (2018). Systemic acquired resistance and salicylic acid: past, present, and future. Mol Plant Microbe Interact 31, 871-888. Kuć, J. (1987). Translocated signals for plant immunization a. Ann N Y Acad Sci 494, 221-223. Kunkel, B.N., and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5, 325-331. Lao, Y., Yang, K., Wang, Z., Sun, X., Zou, Q., Yu, X., Cheng, J., Tong, X., Yeh, E.T.H., Yang, J., and Yi, J. (2018). DeSUMOylation of MKK7 kinase by the SUMO2/3 protease SENP3 potentiates lipopolysaccharide-induced inflammatory signaling in macrophages. J Biol Chem 293, 3965-3980. Li, Q., Estepa, G., Memet, S., Israel, A., and Verma, I.M. (2000). Complete lack of NF-κB activity in IKK1 and IKK2 double-deficient mice: additional defect in neurulation. Genes Dev 14, 1729-1733. Liu, S., Wang, J., Jiang, S., Wang, H., Gao, Y., Zhang, H., Li, D., and Song, F. (2019). Tomato SlSAP3, a member of the stress‐associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. Mol Plant Pathol 20, 815-830. Lu, H.-C., Hsieh, M.-H., Chen, C.-E., Chen, H.-H., Wang, H.-I., and Yeh, H.-H. (2012). A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid. Mol Plant Microbe Interact 25, 738-746. Luo, J.-P., Jiang, S.-T., and Pan, L.-J. (2001). Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Sci 161, 125-132. Ma, A., and Malynn, B.A. (2012). A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol 12, 774-785. Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935-944. Mukhopadhyay, A., Vij, S., and Tyagi, A.K. (2004). Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U.S.A. 101, 6309-6314. Nagahara, N. (2011). Intermolecular disulfide bond to modulate protein function as a redox-sensing switch. Amino acids 41, 59-72. Naylor, M., Murphy, A.M., Berry, J.O., and Carr, J.P. (1998). Salicylic acid can induce resistance to plant virus movement. Mol Plant Microbe Interact 11, 860-868. Opipari, A., Boguski, M., and Dixit, V. (1990). The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 265, 14705-14708. Park, S.-W., Liu, P.-P., Forouhar, F., Vlot, A.C., Tong, L., Tietjen, K., and Klessig, D.F. (2009a). Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J Biol Chem 284, 7307-7317. Park, S.K., Jung, Y.J., Lee, J.R., Lee, Y.M., Jang, H.H., Lee, S.S., Park, J.H., Kim, S.Y., Moon, J.C., and Lee, S.Y. (2009b). Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150, 552-561. Perez Mata, C., and Spoel, S.H. (2019). Thioredoxin-mediated redox signalling in plant immunity. Plant Sci 279, 27-33. Pieterse, C.M., and Van Loon, L. (2004). NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7, 456-464. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5, 308-316. Reichheld, J.-P., Khafif, M., Riondet, C., Droux, M., Bonnard, G., and Meyer, Y. (2007). Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19, 1851-1865. Sharma, G., Giri, J., and Tyagi, A.K. (2015). Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. Plant Sci 237, 80-92. Solanke, A.U., Sharma, M.K., Tyagi, A.K., and Sharma, A.K. (2009). Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Mol Genet Genom 282, 153-164. Spyrou, G., Enmark, E., Miranda-Vizuete, A., and Gustafsson, J.-Å. (1997). Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 272, 2936-2941. Ströher, E., Wang, X.-J., Roloff, N., Klein, P., Husemann, A., and Dietz, K.-J. (2009). Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Mol Plant 2, 357-367. Tyagi, H., Jha, S., Sharma, M., Giri, J., and Tyagi, A.K. (2014). Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Sci 225, 68-76. Vega de, D., Newton, A.C., and Sadanandom, A. (2018). Post-translational modifications in priming the plant immune system: ripe for exploitation? FEBS Lett 592, 1929-1936. Verstrepen, L., Verhelst, K., van Loo, G., Carpentier, I., Ley, S.C., and Beyaert, R. (2010). Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochem Pharmacol 80, 2009-2020. Vij, S., and Tyagi, A.K. (2006). Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger (s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genom 276, 565-575. Wang, Y., Yang, J., and Yi, J. (2012b). Redox sensing by proteins: oxidative modifications on cysteines and the consequent events. Antioxid Redox Signal 16, 649-657. Wolf Fritz, K., Kehr, S., Stumpf, M., Rahlfs, S., and Becker, K. (2011). Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat Commun 2, 383. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85173 | - |
| dc.description.abstract | 植物荷爾蒙水楊酸(salicylic acid)所調節的免疫反應,在對抗非生物與生物逆境中扮演重要角色。在阿拉伯芥水楊酸免疫反應路徑中,NPR1調控約90%下游防禦基因的表現。在正常的狀況下,NPR1 是以多聚體的形式存在於細胞質中,當病菌侵染時,NPR1 會被硫氧化還原蛋白 TRX-h3或h5 還原成單體,單體的 NPR1 可入細胞核調控下游的防禦基因表現。先前的研究中顯示,NPR1表現與逆境相關蛋白AtSAP5有關;另外,初步研究發現,AtSAP5與TRX-h3有交互作用,但其交互作用後啟動的功能則未知。本研究發現AtSAP5具有結合並還原TRX-h3的能力且AtSAP5序列刪減分析之結果顯示 AtSAP5 的 A20 domain 與 TRX-h3 具有最佳結合能力。在還原力的測試顯示,A20 domain 具還原TRX-h3的能力,且在cysteine突變分析發現A20 domain中四個在不同植物物種中保守的cysteine在與TRX-h3之交互作用與保有還原酶活性皆十分重要。本研究對AtSAP5 如何參與 SA調控的免疫途徑提出新的見解。 | zh_TW |
| dc.description.abstract | Phytohormone salicylic acid (SA) plays a vital role in the plant defense responses against abiotic and biotic stresses. In SA-mediated immune pathway, NONEXPRESSOR OF PATHOGENESIS RELATED GENES1 (NPR1) involved in regulation of 90% of downstream SA-dependent immune related genes in Arabidopsis thaliana. Under normal conditions, NPR1 mainly exists as oligomeric form and is located in the cytosol. Upon pathogen infection, NPR1 is reduced from oligomer to monomer through thioredoxin (TRX)-h3 or –h5. Previous result indicates that the expression of NPR1 was regulated by stress-associated protein 5 (AtSAP5). Preliminary data also suggests that AtSAP5 could interact with TRX-h3. However, the function of interaction between AtSAP5 and TRX-h3 is unclear. In this study, the interaction between AtSAP5 and TRX3 is further confirmed and AtSAP5 function as a reductase to reduce TRX-h3 is demonstrated. To identify the region of AtSAP5 that interacts with TRX-h3, I generated several deletion clones of AtSAP5. The results show that the A20 domain exhibits the highest interacting ability with TRX-h3 and also confers the reductase activity. Four conserved cysteines were identified from SAP family in different plant species. Mutational analysis demonstrates each conserved cysteine is important for A20 domain to binds to TRX-h3, and also important for conferring reductase activity. This finding brings a new insight regarding how AtSAP5 regulates the SA-mediated immune pathway. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:48:09Z (GMT). No. of bitstreams: 1 U0001-0308202209285400.pdf: 2832333 bytes, checksum: ab78488fc0ab05f0e33bff0e38c946c4 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 摘要………………………………………………………………..……………i
Abstract ii Contents iii List of figures vi Chapter 1. Introduction 1 1.1 Plant innate immunity 1 1.2 Salicylic acid (SA)-mediated immunity 2 1.3 Thioredoxin (TRX) 4 1.4 Stress-associated protein (SAP) 6 1.5 Dissertation projects……………………………………………………....................10 Chapter 2. Materials and Methods 11 2.1 Plant materials and growth conditions 11 2.1.1 Agro-infiltration 11 2.1.2 Split luciferase assay 11 2.2 Protein expression and purification 13 2.2.1 Competent cell preparation: 13 2.2.2 Transformation 13 2.2.3 Protein large-scale expression and purification 13 2.2.4 NADPH consumption assay 15 2.2.5 Insulin precipitation assay 15 2.2.6 Quartz crystal microbalance (QCM) 16 2.2.7 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonate (AMS) modification 16 2.2.8 Sequence alignment 17 Chapter 3. Results 18 3.1 AtSAP5 interacts with TRX-h3 in split luciferase assay 18 3.2 His-TRX-h3 shows disulfide reductase activity 18 3.3 AtSAP5 interacts with TRX-h3 in vitro 19 3.4 AtSAP5 acts as a TRX-h3 reductase 20 3.5 A20 domain of AtSAP5 is more important for interaction with TRX-h3 21 3.7 A20 domain of AtSAP5 reduces TRX-h3 instead of AN1 domain. 22 3.8 The conserved residues of AtSAPs are identified via sequence alignment analysis 22 3.9 The four cysteines are important to the protein-protein interaction of AtSAP5 and TRX-h3 23 3.10 The four cysteines of N5 region support the reductase function to reduce TRX-h3 24 Chapter 4. Discussions 25 4.1 AtSAP5 was easily to interact with other proteins 25 4.2 AtSAP5 is a moonlight protein confers both E3 ligase and reductase activity 26 4.3 AtSAP5 can serves as a reductase to reduce TRX-h3 27 4.4 AtSAP5 involved in SA-regulated redox signaling and plant immunity 27 References 30 Figures 40 Figure 1. AtSAP5 interacts with TRX-h3 in split luciferase assay 40 Figure 2. SDS-PAGE analysis of His-TRX-h3, His-GST-AtSAP5, and GST protein purification. 41 Figure 3. His-MBP-NTRA protein purification and enzyme activity assay of TRX-h3. 42 Figure 4. The molecular interaction between AtSAP5 and TRX-h3 was detected by QCM 44 Figure 5. AtSAP5 facilitates reduction of TRX-h3 with free thiols 45 Figure 6. The diagram of truncated-domains of AtSAP5 46 Figure 7. A20 domain is the main region to interact with TRX-h3 by split luciferase assay 47 Figure 8. SDS-PAGE analysis of His-GST-N5, His-GST-N6, His-GST-A20-AN1, His-GST-A20 and His-GST-AN1 49 Figure 9. A20 domain is the main region to interact with TRX-h3 through QCM 50 Figure 10 A20 domain of AtSAP5 play more important role in reducing TRX-h3 52 Figure 11. Sequence alignment of SAP proteins form different plant species 53 Figure 12. Diagram of the single, double and Quadruple cysteine mutations of GST-N5 protein 54 Figure 13. The four cysteine mutants of N5 protein decrease the interaction ability to TRX-h3 through the split luciferase assay 55 Figure 14. SDS-PAGE analysis of His-GST-N5 C26A, His-GST-N5 C30A, His-GST-N5 C42A, His-GST-N5 C45A, His-GST-N5 C26/30A, His-GST-N5 C42/45A, and His-GST-N5 C26/30/42/45A 57 Figure 15. The four cysteine mutant of N5 protein decrease the interaction ability to TRX-h3 through QCM 58 Figure 16. Four cystines of A20 domain supports the reducatase function of AtSAP5 60 Appendix 61 Appendix Table 1. The buffer conditions 61 Appendix Table 2. The SDS-PAGE preparing protocol 62 Appendix Table 3. Primer list 63 Appendix Figure 1. AtSAP5 secondary structure prediction 68 Appendix Figure 2. AtSAP5-TRX-h3 putative working model 69 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 逆境相關蛋白 | zh_TW |
| dc.subject | 氧化還原震盪 | zh_TW |
| dc.subject | 水楊酸 | zh_TW |
| dc.subject | 硫氧化還原蛋白 | zh_TW |
| dc.subject | Salicylic acid (SA) | en |
| dc.subject | SA-induced redox oscillation | en |
| dc.subject | Stress-associated protein (SAP) | en |
| dc.subject | Thioredoxin (TRX) | en |
| dc.title | 阿拉伯芥逆境相關蛋白AtSAP5為硫氧化還原蛋白TRX-h3之還原酶 | zh_TW |
| dc.title | Arabidopsis thaliana stress-associated protein 5 (AtSAP5) functions as thioredoxin-h3 (TRX-h3) reductase | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 葉信宏 | zh_TW |
| dc.contributor.coadvisor | Hsin-Hung Yeh | en |
| dc.contributor.oralexamcommittee | 鄭秋萍;楊淑怡;李金美 | zh_TW |
| dc.contributor.oralexamcommittee | Chiu-Ping Cheng;Shu-Yi Yang;Chin-Mei Lee | en |
| dc.subject.keyword | 水楊酸,氧化還原震盪,逆境相關蛋白,硫氧化還原蛋白, | zh_TW |
| dc.subject.keyword | Salicylic acid (SA),SA-induced redox oscillation,Stress-associated protein (SAP),Thioredoxin (TRX), | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202201997 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-08-08 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| dc.date.embargo-lift | 2022-08-12 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
