請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85148完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江伯倫(Bor-Luen Chiang) | |
| dc.contributor.author | Tzu-Yun Liu | en |
| dc.contributor.author | 劉姿昀 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:46:35Z | - |
| dc.date.copyright | 2022-10-04 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-10 | |
| dc.identifier.citation | 1.Oh, H. and S. Ghosh, NF-κB: roles and regulation in different CD4(+) T-cell subsets. Immunol Rev, 2013. 252(1): p. 41-51. 2.Sun, B. and Y. Zhang, Overview of orchestration of CD4+ T cell subsets in immune responses. Adv Exp Med Biol, 2014. 841: p. 1-13. 3.Eggenhuizen, P.J., B.H. Ng, and J.D. Ooi, Treg enhancing therapies to treat autoimmune diseases. Int J Mol Sci, 2020. 21(19). 4.Sakaguchi, S., et al., Regulatory T cells and immune tolerance. Cell, 2008. 133(5): p. 775-787. 5.Sakaguchi, S., et al., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995. 155(3): p. 1151-1164. 6.Schmetterer, K.G., A. Neunkirchner, and W.F. Pickl, Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J, 2012. 26(6): p. 2253-76. 7.Wu, Y., et al., FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell, 2006. 126(2): p. 375-387. 8.Guo, F., et al., CD28 controls differentiation of regulatory T cells from naive CD4 T cells. J Immunol, 2008. 181(4): p. 2285-2291. 9.Zhang, R., et al., An obligate cell-intrinsic function for CD28 in Tregs. J Clin Invest, 2013. 123(2): p. 580-93. 10.Li, D.-Y. and X.-Z. Xiong, ICOS+ Tregs: A functional subset of Tregs in immune diseases. Front Immunol., 2020. 11(2104). 11.Kitani, A., et al., Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med, 2003. 198(8): p. 1179-88. 12.Collison, L.W., et al., IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol, 2010. 11(12): p. 1093-101. 13.Cao, X., et al., Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 2007. 27(4): p. 635-46. 14.Huang, C.T., et al., Role of LAG-3 in regulatory T cells. Immunity, 2004. 21(4): p. 503-13. 15.Read, S., V. Malmström, and F. Powrie, Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med, 2000. 192(2): p. 295-302. 16.Thornton, A.M. and E.M. Shevach, CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med, 1998. 188(2): p. 287-96. 17.Palomares, O., et al., Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes & Immunity, 2014. 15(8): p. 511-520. 18.Yadav, M., J. Bluestone, and S. Stephan, Peripherally induced Tregs – Role in immune homeostasis and autoimmunity. Front Immunol, 2013. 4: p. 232. 19.Huter, E.N., et al., TGF-beta-induced Foxp3+ regulatory T cells rescue scurfy mice. Europ J Immunol, 2008. 38(7): p. 1814-1821. 20.Zeng, H., et al., Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol Immunol, 2015. 12(5): p. 566-71. 21.Han, Y., et al., CD69+ CD4+ CD25- T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J Immunol, 2009. 182(1): p. 111-20. 22.Shiokawa, A., et al., IL-10 and IL-27 producing dendritic cells capable of enhancing IL-10 production of T cells are induced in oral tolerance. Immunol Lett, 2009. 125(1): p. 7-14. 23.Chu, K.H. and B.L. Chiang, Regulatory T cells induced by mucosal B cells alleviate allergic airway hypersensitivity. Am J Respir Cell Mol Biol, 2012. 46(5): p. 651-9. 24.Hsu, L.-H., et al., A B-1a cell subset induces Foxp3− T cells with regulatory activity through an IL-10-independent pathway. Cell Mol Immunol, 2015. 12(3): p. 354-365. 25.Chen, S.-Y., et al., Lymphocyte-activation gene 3+ (LAG3+) forkhead box protein 3− (FOXP3−) regulatory T cells induced by B cells alleviates joint inflammation in collagen-induced arthritis. J Autoimmun, 2016. 68: p. 75-85. 26.Shao, T.-Y., et al., Novel Foxp3− IL-10− regulatory T-cells induced by B-cells alleviate intestinal inflammation in vivo. Scientific Reports, 2016. 6(1): p. 32415. 27.Chien, C.-H., et al., Characterization of c-Maf+Foxp3− regulatory T cells induced by repeated stimulation of antigen-presenting B cells. Scientific Reports, 2017. 7(1): p. 46348. 28.MacMicking, J.D., IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol, 2004. 25(11): p. 601-9. 29.Martens, S. and J. Howard, The interferon-inducible GTPases. Annu Rev Cell Dev Biol, 2006. 22: p. 559-89. 30.Heinonen, M.T., et al., GIMAP GTPase family genes: Potential modifiers in autoimmune diabetes, asthma, and allergy. J Immunol, 2015. 194(12): p. 5885-5894. 31.Wang, Z., et al., Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs. J Clin Invest, 2006. 116(9): p. 2434-41. 32.Lee, S.E., et al., Type I interferons maintain Foxp3 expression and T-regulatory cell functions under inflammatory conditions in mice. Gastroenterology, 2012. 143(1): p. 145-54. 33.Feuerer, M., et al., Genomic definition of multiple ex vivo regulatory T cell subphenotypes. PNAS, 2010. 107(13): p. 5919-24. 34.Pfoertner, S., et al., Signatures of human regulatory T cells: an encounter with old friends and new players. Genome Biology, 2006. 7(7): p. R54. 35.Aksoylar, H.I., et al., Loss of immunological tolerance in Gimap5-deficient mice is associated with loss of Foxo in CD4+ T cells. J Immunol, 2012. 188(1): p. 146-54. 36.Alwarawrah, Y., et al., Irgm1 regulates metabolism and function in T cell subsets. Scientific Reports, 2022. 12(1): p. 850. 37.Xiaoqiang, F., et al., GBP1 is a prognostic biomarker and correlates with immune infiltrates in gastric cancer. Europe PMC, 2021. 38.Liu, B., et al., GBP2 as a potential prognostic biomarker in pancreatic adenocarcinoma. Europ PMC, 2021. 9: p. e11423. 39.Cheng, S.-W., et al., GBP5 repression suppresses the metastatic potential and PD-L1 expression in triple-negative breast cancer. Biomedicines, 2021. 9(4): p. 371. 40.Gavin, M.A., et al., Foxp3-dependent programme of regulatory T-cell differentiation. Nature, 2007. 445(7129): p. 771-775. 41.Hori, S., T. Nomura, and S. Sakaguchi, Control of regulatory T Cell development by the transcription factor Foxp3. Science, 2003. 299(5609): p. 1057-1061. 42.Wei, J., et al., Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol, 2016. 17(3): p. 277-85. 43.MacIver, N.J., R.D. Michalek, and J.C. Rathmell, Metabolic regulation of T lymphocytes. Ann Rev Immunol, 2013. 31: p. 259-283. 44.Zhang, J., et al., Autophagy in regulatory T cells: A double-edged sword in disease settings. Mol Immunol, 2019. 109: p. 43-50. 45.Song, M.J., S. Park, and K.Y. Won, Expression of Beclin-1, an autophagy-related protein, is associated with tumoral FOXP3 expression and Tregs in gastric adenocarcinoma: The function of Beclin-1 expression as a favorable prognostic factor in gastric adenocarcinoma. Pathol Res Pract, 2020. 216(5): p. 152927. 46.Chandrasekaran, U., et al., Regulation of effector Treg cells in murine lupus. Arthritis Rheum, 2016. 68(6): p. 1454-1466. 47.Coers, J., et al., Partners in anti-crime: how interferon-inducible GTPases and autophagy proteins team up in cell-intrinsic host defense. Curr Opin in Immunol, 2018. 54: p. 93-101. 48.Feng, C.G., et al., Interferon-inducible immunity-related GTPase Irgm1 regulates IFN gamma-dependent host defense, lymphocyte survival and autophagy. Autophagy, 2009. 5(2): p. 232-234. 49.Forster, F., et al., Guanylate binding protein 1–mediated interaction of T cell antigen receptor signaling with the cytoskeleton. J Immunol, 2014. 192(2): p. 771-781. 50.Dominguez-Villar, M., C.M. Baecher-Allan, and D.A. Hafler, Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med, 2011. 17(6): p. 673-5. 51.McClymont, S.A., et al., Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol, 2011. 186(7): p. 3918-26. 52.Sakaguchi, S., et al., The plasticity and stability of regulatory T cells. Nat Rev Immunol, 2013. 13(6): p. 461-7. 53.Wohlfert, E. and Y. Belkaid, Plasticity of T reg at infected sites. Muco Immunol, 2010. 3(3): p. 213-5. 54.Jung, M.K., J.E. Kwak, and E.C. Shin, IL-17A-producing Foxp3(+) regulatory T cells and human diseases. Immune Netw, 2017. 17(5): p. 276-286. 55.Choi, Y.S., et al., Tumor necrosis factor-producing T-regulatory cells are associated with severe liver injury in patients with acute Hepatitis A. Gastroenterology, 2018. 154(4): p. 1047-1060. 56.Voo, K.S., et al., Identification of IL-17-producing FOXP3+ regulatory T cells in humans. PNAS, 2009. 106(12): p. 4793-4798. 57.Chaudhry, A., et al., CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science, 2009. 326(5955): p. 986-991. 58.Nagar, M., et al., TNF activates a NF-kappaB-regulated cellular program in human CD45RA- regulatory T cells that modulates their suppressive function. J Immunol, 2010. 184(7): p. 3570-81. 59.Valencia, X., et al., TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood, 2006. 108(1): p. 253-61. 60.van Amelsfort, J.M., et al., Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum, 2007. 56(3): p. 732-42. 61.Koenecke, C., et al., IFN-γ production by allogeneic Foxp3+ regulatory T cells is essential for preventing experimental graft-versus-host disease. J Immunol, 2012. 189(6): p. 2890-6. 62.Kishimoto, K., et al., Th1 cytokines, programmed cell death, and alloreactive T cell clone size in transplant tolerance. J Clin Invest, 2002. 109(11): p. 1471-9. 63.Refaeli, Y., et al., Interferon gamma is required for activation-induced death of T lymphocytes. J Exp Med, 2002. 196(7): p. 999-1005. 64.Kak, G., M. Raza, and B.K. Tiwari, Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. J Biomolecular Concepts. 2018. 9(1): p. 64-79. 65.Zhu, Y., et al., Interferon gamma induces inflammatory responses through the interaction of CEACAM1 and PI3K in airway epithelial cells. J Transl Med, 2019. 17(1): p. 147. 66.Tretina, K., et al., Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. J Exp Med, 2019. 216(3): p. 482-500. 67.de Mattos, B.R., et al., Inflammatory bowel disease: An overview of immune mechanisms and biological treatments. Mediators Inflamm, 2015. 2015: p. 493012. 68.Taylor, G.A., et al., Irgm1-deficiency leads to myeloid dysfunction in colon lamina propria and susceptibility to the intestinal pathogen Citrobacter rodentium. PLOS Pathogens, 2020. 16(5): p. e1008553. 69.Chávez, M.D. and H.M. Tse, Targeting mitochondrial-derived reactive oxygen species in T cell-mediated autoimmune diseases. Front Immunol, 2021. 12: p. 703972. 70.Fang, S., et al., IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1 (+/-) mice display increases atherosclerotic plaque stability. Theranostics, 2021. 11(19): p. 9358-9375. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85148 | - |
| dc.description.abstract | 調節型T細胞是抑制免疫反應的有效細胞,並在免疫恆定上扮演很重要的角色。干擾素(Interferon)是常見的細胞激素,也被發現會影響調節性T細胞Foxp3的表達和抑制能力。干擾素誘導的GTP酶(Interferon-inducible GTPase)是會顯著被干擾素誘導的蛋白,此外在文獻中也指出這些蛋白和調節性T細胞上的調節性分子有關連性。在我們實驗室先前的研究中發現,B細胞可以誘導T 細胞轉變成一群具有免疫調控功能的T 細胞,我們將其命名為B細胞誘發的調節性T細胞 (Treg-of-B)。根據Treg-of-B細胞的單細胞轉錄組學(single-cell sequencing)也顯示這些細胞在interferon-inducible GTPase的表達較其他抗原所誘導的T細胞高。但我們發現與Treg-of-B細胞相比,天然調節性T細胞在這些基因中的表達較高。根據這些結果我們初步得知,interferon-inducible GTPase在天然調節性T細胞中可能較為重要。然而並沒有過多的研究探討interferon-inducible GTPase在調控調節性T細胞的抑制能力中的角色。因此接下來我們深入研究interferon-inducible GTPase在天然調節性T細胞的抑制能力中的角色。我們首先確定這些蛋白在天然調節性T細胞中的表達,在刺激的狀態下guanylate-binding protein家族的基因表現量較其他家族顯著上升。接著用RNA干擾技術下調guanylate-binding protein的表現量,觀察其對天然調節性T細胞表型及功能的影響,發現在Gbp2的基因表現下降時,Treg相關的基因如Foxp3、IL-10等也有表現量下降的情形。IL-10、IFN-γ及IL-17等細胞激素的分泌和抑制細胞增生的能力也在Gbp2表現量下降時受到影響。本篇研究發現Gbp2在nTreg中扮演角色,並和調節型T 細胞的免疫調節有關係。 | zh_TW |
| dc.description.abstract | Regulatory T (Treg) cells are effective immune cells for suppressing the abnormal immune response and play the important role in immune homeostasis. Interferons (IFNs) are well-known cytokines. Interferon-inducible GTPases, significantly induced by interferon, are also related to regulatory molecules of Treg cells. Our previous studies found that B cells could induce nave CD4+ CD25- T cells into CD4+ CD25+ Foxp3- regulatory T cells termed Treg-of-B cells. The single-cell sequencing of Treg-of-B cells also showed that the expressions of interferon-inducible GTPases were higher than that of other T cells subsets. We further found that nTreg cells have even higher expression of these genes compared with Treg-of-B cells. These findings showed that the interferon-inducible GTPases might be more important in nTreg cells. And then we focused on the expression of these proteins in nTreg cells, the gene expression of the Guanylate-binding protein (Gbps) family was significantly increased in the stimulated state. We used RNA interference technology to knockdown the expression of Gbp family. After optimizing the transfection conditions, the expression of Gbp2 significantly decreased, and the expression of Treg-related genes, like Foxp3 and IL-10, also declined. The cytokine level of IL-10, IFN-γ, and IL-17 and the suppressive function of Foxp3+ nTreg cells were also affected when the expression of Gbp2 decreased. In this study, we revealed a novel role for Gbp2 in nTreg cells and suggested the correlation of Gbp2 and the immunoregulatory function in Treg cells. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:46:35Z (GMT). No. of bitstreams: 1 U0001-0908202216301200.pdf: 1596558 bytes, checksum: 76ab8e987d84ccbf106e510f22610541 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 謝辭 ii 中文摘要 iv Abstract v Contents vii Chapter I Introduction 1 1. Background 2 1.1 T cell differentiation 2 1.2 Regulatory T cells (Treg) 2 1.3 Regulatory T cells population 4 1.4 Regulatory T cells induced by B cells 5 1.5 Interferon (IFN)-inducible GTPase and other GTPase-related genes 5 1.6 GTPase and regulatory T cells 6 2. Hypothesis and specific aims 7 Chapter II Materials and Methods 9 1. Materials 10 1.1 Animals 10 1.2 Culture medium 10 1.3 Buffer 10 1.4 EasySepTM system 11 1.5 BD IMagTM system 11 1.6 Monoclonal antibodies (mAbs) 11 1.7 Flow cytometry 12 1.8 [3H]-incorporation assay 12 1.9 Enzyme-linked immunosorbent assay (ELISA) 13 1.10 RNA extraction 13 1.11 Real-time polymerase chain reaction (quantitative PCR, qPCR) 14 1.12 siRNA transfection 17 2. Methods 17 2.1 Preparation of splenocytes 17 2.2 B220+ and CD4+CD25- T cell isolation 18 2.3 In vitro generation of Treg-of-B cells 19 2.4 Re-stimulation of CD4+CD25- T cells, Treg-of-B cells, and nTreg cells 19 2.5 Flow cytometry analysis 19 2.6 [3H]-incorporation assay 20 2.7 Cytokine analysis 20 2.8 mRNA extraction 21 2.9 Reverse transcription polymerase chain reaction (RT-PCR) for mRNA 22 2.10 Real-time polymerase chain reaction (quantitative PCR, qPCR) 22 2.11 siRNA transfection 23 2.12 Statistical analysis 23 Chapter III Results 24 1.The purity of B220+ B, CD4+ CD25- T cells, and CD4+ CD25+ T cells 25 2.Surface molecules expression of Treg-of-B cells and CD4+CD25+ T cells 25 3.Suppressive capacity and cytokine profiles of Treg-of-B cells and CD4+ CD25+ T cells 26 4.The single-cell RNA-sequencing analysis of Treg-of-B, T-of-OB1 cells, and T-of-DC 27 5.The GTPase-related gene expression of nTreg cells and Treg-of-B cells in the resting state 27 6.The GTPase-related gene expression of nTreg cells in resting and stimulated state 28 7.Fluorescent-conjugated control siRNA was used to determine the transfection efficiency of T cells 28 8. Knockdown of Gbp2 attenuated the expression of Treg-related genes in CD4+CD25+ nTreg cells after IFN-γ restimulation 29 9.Cytokine profile of CD4+CD25+ nTreg cells changed after guanylate binding proteins family siRNA transfection 30 10.Gbp2 knockdown seems to affect the suppressive function of CD4+CD25+ nTreg cells 30 Chapter IV Discussion 31 Figures 38 Figure 1. The purity of B220+ B, CD4+ CD25- T cells, and CD4+ CD25+ T cells 39 Figure 2. Surface molecules expression of Treg-of-B cells and CD4+CD25+ T cells 40 Figure 3. Suppressive capacity and cytokine profiles of Treg-of-B cells and CD4+ CD25+ T cells 42 Figure 4. The single-cell RNA-sequencing analysis of Treg-of-B, T-of-OB1 cells, and T-of-DC 44 Figure 5. The GTPase-related gene expression of nTreg cells and Treg-of-B cells in the resting state 46 Figure 6. The GTPase-related gene expression of nTreg cells in resting and stimulated state 47 Figure 7. Fluorescent-conjugated control siRNA was used to determine the transfection efficiency of T cells 48 Figure 8. Knockdown of Gbp2 attenuated the expression of Treg-related genes in CD4+CD25+ nTreg cells after IFN-γ restimulation 50 Fig 9. Cytokine profile of CD4+CD25+ nTreg cells changed after guanylate binding proteins family siRNA transfection 51 Fig 10. Gbp2 knockdown seems to affect the suppressive function of CD4+CD25+ nTreg cells 52 References 53 Supplement 59 Supplementary figure 1. Autophagy-associated gene expression of CD4+CD25- T cells, CD4+CD25+ nTreg and Treg-of-B cells 60 | |
| dc.language.iso | en | |
| dc.subject | 干擾素誘導的GTP酶 | zh_TW |
| dc.subject | 天然調節性T細胞 | zh_TW |
| dc.subject | B細胞誘發的調節性T細胞 | zh_TW |
| dc.subject | Interferon-inducible GTPase | en |
| dc.subject | natural regulatory T cells | en |
| dc.subject | Treg-of-B cells | en |
| dc.title | 探討鳥苷酸結合蛋白在調節性T細胞功能中所扮演的角色 | zh_TW |
| dc.title | The Role of Guanylate-Binding Protein in the Function of Regulatory T Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林志萱(Jr-Shiuan Lin),楊宏志(Hung-Chih Yang) | |
| dc.subject.keyword | 天然調節性T細胞,B細胞誘發的調節性T細胞,干擾素誘導的GTP酶, | zh_TW |
| dc.subject.keyword | natural regulatory T cells,Treg-of-B cells,Interferon-inducible GTPase, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202202213 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-31 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202216301200.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
