Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorYuan-Kai Changen
dc.contributor.author張原愷zh_TW
dc.date.accessioned2023-03-19T22:45:52Z-
dc.date.copyright2022-08-19
dc.date.issued2022
dc.date.submitted2022-08-10
dc.identifier.citation[1] Cathy M Stinear, P Alan Barber, Matthew Petoe, Samir Anwar, and Winston D Byblow, 'The PREP algorithm predicts potential for upper limb recovery after stroke,' Brain, vol. 135, no. 8, pp. 2527-2535, 2012. [2] Connie W Tsao, Aaron W Aday, Zaid I Almarzooq, Alvaro Alonso, Andrea Z Beaton, Marcio S Bittencourt, Amelia K Boehme, Alfred E Buxton, April P Carson, and Yvonne Commodore-Mensah, 'Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association,' Circulation, vol. 145, no. 8, pp. e153-e639, 2022. [3] Pi-Hsia Lee, Ting-Ting Yeh, Hsin-Yen Yen, Wan-Ling Hsu, Valeria Jia-Yi Chiu, and Shu-Chun Lee, 'Impacts of stroke and cognitive impairment on activities of daily living in the Taiwan longitudinal study on aging,' Scientific Reports, vol. 11, no. 1, pp. 1-9, 2021. [4] Cathrin Bütefisch, Horst Hummelsheim, Petra Denzler, and Karl-Heinz Mauritz, 'Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand,' Journal of the neurological sciences, vol. 130, no. 1, pp. 59-68, 1995. [5] Gert Kwakkel, Robert C Wagenaar, Tim W Koelman, Gustaaf J Lankhorst, and Johan C Koetsier, 'Effects of intensity of rehabilitation after stroke: a research synthesis,' Stroke, vol. 28, no. 8, pp. 1550-1556, 1997. [6] Guanjun Bao, Lufeng Pan, Hui Fang, Xinyu Wu, Haoyong Yu, Shibo Cai, Bingqing Yu, and Yuehua Wan, 'Academic review and perspectives on robotic exoskeletons,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 11, pp. 2294-2304, 2019. [7] Signe Brunnstrom, 'Motor testing procedures in hemiplegia: based on sequential recovery stages,' Physical therapy, vol. 46, no. 4, pp. 357-375, 1966. [8] Leonard E Kahn, Michele L Zygman, W Zev Rymer, and David J Reinkensmeyer, 'Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study,' Journal of neuroengineering and rehabilitation, vol. 3, no. 1, pp. 1-13, 2006. [9] Chang He, Cai-Hua Xiong, Ze-Jian Chen, Wei Fan, Xiao-Lin Huang, and Chenglong Fu, 'Preliminary Assessment of a Postural Synergy-Based Exoskeleton for Post-Stroke Upper Limb Rehabilitation,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1795-1805, 2021. [10] C Rodriguez-Guerrero, Beata Maria Ana, P Oliva Navarrete, JC Fraile, and P Rivera Farina, 'Preliminary results from the use of the SOFTROBOT platform in stroke patients,' in Converging Clinical and Engineering Research on Neurorehabilitation: Springer, 2013, pp. 215-226. [11] Marie-Hélène Milot, Steven J Spencer, Vicky Chan, James P Allington, Julius Klein, Cathy Chou, James E Bobrow, Steven C Cramer, and David J Reinkensmeyer, 'A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES,' Journal of neuroengineering and rehabilitation, vol. 10, no. 1, pp. 1-12, 2013. [12] Juanjuan Zhang and Chien Chern Cheah, 'Passivity and stability of human–robot interaction control for upper-limb rehabilitation robots,' IEEE Transactions on Robotics, vol. 31, no. 2, pp. 233-245, 2015. [13] Antonio Bicchi, J Kenneth Salisbury, and David L Brock, 'Contact sensing from force measurements,' The International Journal of Robotics Research, vol. 12, no. 3, pp. 249-262, 1993. [14] Tatsuya Teramae, Tomoyuki Noda, and Jun Morimoto, 'EMG-based model predictive control for physical human–robot interaction: Application for assist-as-needed control,' IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 210-217, 2017. [15] Kai Gui, Honghai Liu, and Dingguo Zhang, 'A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton,' IEEE/ASME Transactions on Mechatronics, vol. 24, no. 2, pp. 483-494, 2019. [16] Kazuo Kiguchi and Yoshiaki Hayashi, 'An EMG-based control for an upper-limb power-assist exoskeleton robot,' IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, pp. 1064-1071, 2012. [17] Benjamin Treussart, Franck Geffard, Nicolas Vignais, and Frédéric Marin, 'Controlling an upper-limb exoskeleton by EMG signal while carrying unknown load,' in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020: IEEE, pp. 9107-9113. [18] Aurore Thibaut, Camille Chatelle, Erik Ziegler, Marie-Aurélie Bruno, Steven Laureys, and Olivia Gosseries, 'Spasticity after stroke: physiology, assessment and treatment,' Brain injury, vol. 27, no. 10, pp. 1093-1105, 2013. [19] James W Lance, 'The control of muscle tone, reflexes, and movement: Robert Wartenbeg Lecture,' Neurology, vol. 30, no. 12, pp. 1303-1303, 1980. [20] Neville Hogan, Hermano Igo Krebs, Jain Charnnarong, Padmanabhan Srikrishna, and Andre Sharon, 'MIT-MANUS: a workstation for manual therapy and training. I,' in [1992] Proceedings IEEE International Workshop on Robot and Human Communication, 1992: IEEE, pp. 161-165. [21] Charles G Burgar, Peter S Lum, Peggy C Shor, and HF Machiel Van der Loos, 'Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience,' Journal of rehabilitation research and development, vol. 37, no. 6, pp. 663-674, 2000. [22] Rui Loureiro, Farshid Amirabdollahian, Michael Topping, Bart Driessen, and William Harwin, 'Upper limb robot mediated stroke therapy—GENTLE/s approach,' Autonomous Robots, vol. 15, no. 1, pp. 35-51, 2003. [23] Liang Peng, Zeng-Guang Hou, Long Peng, and Weiqun Wang, 'Design of casia-arm: A novel rehabilitation robot for upper limbs,' in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: IEEE, pp. 5611-5616. [24] Hocoma. 'Armeo®Power.' https://www.hocoma.com/solutions/armeo-power/ (accessed. [25] Bongsu Kim and Ashish D Deshpande, 'An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation,' The International Journal of Robotics Research, vol. 36, no. 4, pp. 414-435, 2017. [26] Yang Shen, Jianwei Sun, Ji Ma, and Jacob Rosen, 'Admittance control scheme comparison of EXO-UL8: A dual-arm exoskeleton robotic system,' in 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 2019: IEEE, pp. 611-617. [27] B-C Tsai, W-W Wang, L-C Hsu, L-C Fu, and J-S Lai, 'An articulated rehabilitation robot for upper limb physiotherapy and training,' in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010: IEEE, pp. 1470-1475. [28] Sung-Hua Chen, Wei-Ming Lien, Wei-Wen Wang, Guan-De Lee, Li-Chun Hsu, Kai-Wen Lee, Sheng-Yen Lin, Chia-Hsun Lin, Li-Chen Fu, and Jin-Shin Lai, 'Assistive control system for upper limb rehabilitation robot,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 11, pp. 1199-1209, 2016. [29] C-H Lin, W-M Lien, W-W Wang, S-H Chen, C-H Lo, S-Y Lin, L-C Fu, and J-S Lai, 'NTUH-II robot arm with dynamic torque gain adjustment method for frozen shoulder rehabilitation,' in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014: IEEE, pp. 3555-3560. [30] Jia-Liang Ren, Ya-Hui Chien, En-Yu Chia, Li-Chen Fu, and Jin-Shin Lai, 'Deep learning based motion prediction for exoskeleton robot control in upper limb rehabilitation,' in 2019 International Conference on Robotics and Automation (ICRA), 2019: IEEE, pp. 5076-5082. [31] En-Yu Chia, Yi-Lian Chen, Tzu-Chieh Chien, Ming-Li Chiang, Li-Chen Fu, Jin-Shin Lai, and Lu Lu, 'Velocity field based active-assistive control for upper limb rehabilitation exoskeleton robot,' in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020: IEEE, pp. 1742-1748. [32] Lance L Cai, Andy J Fong, Chad K Otoshi, Yongqiang Liang, Joel W Burdick, Roland R Roy, and V Reggie Edgerton, 'Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning,' Journal of Neuroscience, vol. 26, no. 41, pp. 10564-10568, 2006. [33] Ali Utku Pehlivan, Dylan P Losey, and Marcia K O'Malley, 'Minimal assist-as-needed controller for upper limb robotic rehabilitation,' IEEE Transactions on Robotics, vol. 32, no. 1, pp. 113-124, 2015. [34] Ali Utku Pehlivan, Dylan P Losey, Chad G Rose, and Marcia K O'Malley, 'Maintaining subject engagement during robotic rehabilitation with a minimal assist-as-needed (mAAN) controller,' in 2017 International Conference on Rehabilitation Robotics (ICORR), 2017: IEEE, pp. 62-67. [35] L. Luo, L. Peng, C. Wang, and Z. G. Hou, 'A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation,' IEEE Trans Neural Netw Learn Syst, vol. 30, no. 11, pp. 3433-3443, Nov 2019. [36] Qingcong Wu and Ying Chen, 'Development of an Intention-Based Adaptive Neural Cooperative Control Strategy for Upper-Limb Robotic Rehabilitation,' IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 335-342, 2021. [37] Shuaishuai Han, Haoping Wang, Yang Tian, and Nicolai Christov, 'Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton,' ISA transactions, vol. 97, pp. 171-181, 2020. [38] X. Chen, Y. Zeng, and Y. Yin, 'Improving the Transparency of an Exoskeleton Knee Joint Based on the Understanding of Motor Intent Using Energy Kernel Method of EMG,' IEEE Trans Neural Syst Rehabil Eng, vol. 25, no. 6, pp. 577-588, Jun 2017. [39] Yang Zhou, Chaoyang Chen, Yousef Alshahrani, Mark Cheng, Guanghua Xu, Min Li, Wei Zhou, Linjing Wu, Brandon Kakos, and Todd Frush, 'Real-time Multiple-Channel Shoulder EMG Processing for a Rehabilitative Upper-limb Exoskeleton Motion Control Using ANN Machine Learning,' in 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2021: IEEE, pp. 498-503. [40] Pringgo Widyo Laksono, Takahide Kitamura, Joseph Muguro, Kojiro Matsushita, Minoru Sasaki, and Muhammad Syaiful Amri bin Suhaimi, 'Minimum Mapping from EMG Signals at Human Elbow and Shoulder Movements into Two DoF Upper-Limb Robot with Machine Learning,' Machines, vol. 9, no. 3, p. 56, 2021. [41] Li-Zhi Liao, Yi-Li Tseng, Hsin-Han Chiang, and Wei-Yen Wang, 'EMG-based control scheme with SVM classifier for assistive robot arm,' in 2018 International Automatic Control Conference (CACS), 2018: IEEE, pp. 1-5. [42] Song Yu, Yan Chen, Qing Cai, Ke Ma, Haiqing Zheng, and Longhan Xie, 'A novel quantitative spasticity evaluation method based on surface electromyogram signals and adaptive neuro fuzzy inference system,' Frontiers in Neuroscience, vol. 14, p. 462, 2020. [43] Xu Zhang, Xiao Tang, Xiaofei Zhu, Xiaoping Gao, Xiang Chen, and Xun Chen, 'A regression-based framework for quantitative assessment of muscle spasticity using combined EMG and inertial data from wearable sensors,' Frontiers in Neuroscience, vol. 13, p. 398, 2019. [44] Annik Jobin and Mindy F Levin, 'Regulation of stretch reflex threshold in elbow flexors in children with cerebral palsy: a new measure of spasticity,' Developmental medicine and child neurology, vol. 42, no. 8, pp. 531-540, 2000. [45] Chris A McGibbon, Andrew Sexton, Melony Jones, and Colleen O’Connell, 'Elbow spasticity during passive stretch-reflex: clinical evaluation using a wearable sensor system,' Journal of NeuroEngineering and Rehabilitation, vol. 10, no. 1, pp. 1-14, 2013. [46] Berno JE Misgeld, Markus Lüken, Daniel Heitzmann, Sebastian I Wolf, and Steffen Leonhardt, 'Body-sensor-network-based spasticity detection,' IEEE journal of biomedical and health informatics, vol. 20, no. 3, pp. 748-755, 2015. [47] Mark W Spong and Mathukumalli Vidyasagar, Robot dynamics and control. John Wiley & Sons, 2008. [48] Henrik Olsson, Karl Johan Åström, Carlos Canudas De Wit, Magnus Gäfvert, and Pablo Lischinsky, 'Friction models and friction compensation,' Eur. J. Control, vol. 4, no. 3, pp. 176-195, 1998. [49] Lee-Kai Liu, Tzu-Chieh Chien, Yi-Lian Chen, Li-Chen Fu, and Jin-Shin Lai, 'Sensorless control with friction and human intention estimation of exoskeleton robot for upper-limb rehabilitation,' in 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2019: IEEE, pp. 290-296. [50] Greg Welch and Gary Bishop, 'An introduction to the Kalman filter,' 1995. [51] ROBERTG BROWN and PATRICKYC HWANG, 'Introduction to random signals and applied Kalman filtering(Book),' New York, John Wiley & Sons, Inc., 1992. 512, 1992. [52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, 'Imagenet classification with deep convolutional neural networks,' Advances in neural information processing systems, vol. 25, 2012. [53] Johan AK Suykens and Joos Vandewalle, 'Least squares support vector machine classifiers,' Neural processing letters, vol. 9, no. 3, pp. 293-300, 1999. [54] David G Lowe, 'Distinctive image features from scale-invariant keypoints,' International journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004. [55] Le Wu, Peijie Sun, Richang Hong, Yanjie Fu, Xiting Wang, and Meng Wang, 'Socialgcn: An efficient graph convolutional network based model for social recommendation,' arXiv preprint arXiv:1811.02815, 2018. [56] Shoichi Ishida, Kei Terayama, Ryosuke Kojima, Kiyosei Takasu, and Yasushi Okuno, 'Prediction and interpretable visualization of retrosynthetic reactions using graph convolutional networks,' Journal of chemical information and modeling, vol. 59, no. 12, pp. 5026-5033, 2019. [57] Yi-Lian Chen, I-Ju Yang, Li-Chen Fu, Jin-Shin Lai, Huey-Wen Liang, and Lu Lu, 'IMU-Based Estimation of Lower Limb Motion Trajectory With Graph Convolution Network,' IEEE Sensors Journal, vol. 21, no. 21, pp. 24549-24557, 2021. [58] Thomas N Kipf and Max Welling, 'Semi-supervised classification with graph convolutional networks,' arXiv preprint arXiv:1609.02907, 2016. [59] Chau Pham. 'Topbots - Graph Convolutional Networks (GCN).' https://www.topbots.com/graph-convolutional-networks/ (accessed. [60] Dario Farina, Ning Jiang, Hubertus Rehbaum, Aleš Holobar, Bernhard Graimann, Hans Dietl, and Oskar C Aszmann, 'The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 4, pp. 797-809, 2014. [61] Annachiara Strazza, Federica Verdini, Laura Burattini, Sandro Fioretti, and Francesco Di Nardo, 'Time-frequency analysis of surface EMG signals for maximum energy localization during walking,' in EMBEC & NBC 2017: Springer, 2017, pp. 494-497. [62] Emiel Por, Maaike van Kooten, and Vanja Sarkovic, 'Nyquist–Shannon sampling theorem,' Leiden University, vol. 1, p. 1, 2019. [63] Carlo J De Luca and Roberto Merletti, 'Surface myoelectric signal cross-talk among muscles of the leg,' Electroencephalography and clinical neurophysiology, vol. 69, no. 6, pp. 568-575, 1988. [64] James W Cooley and John W Tukey, 'An algorithm for the machine calculation of complex Fourier series,' Mathematics of computation, vol. 19, no. 90, pp. 297-301, 1965. [65] Mohammadreza Asghari Oskoei and Huosheng Hu, 'Myoelectric control systems—A survey,' Biomedical signal processing and control, vol. 2, no. 4, pp. 275-294, 2007. [66] Lauren H Smith, Levi J Hargrove, Blair A Lock, and Todd A Kuiken, 'Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 2, pp. 186-192, 2010. [67] William Rose, 'KAAP686 Mathematics and Signal Processing for Biomechanics Electromyogram analysis,' ed, 2011. [68] Yanghui Zhu, Qingcong Wu, Bai Chen, and Ziyue Zhao, 'Design and Voluntary Control of Variable Stiffness Exoskeleton Based on sEMG Driven Model,' IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5787-5794, 2022. [69] Kaci E Madden, Dragan Djurdjanovic, and Ashish D Deshpande, 'Monitoring Fatigue-Induced Changes in Performance during Robot-Mediated Dynamic Movement,' in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: IEEE, pp. 13835-13842. [70] Lizhi Pan, Dustin L Crouch, and He Huang, 'Comparing EMG-based human-machine interfaces for estimating continuous, coordinated movements,' IEEE transactions on neural systems and rehabilitation engineering, vol. 27, no. 10, pp. 2145-2154, 2019. [71] Benjamin Treussart, Franck Geffard, Nicolas Vignais, and Frédéric Marin, 'Controlling an exoskeleton with EMG signal to assist load carrying: a personalized calibration,' in 2019 International Conference on Mechatronics, Robotics and Systems Engineering (MoRSE), 2019: IEEE, pp. 246-252. [72] Jun Li, Lixin Wei, Yintang Wen, Xiaoguang Liu, and Hongrui Wang, 'An approach to continuous hand movement recognition using SEMG based on features fusion,' The Visual Computer, pp. 1-15, 2022. [73] Lei Zhang, Jingang Long, RongGang Zhao, Haoyang Cao, and Kai Zhang, 'Estimation of the Continuous Pronation–Supination Movement by Using Multichannel EMG Signal Features and Kalman Filter: Application to Control an Exoskeleton,' Frontiers in Bioengineering and Biotechnology, vol. 9, p. 771255, 2022. [74] Hao Xu and Anbin Xiong, 'Advances and Disturbances in sEMG-Based Intentions and Movements Recognition: A Review,' IEEE Sensors Journal, 2021. [75] Sebastian Amsuess, Ivan Vujaklija, Peter Goebel, Aidan D Roche, Bernhard Graimann, Oskar C Aszmann, and Dario Farina, 'Context-dependent upper limb prosthesis control for natural and robust use,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, no. 7, pp. 744-753, 2015. [76] An-Chih Tsai, Tsung-Han Hsieh, Jer-Junn Luh, and Ta-Te Lin, 'A comparison of upper-limb motion pattern recognition using EMG signals during dynamic and isometric muscle contractions,' Biomedical Signal Processing and Control, vol. 11, pp. 17-26, 2014. [77] OrthoIndy Hospital. 'Shoulder Isometric Strengthening Program.' https://www.orthoindy.com/UserFiles/File/Shoulder%20Isometric%20Strengthening%20Program.pdf (accessed. [78] Physiotherapy Room. 'Tennis Elbow - Isometric Strengthening Exercises.' https://www.physiotherapyroom.com/image/catalog/Exercises/Elbow/Tennis%20Elbow/Tennis%20Elbow%20-%20Isometric%20Strengthening.pdf (accessed. [79] Francesca Leone, Cosimo Gentile, Francesca Cordella, Emanuele Gruppioni, Eugenio Guglielmelli, and Loredana Zollo, 'A parallel classification strategy to simultaneous control elbow, wrist, and hand movements,' Journal of NeuroEngineering and Rehabilitation, vol. 19, no. 1, pp. 1-17, 2022. [80] Ismail Mohd Khairuddin, Shahrul Na'im Sidek, Anwar PP Abdul Majeed, and Asmarani Ahmad Puzi, 'Classifying motion intention from EMG signal: a k-NN approach,' in 2019 7th International Conference on Mechatronics Engineering (ICOM), 2019: IEEE, pp. 1-4. [81] Sachin Negi, Yatindra Kumar, and VM Mishra, 'Feature extraction and classification for EMG signals using linear discriminant analysis,' in 2016 2nd International Conference on Advances in Computing, Communication, & Automation (ICACCA)(Fall), 2016: IEEE, pp. 1-6. [82] Yongyu Jiang, Christine Chen, Xiaodong Zhang, Chaoyang Chen, Yang Zhou, Guoxin Ni, Stephanie Muh, and Stephen Lemos, 'Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms,' Computer methods and programs in biomedicine, vol. 197, p. 105721, 2020. [83] Li Bo, Yang Banghua, Gao Shouwei, LinFeng Yan, Haodong Zhuang, and Wen Wang, 'Hand Gesture Recognition using sEMG Signals Based on CNN,' in 2021 40th Chinese Control Conference (CCC), 2021: IEEE, pp. 7180-7184. [84] Tarek M Bittibssi, Mohamed A Genedy, and Shady A Maged, 'sEMG pattern recognition based on recurrent neural network,' Biomedical Signal Processing and Control, vol. 70, p. 103048, 2021. [85] Yunan He, Osamu Fukuda, Nan Bu, Hiroshi Okumura, and Nobuhiko Yamaguchi, 'Surface emg pattern recognition using long short-term memory combined with multilayer perceptron,' in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018: IEEE, pp. 5636-5639. [86] Donald A Neumann, 'Kinesiology of the musculoskeletal system-e-book: foundations for rehabilitation,' p. 20, 2016. [87] Gabriel E. Sella, 'Agonism and Antagonism of the Muscles of the Shoulder Joint: An SEMG Approach,' Practical Pain Management, vol. 19, no. 5, 2019. [88] Julie N Côté, Anatol G Feldman, Pierre A Mathieu, and Mindy F Levin, 'Effects of fatigue on intermuscular coordination during repetitive hammering,' Motor control, vol. 12, no. 2, pp. 79-92, 2008. [89] Md Johirul Islam, Shamim Ahmad, Fahmida Haque, Mamun Bin Ibne Reaz, Mohammad AS Bhuiyan, and Md Rezaul Islam, 'A Novel Signal Normalization Approach to Improve the Force Invariant Myoelectric Pattern Recognition of Transradial Amputees,' IEEE Access, vol. 9, pp. 79853-79868, 2021. [90] Tianzhe Bao, Syed Ali Raza Zaidi, Shengquan Xie, Pengfei Yang, and Zhi-Qiang Zhang, 'Inter-Subject Domain Adaptation for CNN-Based Wrist Kinematics Estimation Using sEMG,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1068-1078, 2021. [91] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar, Robot modeling and control. John Wiley & Sons, 2020. [92] Erik Lundström, Andreas Terént, and Jörgen Borg, 'Prevalence of disabling spasticity 1 year after first‐ever stroke,' European journal of neurology, vol. 15, no. 6, pp. 533-539, 2008. [93] Peter P Urban, Thomas Wolf, Michael Uebele, Jürgen J Marx, Thomas Vogt, Peter Stoeter, Thomas Bauermann, Carsten Weibrich, Goran D Vucurevic, and Astrid Schneider, 'Occurence and clinical predictors of spasticity after ischemic stroke,' Stroke, vol. 41, no. 9, pp. 2016-2020, 2010. [94] Jean‐Michel Gracies, 'Pathophysiology of spastic paresis. II: Emergence of muscle overactivity,' Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, vol. 31, no. 5, pp. 552-571, 2005. [95] JW Lance, RG Feldman, and RR Young, 'Spasticity, disordered motor control. Chicago Year book Medical,' ed, 1980. [96] Eleftherios Kellis, F Arabatzi, and C Papadopoulos, 'Muscle co-activation around the knee in drop jumping using the co-contraction index,' Journal of Electromyography and Kinesiology, vol. 13, no. 3, pp. 229-238, 2003. [97] Maria Vinti, Annabelle Couillandre, Jérôme Hausselle, Nicolas Bayle, Aldo Primerano, Andrea Merlo, Emilie Hutin, and Jean-Michel Gracies, 'Influence of effort intensity and gastrocnemius stretch on co-contraction and torque production in the healthy and paretic ankle,' Clinical Neurophysiology, vol. 124, no. 3, pp. 528-535, 2013. [98] Hai Yuan, Pingping Ge, Lingling Du, and Qing Xia, 'Co-contraction of lower limb muscles contributes to knee stability during stance phase in hemiplegic stroke patients,' Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, vol. 25, p. 7443, 2019. [99] KS Rudolph, MJ Axe, and L Snyder-Mackler, 'Dynamic stability after ACL injury: who can hop?,' Knee Surgery, Sports Traumatology, Arthroscopy, vol. 8, no. 5, pp. 262-269, 2000. [100] Michael D Lewek, Katherine S Rudolph, and Lynn Snyder-Mackler, 'Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis,' Osteoarthritis and cartilage, vol. 12, no. 9, pp. 745-751, 2004. [101] Diederik P Kingma and Jimmy Ba, 'Adam: A method for stochastic optimization,' arXiv preprint arXiv:1412.6980, 2014. [102] Priya Ranganathan, CS Pramesh, and Rakesh Aggarwal, 'Common pitfalls in statistical analysis: Measures of agreement,' Perspectives in clinical research, vol. 8, no. 4, p. 187, 2017. [103] Margherita Grandini, Enrico Bagli, and Giorgio Visani, 'Metrics for multi-class classification: an overview,' arXiv preprint arXiv:2008.05756, 2020. [104] Rubana H Chowdhury, Mamun BI Reaz, Mohd Alauddin Bin Mohd Ali, Ashrif AA Bakar, Kalaivani Chellappan, and Tae G Chang, 'Surface electromyography signal processing and classification techniques,' Sensors, vol. 13, no. 9, pp. 12431-12466, 2013. [105] Massimo Sartori, Guillaume Durandau, Strahinja Došen, and Dario Farina, 'Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling,' Journal of neural engineering, vol. 15, no. 6, p. 066026, 2018. [106] Jinghua Fan, Mingzhe Jiang, Chuang Lin, Gloria Li, Jinan Fiaidhi, Chenfei Ma, and Wanqing Wu, 'Improving sEMG-based motion intention recognition for upper-limb amputees using transfer learning,' Neural Computing and Applications, pp. 1-11, 2021. [107] Ismail Mohd Khairuddin, Shahrul Naim Sidek, Anwar PP Abdul Majeed, Mohd Azraai Mohd Razman, Asmarani Ahmad Puzi, and Hazlina Md Yusof, 'The classification of movement intention through machine learning models: the identification of significant time-domain EMG features,' PeerJ Computer Science, vol. 7, p. e379, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85136-
dc.description.abstract中風是一種突發性腦血管疾病,造成患者功能失調。臨床研究顯示,若中風患者進行長期的復健治療,能夠有效幫助患者恢復原有的運動功能。復健機器人不僅可以提供患者更穩定的復健療程、減輕治療師的負擔,也可以透過機器上的感測器獲得客觀資料作為評分的依據。此外,在復健療程的過程中,患者可能會發生失能性痙攣的症狀,此時機器人若持續移動,反而會對患者造成二次傷害。因此,將偵測患者痙攣狀態的方法納入基於外骨骼的復健控制策略有其必要性。 在相關的文獻中,對於肌力不足的患者,使用交互作用扭矩觀測器或肌電訊號的控制策略來進行復健療程是有較高的難度。本研究針對上肢復健機器人,提出一個結合肌電訊號以及交互作用扭矩觀測器的控制策略。首先,本研究提出的運動意圖辨識模型會透過表面肌電訊號預測使用者上肢的運動方向,並結合先前提出的交互作用扭矩觀測器獲得使用者運動意圖。接著,根據主動肌與拮抗肌的肌電訊號來評估患者運動過程中的痙攣狀態是否異常。最後,本研究提出一個整合運動意圖以及痙攣狀態異常評估的控制策略。 本研究提出的方法在四位健康受試者上做測試,其結果顯示,結合兩種運動意圖的控制方法可以提升主動控制的表現。此外,根據主動肌與拮抗肌之肌電訊號所計算出來的指標也可以有效區分痙攣狀態的異常。zh_TW
dc.description.abstractStroke is a sudden cerebrovascular disease resulting in dysfunction. Clinical research shows that if stroke patients undergo long-term rehabilitation treatment, it can effectively help patients restore their original motor function. Rehabilitation robots can provide patients with more stable rehabilitation therapy, reduce the burden of therapists, and obtain objective data through the sensor on the machine as the basis of scoring. In addition, during the rehabilitation therapy, the patient may have disabling spasticity. If the robot continues to move, it will cause secondary injury to the patient. Therefore, it is necessary to incorporate detecting state of spasticity into the rehabilitation control strategy based on the exoskeleton. In the related literature, it is difficult for patients with muscle weakness to carry out the rehabilitation therapy with the interactive torque observer or the electromyography signal. In this research, a control strategy combining electromyography signal and interactive torque observer is developed for the upper limb rehabilitation robot. Firstly, the motion intention recognition model proposed in this research will predict the motion direction of the user’s upper limb through the surface electromyography signal and obtain the user’s motion intention combined with the previously proposed interactive torque observer. Then, a mechanism will evaluate the electromyography signals from antagonistic muscle pairs to prevent the disabling spasticity. Finally, this research proposes a control strategy integrating exercise intention and muscle co-contraction evaluation. The method proposed in this research is verified through experiments with four healthy subjects. The results show that the combination of two motion intentions can improve the performance of the active control. In addition, the indexes calculated from the antagonistic muscle pairs’ electromyographic signals can also effectively identify the abnormalities of the state of spasticity.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:45:52Z (GMT). No. of bitstreams: 1
U0001-1008202212134600.pdf: 11427532 bytes, checksum: d625ec88684079a5dbc04e68398e559c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 中文摘要 ii ABSTRACT iii CONTENTS v TABLE OF ACRONYMS viii LIST OF FIGURES ix LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 4 1.2.1 Robotics in Rehabilitation 4 1.2.2 Human Intention Extraction for Rehabilitation Therapy 5 1.2.3 Spasticity Evaluation 7 1.3 Contribution 8 1.4 Thesis Organization 9 Chapter 2 Preliminaries 10 2.1 Upper Limb Rehabilitation Robot NTUH-II 10 2.1.1 Hardware Specification of NTUH-II 10 2.1.2 Safety Issue of NTUH-II 15 2.2 sEMG Instrument 16 2.3 Forward Kinematics 17 2.4 Jacobian Matrix in Robotics 19 2.4.1 Angular Velocity 21 2.4.2 Linear Velocity 22 2.4.3 Application to NTUH-II 22 2.5 Robot Dynamics of NTUH-II 22 2.6 Kalman Filter 26 2.7 Machine Learning 29 2.7.1 Convolutional Neural Network 29 2.7.2 Graph Convolution Network 31 Chapter 3 Design of Motion Intention Based Control 34 3.1 Overview of System 34 3.2 Data Acquisition and Signal Preprocessing 36 3.2.1 Sensor Placement 37 3.2.2 General Signal Preprocessing 39 3.2.3 Crosstalk Filter 41 3.2.4 Task-Specific Signal Preprocessing 45 3.3 Human Motion Intention Detection 48 3.3.1 Data Collection for Motion Intention Recognition 50 3.3.2 Graph Convolution Network Model 52 3.3.3 Kalman Filter based Interactive Torque Observer 56 3.3.4 Intention Integration Algorithm and Reference Trajectory 60 3.4 Prevention Mechanism for Disabling Spasticity 63 3.5 Stability Analysis 66 Chapter 4 Experiments and Results 70 4.1 Experiment Setup 70 4.1.1 Experiment for Signal Preprocessing 71 4.1.2 Experiment for Motion Intention Recognition Model 71 4.1.3 Experiment for Spasticity Evaluation 73 4.1.4 Experiment for Control Strategy 73 4.2 Experiment Result 76 4.2.1 Performance of Signal Preprocessing 76 4.2.2 Performance of Motion Intention Recognition Model 78 4.2.3 Feasibility of Spasticity Evaluation 82 4.2.4 Performance of Control Strategy 86 Chapter 5 Conclusion 92 REFERENCE 94
dc.language.isoen
dc.subjectNTUH-IIzh_TW
dc.subject復健機器人zh_TW
dc.subject表面肌電訊號zh_TW
dc.subject運動意圖辨識控制zh_TW
dc.subjectrehabilitation roboten
dc.subjectsurface electromyographyen
dc.subjectpattern recognition controlen
dc.subjectNTUH-IIen
dc.title以交互作用扭矩觀測器輔助表面肌電圖動作辨識控制應用於上肢復健外骨骼機器人zh_TW
dc.titlesEMG Pattern Recognition Control Assisted with Interactive Torque Observer for Upper Limb Rehabilitation Roboten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴金鑫(Jin-Shin Lai),陳文翔(Wen-Shiang Chen),劉浩澧(Hao-Li Liu),陳政維(Cheng-Wei Chen)
dc.subject.keyword復健機器人,表面肌電訊號,運動意圖辨識控制,NTUH-II,zh_TW
dc.subject.keywordrehabilitation robot,surface electromyography,pattern recognition control,NTUH-II,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202202245
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
dc.date.embargo-lift2025-08-10-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-1008202212134600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved