Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85135
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王汎熒(Fun-In Wang)
dc.contributor.authorTung-Hsuan Tsaien
dc.contributor.author蔡東軒zh_TW
dc.date.accessioned2023-03-19T22:45:49Z-
dc.date.copyright2022-08-18
dc.date.issued2022
dc.date.submitted2022-08-10
dc.identifier.citationAarthi, D., Ananda Rao, K., Robinson, R., Srinivasan, V.A., 2004. Validation of Binary Ethyleneimine (BEI) Used as an Inactivant for Foot and Mouth Disease Tissue Culture Vaccine. Biologicals 32, 153–156. Adams, P., Kandiah, E., Effantin, G., Steven, A.C., Ehrenfeld, E., 2009. Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity. J. Biol. Chem. 284, 22012-22021. Alexander, J., del Guercio, M.F., Maewal, A., Qiao, L., Fikes, J., Chesnut, R.W., Paulson, J., Bundle, D.R., DeFrees, S., Sette, A., 2000. Linear PADRE T Helper Epitope and Carbohydrate B Cell Epitope Conjugates Induce Specific High Titer IgG Antibody Responses. J. Immunol. 164, 1625–1633. Alexandersen, S., Knowles, N.J., Dekker, A., Belsham, G., Zhang, Z., Koenen, F., 2012. Picornaviruses. In: Zimmerman, J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., (Eds.), Diseases of Swine, 10th ed. Blackwell Publishing, Ames, pp. 587–620. Andino, R., Silvera, D., Suggett, S.D., Achacoso, P.L., Miller, C.J., Baltimore D., Feinberg, M.B., 1994. Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science 265, 1448–1451. Anonymous. 2008. Teschovirus Encephalomyelitis (Previously Enterovirus Encephalomyelitis or Teschen/Talfan Dusease), In: Manual of diagnostic tests and vaccines for terrestrial animals. World Organisation for Animal Health, Paris, pp. 1146–1152. Auerbach, J., Prager, D., Neuhaus, S., Loss, U., Witte, K.H., 1994. Grouping of porcineenteroviruses by indirect immunofluorescence and description of two new serotypes. Zentralblatt für Veterinärmedizin. Reihe B 41. Balamurugan, V., Venkatesan, G., Sen, A., Annamalai, L., Bhanuprakash, V., Singh, R.K., 2010. Recombinant Protein–Based Viral Disease Diagnostics in Veterinary Medicine. Expert Rev. Mol. Diagn. 10, 731–753. Baranowski, E., Ruiz–Jarabo, C.M., Lim, F., Domingo, E., 2001. Foot–and–Mouth disease virus lacking the VP1 G–H loop: the mutant spectrum uncovers interactions among antigenic sites for fitness gain. Virology 288, 192–202. Baron, M.D., Iqbal, M., Nair, V., 2018. Recent advances in viral vectors in veterinary vaccinology. Curr. Opinion Virol. 29, 1–7. Billecocq, A., Vialat, P., Bouloy, M., 1996. Persistent infection of mammalian cells by rift valley fever virus. J. Gen. Virol. 77, 3053–3062. Boot, H.J., Schepp, R.M., van Nunen, F.J.H.B., Kimman, T.G., 2004. Rapid RT–PCR amplification of full–length poliovirus genomes allows rapid discrimination between wild–type and recombinant vaccine–derived polioviruses. J. Virol. Methods 116, 35–43. Boros. Á., Nemes, C., Pankovics, P., Kapusinszky, B., Delwart, E., Reuter, G., 2012. Porcine teschovirus in wild boars in hungary. Arch. Virol. 157, 1573–1578. Boyer, J.C., Haenni, A.L., 1994. Infectious transcripts and cDNA clones of RNA viruses. Virology 198, 415–426. Briand, J.P., Barin, C., Van Regenmortel, M.H.V., Muller, S., 1992. Application and Limitations of the Multiple Antigen Peptide (MAP) System in the Production and Evaluation of Anti–Peptide and Anti–Protein Antibodies. J. Immunol. Methods 156, 255–265. Brown, F., Newman, J., Stott, J., Porter, A., Frisby, D., Newton, C., Carey, N., Fellner, P., 1974. Poly(C) in animal viral RNAs. Nature 251, 342–344. Cano–Gómez, C., Fernández–Pinero, J., García–Casado, M.A., Zell, R., Jiménez–Clavero, M.A., 2017. Characterization of PTV–12, a newly described porcine teschovirus serotype: in vivo infection and cross–protection studies. J. Gen. Virol. 98, 1636–1645. Cano–Gómez, C., Jiménez–Clavero, MA., 2016. Complete coding genome sequence of a putative novel teschovirus serotype 12 strain. Genome Announc. 4, e00107–16. Cano–Gómez, C., Palero, F., Buitrago, M.D., García–Casado, M.A., Fernández–Pinero, J., Fernández–Pacheco, P., Agüero M., Gómez–Tejedor, C., Jiménez–Clavero, M.Á., 2011. Analyzing the Genetic Diversity of Teschoviruses in Spanish Pig Populations Using Complete VP1 Sequences. Infect. Genet. Evol. 11, 2144–2150. Chapman, S., Faulkner, C., Kaiserli, E., Garcia–Mata, C., Savenkov, E.I., Roberts, A.G., Oparka, K.J., Christie, J.M., 2008. The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc. Natl. Acad. Sci. USA 105, 20038–20043. Chen, J. H., Zhang, R. H., Lin, S. L., Li, P. F., Lan, J. J., Song, S. S., Gao, J. M., Wang, Y., Xie, Z. J., Li, F. C., Jiang, S. J., 2018. The Functional Role of the 3' Untranslated Region and Poly(A) Tail of Duck Hepatitis A Virus Type 1 in Viral Replication and Regulation of IRES–Mediated Translation. Front. Microbiol. 9, 2250. Chiu, S.C., Hu, S.C., Chang, C.C., Chang, C.Y., Huang, C.C., Pang, V.F., Wang, F.I., 2012. The Role of Porcine Teschovirus in Causing Diseases in Endemically Infected Pigs. Vet. Microbiol. 161, 88–95. Chiu, S.C., Yang, C.L., Chen, Y.M., Hu, S.C., Chiu, K.C., Lin, Y.C., Chang, C.Y., Wang, F.I., 2014. Multiple models of porcine teschovirus pathogenesis in endemically infected pigs. Vet. Microbiol. 168, 69–77. Crotty, S., Miller, C.J., Lohman, B.L., Neagu, M.R., Compton, L., Lu, D., Lü, F.X.S., Fritts, L., Lifson, J.D., Andino, R., 2001. Protection against simian immunodeficiency virus vaginal challenge by using sabin poliovirus vectors. J. Virol. 75, 7435–7452. Dauber, M., 1999. Identification of Group I Porcine Enteroviruses by Monoclonal Antibodies in Cell Culture. Vet. Microbiol. 67, 1–12. Davidson, M.W., Campbell, R.E., 2009. Engineered fluorescent proteins: innovations and applications. Nat. Methods 6, 713–717. De Groot, A.S., Bosma, A., Chinai, N., Frost, J., Jesdale, B.M., Gonzalez, M.A., Martin, W., Saint–Aubin, C., 2001. From Genome to Vaccine: In Silico Predictions, Ex Vivo Verification. Vaccine 19, 4385–4395. del Guercio, M.F., Alexander, J., Kubo, R.T., Arrhenius, T., Maewal, A., Appella, E., Hoffman, S.L., Jones, T., Valmori, D., Sakaguchi, K., Grey, H.M, Setteet, A., 1997. Potent Immunogenic Short Linear Peptide Constructs Composed of B Cell Epitopes and Pan DR T Helper Epitopes (PADRE) for Antibody Responses In Vivo. Vaccine 15, 441–448. Deng, M.Y., Millien, M., Jacques–Simon, R., Flanagan, J.K., Bracht, A.J., Carrillo, C., Barrette, R.W., Fabian, A., Mohamed, F., Moran, K., Rowland, J., Swenson, S.L., Jenkins–Moore, M., Koster, L., Thomsen, B.V., Mayr, G., Pyburn, D., Morales, P., Shaw, J., Burrage, T., White, W., McIntosh,M.T., Metwally, S., 2012. Diagnosis of Porcine teschovirus encephalomyelitis in the Republic of Haiti. J. Vet. Diagn. Invest. 24, 671–678. Doherty, M., Todd, D., McFerran, N., Hoey, E.M., 1999. Sequence Analysis of a porcine enterovirus serotype 1 isolate: relationships with other picornaviruses. J. Gen. Virol. 80, 1929–1941. Domingo, E., Escarmis, C., Martinez, M.A., Martinez–Salas, E., Mateu, M.G., 1992. Foot–and–mouth disease virus populations are quasispecies. Curr. Top. Microbiol. Immunol. 176, 33–47. Duke, G.M., Osorio, J.E., Palmenberg, A.C., 1990. Attenuation of mengo virus through genetic engineering of the 5’ noncoding poly(C) tract. Nature 343, 474–476. Duke, G.M., Palmenberg, A.C., 1989. Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. J. Virol. 63, 1822–1826. Emini, E.A., Hughes, J.V., Perlow, D.S., Boger, J., 1985. Induction of Hepatitis A Virus–Neutralizing Antibody by a Virus–Specific Synthetic Peptide. J. Virol. 55, 836–839. Fan, Z.C., Dennis, J.C., Bird, R.C., 2008. Bovine viral diarrhea virus is a suitable viral vector for stable expression of heterologous gene when inserted in between Npro and C genes. Virus Res. 138, 97–104. Fauquet, C.M., Mayo, M.A., 2001. The 7th ICTV report. Arch. Virol. 146, 189–194. Feng, R., Wei, J., Zhang, H., Fan, J., Li, X., Wang, D., Xie, J., Qiao, Z., Li, M., Bai, J., Ma, Z., 2015. National serosurvey of encephalomyocarditis virus in healthy people and pigs in China. Arch. Virol. 160, 2957–2964. Fontes, L.V.Q., Campos, G.S., Beck, P.A., Brandão, C.F.L., Sardi, S.I., 2005. Precipitation of Bovine Rotavirus by Polyethylene Glycol (PEG) and Its Application to Produce Polyclonal and Monoclonal Antibodies. J. Virol. Methods 123, 147–153. Forman, A.J., Pass, D.A., Connaughton, I.D., 1982. The characterisation and pathogenicity of porcine enteroviruses isolated in Victoria. Aust. Vet. J. 58, 136–142. Fowler, V.L., Knowles, N.J., Paton, D.J., Barnett, P.V., 2010. Marker Vaccine Potential of a Foot–And–Mouth Disease Virus with a Partial VP1 G–H Loop Deletion. Vaccine 28, 3428–3434. Frohman, M.A., 1994. On beyond classic RACE (rapid amplification of cDNA ends). PCR Methods Appl. 4, S40–58. Gallagher, S.R., 2010. Digital image processing and analysis with ImageJ. Curr. Prot. Ess. Lab. Techn. 3, A.3C.1–C.24. García–Nuñez, S., Gismondi, M.I., König, G., Berinstein, A., Taboga, O., Rieder, E., Martínez–Salas, E., Carrillo, E., 2014. Enhanced IRES activity by the 3' UTR element determines the virulence of FMDV isolates. Virology 448, 303–313. Gottesman, S., 1996. Proteases and Their Targets in Escherichia coli. Annu. Rev. Genet. 30, 465–506. Hamilton, N., 2009. Quantification and its applications in fluorescent microscopy imaging. Traffic 10, 951–961. Harding, J.D.J., Done, J.T., Kershaw, G.F., 1957. A transmissible polioencephalomyelitis of pigs (talfan disease). Vet. Rec., 69. Harris, T.J., Brown, F., 1977. Biochemical analysis of a virulent and an avirulent strain of foot–and–mouth disease virus. J. Gen. Virol. 34, 87–105. Haste, A.P., Nielsen, M., Lund, O., 2006. Prediction of Residues in Discontinuous B–Cell Epitopes Using Protein 3D Structures. Protein Sci. 15, 2558–2567. Hema, M., Chandran, D., Nagendrakumar, S.B., Madhanmohan, M., Srinivasan, V.A., 2009. Construction of an infectious cDNA clone of Foot–and–mouth disease virus type O 1 BFS 1860 and its use in the preparation of candidate vaccine. J. Biosci. 34, 45–58. Honda, E., Kimata, A., Hattori, I., Kumagai, T., Tsuda, T., Tokui, T., 1990. A serological comparison of 4 Japanese isolates of porcine enteroviruses with the international reference strains. Jap. J. Vet. Sci. 52, 49–54. Hopp, T.P., Woods, K.R., 1981. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA 78, 3824–3828. Hsu, C.T., Ting, C.Y., Ting, C.J., Chen, T.Y., Lin, C.P., Whang–Peng, J., Hwang, J., 2000. Vaccination Against Gonadotropin–Releasing Hormone (GnRH) Using Toxin Receptor–Binding Domain–Conjugated GnRH Repeats. Cancer Res. 60, 3701–3705. Huang, P., Xu, Y., Ni, H., Zhong, J., Zhang, X., Tan, S., Wu, D., Qiu, B., Guan, D., Wen, M., Yan, J., Zhang, Y., 2011. Linear B–Cell Epitope Mapping of Neuraminidases of the 2009 A H1N1 Viruses Based on Immunoinformatics. Vaccine 29, 1278–1282. Ikegami, T., Won, S., Peters, C.J., Makino, S., 2006. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J. Virol. 80, 2933–2940. Kaku, Y., Chard, L.S., Inoue, T., Belsham, G.J., 2002. Unique characteristics of a picornavirus internal ribosome entry site from the porcine teschovirus–1 talfan. J. Virol. 76, 11721–11728. Kaku, Y., Murakami, Y., Sarai, A., Wang, Y., Ohashi, S., Sakamoto, K., 2007. Antigenic properties of porcine teschovirus 1 (PTV–1) Talfan strain and molecular strategy for serotyping of PTVs. Arch. Virol. 152, 929–940. Kassimi, L.B., Boutrouille, A., Gonzague, M., Mbanda, A.L., Cruciere, C., 2002. Nucleotide sequence and construction of an infectious cDNA clone of an EMCV strain isolated from aborted swine fetus. Virus Res. 83, 71–87. Kim, J.H., Lee, S.R., Li, L.H., Park, H.J., Par, J.H., Lee, K.Y., Kim, M.K., Shin, B.A., 2011. Choi SY. High cleavage efficiency of a 2A peptide derived from porcine teschovirus–1 in human cell lines, zebrafish and mice. PLoS One 6, e18556. Ko, Y.J., Jeoung, H.Y., Lee, H.S., Chang, B.S., Hong, S.M., Heo, E.J., Lee, K.N., Joo, H.D., Kim, S.M., Park, J.H., Kweon, C., 2009. A Recombinant Protein–Based ELISA for Detecting Antibodies to Foot–And–Mouth Disease Virus Serotype Asia 1. J. Virol. Methods 159, 112–118. Kumari, S., Singh, R., Saikumar, G., 2020. Epidemiological study of porcine sapelovirus infection in pigs at Bareilly area of Uttar Pradesh, India. Biological Rhythm Res. 51, 1155-1165. Lai, P.Y., Hsu, C.T., Wang, S.H., Lee, J.C., Tseng, M.J., Hwang, J., Ji, W.T., Chen, H.R., 2014. Production of a Neutralizing Antibody Against Envelope Protein of Dengue Virus type 2 Using the Linear Array Epitope Technique. J. Gen. Virol. 95, 2155–2165. Larsen, J.E.P., Lund, O., Nielsen, M., 2006. Improved Method for Predicting Linear B–Cell Epitopes. Immunome. Res. 2, 2. doi:10.1186/1745–7580–2–2 Lazouskaya, N.V., Palombo, E.A., Poh, C.L., Barton, P.A., 2014. Construction of an infectious cDNA clone of enterovirus 71: insights into the factors ensuring experimental success. J. Virol. Methods 197, 67–76. Lee, K.M., Chen, C.J., Shih, S.R., 2017. Regulation mechanisms of viral IRES–driven translation. Trends Microbiol. 25, 546–561. Li, Y., Du, L., Jin, T., Cheng, Y., Zhang, X., Jiao, S., Huang, T., Zhang, Y., Yan, Y., Gu, J., Zhou, J., 2019. Characterization and epidemiological survey of porcine sapelovirus in China. Vet. Microbiol. 232, 13–21. Liang, W., Zhou, G., Liu, W., Yang, B., Li, C., Wang, H., Yang, D., Ma, W., Yu, L., 2016. Identification of a Conserved Linear Neutralizing Epitope Recognized by Monoclonal Antibody 9A9 Against Serotype A Foot–And–Mouth Disease Virus. Arch. Virol. 161, 2705–2716. Lin, G.Z., Zheng, F.Y., Zhou, J.Z., Cao, X.A., Gong, X.W., Wang, G.H., Qiu, C.Q., 2010. An Indirect ELISA of Classical Swine Fever Virus Based on Quadruple Antigenic Epitope Peptide Expressed in E.coli. Virol. Sin. 25, 71–76. Lindberg, A.M., Polacek, C., Johansson, S., 1997. Amplification and cloning of complete enterovirus genomes by long distance PCR. J. Viro.l Methods 65, 191–199. Malik, Y. S., Bhat, S., Vlasova, A. N., Wang, F. I., Touil, N., Ghosh, S., Dhama, K., Yadav, M. P., Singh, R. K., 2020. Teschovirus. Emerging and Transboundary Animal Viruses, 123–136. Martin, L.R., Neal, Z.C., McBride, M.S., Palmenberg, A.C., 2000. Mengovirus and encephalomyocarditis virus poly(C) tract lengths can affect virus growth in murine cell culture. J. Virol. 74, 3074–3081. Maurice, H., Nielen, M., Brocchi, E., Nowotny, N., Kassimi, L. B., Billinis, C., Loukaides, P., O'Hara, R. S., Koenen, F., 2005. The occurrence of encephalomyocarditis virus (EMCV) in European pigs from 1990 to 2001. Epidemiol. Inf. 133, 547–557. Mueller, S., Wimmer, E., 1998. Expression of foreign proteins by poliovirus polyprotein fusion: analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames. J. Virol. 72, 20–31. Ogra, P.L., Ogra, S.S., 1973. Local antibody response to poliovaccine in the human female genital tract. J. Immunol. 110, 1307–1311. Parker, J.M.R., Guo, D., Hodges, R.S., 1986. New Hydrophilicity Scale Derived from High–Performance Liquid Chromatography Peptide Retention Data: Correlation of Predicted Surface Residues with Antigenicity and X–ray–Derived Accessible Sites. Biochemistry 25, 5425–5432. Parret, A.H., Besir, H., Meijers ,R., 2016. Critical Reflections on Synthetic Gene Design for Recombinant Protein Expression. Curr. Opin. Struct. Biol. 38, 155–162. Pathak, H.B., Arnold, J.J., Wiegand, P.N., Hargittai, M.R., Cameron, C.E., 2007. Picornavirus genome replication: Assembly and organization of the Vpg uridylylation ribonucleoprotein (initiation) complex. J. Biol. Chem. 282, 16202–16213. Pelletier, J., Sonenberg, N., 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325. Penza, V., Russell, S. J., & Schulze, A. J., 2021. The long–lasting enigma of polycytidine (polyC) tract. PLoS pathogens 17, e1009739. Pickett, B. E., Sadat, E. L., Zhang, Y., Noronha, J. M., Squires, R. B., Hunt, V., Liu, M., Kumar, S., Zaremba, S., Gu, Z., Zhou, L., Larson, C. N., Dietrich, J., Klem, E. B., & Scheuermann, R. H., 2012. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 40, D593–D598. Pringle, C.R., 1999. Virus taxonomy at the xith international congress of virology, sydney,australia, 1999. Arch. Virol. 144, 2065–2070. Pyo, H., Seo, J., Suh, G., Kim, K., Lee, J., Kim, T., 2010. Serodiagnosis of Porcine Reproductive and Respiratory Syndrome Virus Infection with the Use of Glycoprotein 5 Antigens. Can. J. Vet. Res. 74, 223–227. Racaniello, V.R., Baltimore, D., 1981. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214, 916–919. Reed, L.J., Muench, H., 1938. A Simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27, 493–497. Retamal, C.A., Thiebaut, P., Alves, E.W., 1999. Protein Purification from Polyacrylamide Gels by Sonication Extraction. Anal. Biochem. 268, 15–20. Rodriguez, L.L., Barrera, J., Kramer, E., Lubroth, J., Brown, F., Golde, W.T., 2003. A Synthetic Peptide Containing the Consensus Sequence of the G–H Loop Region of Foot–And–Mouth Disease Virus type–O VP1 and a Promiscuous T–Helper Epitope Induces Peptide–Specific Antibodies but Fails to Protect Cattle Against Viral Challenge. Vaccine 21, 3751–3756. Rodriguez–Pulido, M., Borrego, B., Sobrino, F., Saiz, M., 2011. RNA structural domains in noncoding regions of the foot–and–mouth disease virus genome trigger innate immunity in porcine cells and mice. J. Virol. 85, 6492–6501. Rossmann, M.G., 1989. The Canyon Hypothesis. Hiding the Host Cell Receptor Attachment Site on a Viral Surface from Immune Surveillance. J. Biol. Chem. 264, 14587–14590. Saha, S., Bhasin, M., Raghava, G.P., 2005. Bcipep: a database of B–cell epitopes. BMC Genomics 6, 79. Sali, A., Potterton, L., Yuan, F., van Vlijmen, H., Karplus, M., 1995. Evaluation of Comparative Protein Modeling by MODELLER. Proteins 23, 318–326. Salles, M.W.S., Scholes, S.F.E., Dauber, M., Strebelow, G., Wojnarowicz, C., Hassard, L., Acton, A.C., Bollingeret, T.K., 2011. Porcine Teschovirus Polioencephalomyelitis in Western Canada. J. Vet. Diagn. Invest. 23, 367–373. Schaefer, B.C., 1995. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full–length cDNA ends. Anal. Biochem. 227, 255–273. Seago, J., Juleff, N., Moffat, K., Berryman, S., Christie, J.M., Charleston, B., Jackson, T., 2013. An infectious recombinant Foot–and–mouth disease virus expressing a fluorescent marker protein. J. Gen. Virol. 94, 1517–1527. Sharmin, R., Islam, A.B.M.M.K., 2014. A Highly Conserved WDYPKCDRA Epitope in the RNA Directed RNA Polymerase of Human Coronaviruses Can Be Used as Epitope–Based Universal Vaccine Design. BMC Bioinform. 15, 161. Shen, C.S., 2018. Feasibility of Porcine Teschovirus Derived Vector Carrying Both Foot and Mouth Disease VP1 Capsid Protein and Classical Swine Fever E2 Glycoprotein Epitopes as a Vaccine. Unpublished Master thesis, National Taiwan University, Taiwan, R.O.C. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., Higgins D.G., 2011. Fast, Scalable Generation of High–Quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 7, 539. Takahashi, M., Seimiya, Y.M., Seki, Y., Yamada, M., 2008. A piglet with concurrent polioencephalomyelitis due to porcine teschovirus and postweaning multisystemic wasting syndrome. J. Vet. Med. Sci. 70, 497–500. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position–Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 22, 4673–4680. Thordal–Christensen, A., 1959. A study of benign enzootic paresis of pigs in Denmark. Thesis, Mortensen, Copenhagen pp.1–189. Trefny, L., 1930. Hromadna onemocnemi vepru na Tesinsku. Zverolek Obz 235–236. Tsai, T.H., Chang, C.Y., Wang, F.I., 2020. A highly conserved epitope (RNNQIPQDF) of porcine teschovirus induced a group–specific antiserum: a bioinformatics–predicted model with pan–PTV potential. Viruses 12, 1225. Tsai, T.H., Chang, C.Y., Wang, F.I., 2021. The feasibility of constructing a porcine teschovirus infectious cDNA clone tagged with iLOV fluorescent protein rescued as a visible marker virus. Taiwan Vet. J. 47, 81–96. Usherwood, E.J., Nash, A.A., 1995. Lymphocyte Recognition of Picornaviruses. J. Gen. Virol. 76, 499–508. van der Werf, S., Bradley, J., Wimmer, E., Studier, F.W., Dunn, J.J., 1986. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83, 2330–2334. Van Regenmortel, M.H.V., 1996. Mapping Epitope Structure and Activity: From One–Dimensional Prediction to Four–Dimensional Description of Antigenic Specificity. Methods 9, 465–472. Vita, R., Zarebski, L., Greenbaum, J.A., Emami, H., Hoof, I., Salimi, N., Damle, R., Sette, A., Peters, B., 2010. The Immune Epitope Database. The Immune Epitope Database 2.0. Nucleic Acids Res. 38, D854–D862. Vlasakova, M., Leskova, V., Sliz, I., Jackova, A., Vilcek, S., 2014. The presence of six potentially pathogenic viruses in pigs suffering from post–weaning multisystemic wasting syndrome. BMC Vet. Res. 10, 221. Wong, C.L., Sieo, C.C., Tan, W.S., 2013. Display of the VP1 Epitope of Foot–And–Mouth Disease Virus on Bacteriophage T7 and Its Application in Diagnosis. J. Virol. Methods 193, 611–619. Yamada, M., Kozakura, R., Nakamura, K., Yamamoto, Y., Yoshii, M., 2009. Pathological changes in pigs experimentally infected with porcine teschovirus. J. Comp. Pathol. 141, 223–228. Yang, B., Yang, F., Zhang, Y., Liu, H., Jin, Y., Cao, W., Zhu, Z., Zheng, H., Yin, H., 2016. The rescue and evaluation of FLAG and HIS epitope–tagged Asia 1 type foot–and–mouth disease viruses. Virus Res. 213, 246–254. Yu, Z., Healy, F., Valmori, D., Escobar, P., Corradin, G., Mach, J.P., 1994. Peptide–Antibody Conjugates for Tumour Therapy: A MHC–Class–II–Restricted Tetanus Toxin Peptide Coupled to an Anti–IG Light Chain Antibody Can Induce Cytotoxic Lysis of a Human B–Cell Lymphoma by Specific CD4 T Cells. Int. J. Cancer 56, 244–248. Zell, R., Dauber, M., Krumbholz, A., Henke, A., Birch–Hirschfeld, E., Stelzner, A., Prager, D., Wurm, R., 2001. Porcine Teschoviruses Comprise at Least Eleven Distinct Serotypes: Molecular and Evolutionary Aspects. J. Virol. 75, 1620–1631. Zell, R., Krumbholz, A., Henke, A., Birch–Hirchfield, E., Steltzner, A., Doherty, M., Hoey, E., Dauber, M., Prager, D., Wurm, R., 2000. Detection of porcine enteroviruses by nRT–PCR: differentiation of CPE group I–III with specific primer sets. J. Virol. Methods 88, 205–218. Zell, R., Seitz, S., Henke, A., Munder, T., Wutzler, P., 2005. Linkage map of protein–protein interactions of porcine teschovirus. J. Gen. Virol. 86, 2763–2768. Zhu, Y., Zou, X., Bao, H., Sun, P., Ma, X., Liu, Z., Fan, H., Zhao, Q., 2018. Insertion site of FLAG on Foot–and–mouth disease virus VP1 G–H loop affects immunogenicity of FLAG. J. Integr. Agri. 17, 1655–1666.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85135-
dc.description.abstract豬鐵士古病毒 (Porcine teschovirus, PTV),為單股正向無封套RNA病毒。PTV目前有13種血清型,19種基因型。在台灣曾於2000年與2004年爆發2次疫情,現今於台灣豬場呈現普遍性地方感染。然而,不同PTV 血清型經常與其他豬病原體在各年齡層共同傳播、共同感染導致各種類似症狀,因而突顯對泛 PTV 診斷工具的需求。本論文旨在利用生物資訊學預測PTV 表位抗原,並發現對各種 PTV 血清型具有群特異反應性的血清試劑;接著利用反向基因方法,以鐵士古病毒為載體構築感染性選殖病毒株,發現將外源基因插入2A位點的重組病毒呈現減毒的現象,提供未來發展減毒載體工具 (含疫苗)的可利用性。我們由生物資訊學預測VP1 的 GH 環上高度保守的“RNNQIPQDF”表位,並且構建帶有泛 DR (PADRE) 和毒素 B 表位的串聯重複的重組蛋白GST–PADRE–(RNNQIPQDF)n–Toxin B作為免疫原,在小鼠體內有效地激發產生針對 PTV非中和或檢測不到的中和抗體。抗血清對所有測試的 PTV 血清型 (PTV 1–7) 都有反應,但對近緣薩佩羅病毒病毒屬和心病毒屬病毒沒有反應,顯示該血清有一定程度的群特異性,這是第一份利用生物資訊學預測PTV 表位發現對各種 PTV 血清型具有廣泛反應性的血清試劑的報告,未來可用於區分自然感染動物和將來發展之不含該表位的次單位疫苗接種的動物 (differentiating infected from vaccinated animals, DIVA),或在進一步類症鑑別之前篩選 PTV是否存在。此外,構建不含此高度保守表位的病毒載體,期能將泛 PTV 診斷工具應用於未來區別感染動物和不含該表位的次單位疫苗接種的動物。利用反向基因法構築感染性選殖株,將獨特的 XhoI 限制酶切位點引入 2A,以及用 8 組氨酸標記替換 VP1 的 GH 環序列“RNNQIPQDF” 能與PTV原始病毒株鑑別區分。隨後,構築病毒載體攜帶外源基因的可行性研究,將植物螢光蛋白iLOV基因插入PTV結構蛋白基因之間作為標記基因,在不干擾病毒殼蛋白組裝的狀態下復甦重組病毒 (rPTV–iLOV 病毒),被該重組病毒感染的細胞在螢光顯微鏡下顯現綠光,但由於 iLOV 插入 2A 蛋白酶位點引起的自我切割功能受損降至55.6%,由雙報告基因表達系統評估,顯示有減毒現象。此重組病毒顯示出開發減毒病毒載體疫苗的潛力,幾乎沒有生物安全顧慮,並可作為研究病毒–細胞相互作用的重要工具。 因此,本研究以生物資訊學預測高度保守的抗原表位,開發具有廣泛反應性的血清試劑做為類症診斷之用,尤其是含多血清型之病毒如PTV和流感病毒。本研究並顯示以PTV為平台有助於將來發展減毒病毒載體疫苗及其他應用工具的合理性。zh_TW
dc.description.abstractPorcine teschovirus (PTV) is a single–stranded positive non–envelope RNA virus. There are currently 13 serotypes and 19 genotypes of PTV. In recent years, Taiwan have had two outbreaks occurred in years 2000 and 2004, and now it is endemic in pig herds worldwide. However, multiple serotypes of PTV are frequently co–transmitted with other swine pathogens in all age groups and co–infections of different viruses lead to a variety of overlapping or similar symptoms, thus highlighting the need for a pan–PTV diagnostic tool before further differential diagnoses. The aims of this study were to use bioinformatics to predict the PTV highly conserved epitope and generate serological reagents with group–specific reactivity to various PTV serotypes. In addition, PTV was used as the backbone in a reverse genetics system attempted to clone infectious cDNA of PTV, and constructed a PTV–based viral vector that does not contain aforementioned highly conserved epitope but carrying foreign genes, demonstrating the potential of developing a PTV–based vectored vaccines. We predicted the highly conserved 'RNNQIPQDF' epitope on the GH loop of VP1 by bioinformatics, and constructed a recombinant protein GST–PADRE with tandem repeats of pan–DR (PADRE) and toxin B epitopes (RNNQIPQDF)n–Toxin B as an immunogen that efficiently induced non–neutralizing or undetectable neutralizing polyclonal antibodies against PTV in mice. The serum was reactive to all PTV serotypes tested (PTV 1–7), but not reactive to the closely related Sapelovirus and Cardiovirus demonstrating the group–specificity of this serum agent. This is the first report of using bioinformatics to predict a PTV epitope to find serological reagents with broad reactivity to various PTV serotypes, and can be used to distinguish naturally infected from vaccinated animals (DIVA), such as those vaccinated with subunit vaccines that do not contain the aforementioned epitope, and to screen for PTVs prior to differential diagnoses for similar clinical symptoms. In order to construct viral vector without highly conserved epitope for further application of pan–PTV diagnostic tool on DIVA purpose, we used the reverse genetics method to construct infectious clones of PTV cDNA as a backbone, into which a unique XhoI restriction enzyme site was introduced into 2A, and to replace the conserved GH loop sequence 'RNNQIPQDF' of VP1 with an 8–histidine tag that distinguished the rescued virus from the parental PTV successfully. Subsequently, the feasibility of a PTV–based viral vector carrying foreign genes was tested by inserting a plant fluorescent protein gene iLOV between the PTV structural protein genes as a marker. The rescued recombinant PTV (rPTV–iLOV) infected cells were visible as green color under fluorescence microscopy. The insertion of iLOV did not interfere with the assembly of viral capsid proteins, but impaired the self–cleavage of the 2A protease activity to 55.6% (thus attenuation), as assessed by a dual reporter gene expression system. This rescued recombinant PTV shows a potential for developing PTV–based vectored vaccines with few safety concerns and serves as an important tool for the visual study of virus–cell interactions. The results of this study demonstrate the feasibility of predicting highly conserved epitopes by bioinformatics to generate group–specific serological reagent for diagnostic purpose on virus with a multiplicity of serotypes (as in PTV or influenza virus), and it is also feasible to develop PTV–based vector for vaccination and other applications.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:45:49Z (GMT). No. of bitstreams: 1
U0001-1008202210192600.pdf: 3172207 bytes, checksum: 73298c9c52137aa32d7c01474003b2ea (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsCertificate……………………………………………………………………………………… i Acknowledgements…………………………………………………………………………… ii Abstract in Chinese…………………………………………………………………………… iii Abstract in English…………………………………………………………………………… iv Contents……………………………………………………………………………………… vi List of Figures………………………………………………………………………………… viii List of Tables………………………………………………………………………………… ix Chapter 1 General introduction ………………………………………………………… 1 Chapter 2 Literature review 2.1 Preamble……………………………………………………………………… 4 2.2 Properties of PTV…………………………………………………………… 5 2.3 Antigenicity of PTV………………………………………………………… 11 2.4 Virulence of PTV…………………………………………………………… 16 2.5 Bioinformatics for epitope prediction…………………………… 19 2.6 Picornavirus as vectors for the expression of heterologous proteins ………………………………………………… 20 Chapter 3 Materials and methods 3.1 Experimental design …………………………………………………… 25 3.2 Propagation, Purification, and Inactivation of the Porcine teschoviruses …………………………………………… 25 3.3 Bioinformatics Approaches to Determine a Conserved VP1 Epitope of PTVs……………………………………… 28 3.4 Construction and Expression of GST–Fusion Proteins Containing a Series of Linearly Array Epitopes (LAEs) 29 3.5 Purification of GST–LAE–Fusion Proteins ……………………… 33 3.6 Mice Immunization and Production of LAE Antisera …… 34 3.7 Western Blotting…………………………………………………………… 35 3.8 Indirect ELISA for the Detection of the PTV VP1–specific Antibodies in the anti–LAE Antisera………………………………… 35 3.9 Dot Blotting ………………………………………………………………… 36 3.10 Immunofluorescence Assay (IFA)…………………………………… 37 3.11 Virus Neutralization (VNT) Assay ………………………………… 37 3.12 Virus Propagation and Concentration for Constructing the Plasmid pEZ–rPTV–iLOV………………………………………………… 38 3.13 Rapid Amplification of cDNA Ends (RACE) to Obtain the 5’ and 3’ End Sequences of PTV–1 Genome…………… 38 3.14 Strategy to Construct PTV infectious cDNA………………… 39 3.15 Full–length cDNA Amplification Using Long–range RT–PCR 40 3.16 Construction of the Recombinant Viral Plasmid Using OLE PCR……………………………………………………………… 40 3.17 Construction of rPTV–iLOV Using In–fusion Cloning………… 41 3.18 Preparation of Infectious RNA (in vitro transcription), Transfection, and Infection……………………………………………… 42 3.19 Characterizations of the Rescued Virus…………………………… 42 3.20 Immunofluorescence Assay (IFA) for visible marker virus 43 3.21 Evaluation of the Self–cleaving Function of rPTV–iLOV…. 44 Chapter 4 Results 4.1 Identification of the Conserved Epitope on VP1 of PTV…. 45 4.2 Construction of the Linearly Array Epitopes (LAEs) Expression Cassettes …………………………………………………………………… 48 4.3 Purification and Western Blot Analysis of the GST–LAE–Fusion Proteins………………………………………………………………… 51 4.4 Antibody Activities of the Anti–LAE Antisera against therVP1 Protein ……………………………………………………………… 53 4.5 Evaluation of the Specificity of the Anti–LAE Antiserum Against the GH Loop Domain by Dot Blotting, IFA and VNT……………………………………………………………………………………………… 55 4.6 Generation of Full–length cDNA from RNA Genome of the Parental Virus…………………………………………….………….………. 60 4.7 Construction of a Full–length Infectious Clone of PTV–1 and Tagged with a Unique XhoI Site or with a Visual Marker…………………………………………………………………………………………………………… 67 4.8 Characterization of the Recovery of Recombinant (rPTV and rPTV–iLOV) Viruses………………………………………… 71 4.9 The Effect of iLOV Insertion on the Cleavage Function of P2A as a artial Explanation of Lower Titre of Rescued Recombinant Virus…………………………….……………….…………. 76 Chapter 5 Discussion…………………………………………………………… 80 Chapter 6 General discussion, conclusion and perspectives…. 88 References……………………………………………………………………………….…… 90 List of abbreviations………………………………………………………………….…. 105 List of published papers……………………………………………………………….. 106 List of Figures Figure 1 Genome image map of prototype, PTV–1 strain F65 7 Figure 2 Determination of epitopes by monoclonal antibody 14 Figure 3 Bioinformatics prediction of an epitope conserved among porcine teschoviruses 47 Figure 4 Gel electrophoresis of PCR products 50 Figure 5 Identification of the recombinant GST–LAE–fusion proteins 52 Figure 6 Antisera titer of GST–LAE–fusion proteins immunized mice 54 Figure 7 The cross–reactivity assay of antiserum against LAE3 56 Figure 8 Immunofluorescence assay (IFA) visualization of anti–LAE3 antiserum 59 Figure 9 Strategy for constructing the plasmid pEZ–rPTV–iLOV 61 Figure 10 End sequences of PTV cDNA were obtained by RACE 65 Figure 11 Stepwise construction of PTV infectious cDNA carrying iLOV 69 Figure 12 Characterizations of rescued recombinant PTVs 73 Figure 13 Expression of 8–histidine marker and iLOV in recombinant virus rescued from rPTV–iLOV and rPTV 74 Figure 14 Gene stability of P5 viruses rescued from rPTV and rPTV–iLOV 75 Figure 15 iLOV insertion attenuated the cleavage activity of 2A in reporter plasmids 78 List of Tables Table 1 Prediction of the T–cell epitope of VP1 by NetCTL server 23 Table 2 Reference viruses, strains and respective serotypes used in this study 27 Table 3 Strategies used in template repeat PCR and adapter PCR to construct a suite of linearly array PADRE–(RNNQIPQDF)n–Toxin B expression cassettes for cloning into the glutathione S transferase (GST) vector 31 Table 4 Protein sequence alignment of the GH loops of the capsid proteins from the 13 serotypes of teschovirus 46 Table 5 Primers used to generate full–length PTV cDNA and construction of recombinant virus 63
dc.language.isoen
dc.subject群特異性zh_TW
dc.subject豬鐵士古病毒zh_TW
dc.subject標記病毒zh_TW
dc.subject病毒載體zh_TW
dc.subject生物資訊學zh_TW
dc.subjectmarker virusen
dc.subjectporcine teschovirusen
dc.subjectbioinformaticsen
dc.subjectgroup–specificen
dc.subjectviral vectoren
dc.title豬鐵士古病毒高度保留性抗原表位誘導群特異性抗血清:生物資訊學預測zh_TW
dc.titleA Highly Conserved Epitope (RNNQIPQDF) of Porcine Teschovirus Induced a Group–Specific Antiserum: A Bioinformatics–Predicted Model with Pan–PTV Potentialen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-3216-6692
dc.contributor.oralexamcommittee邱明堂(Ming-Tang Chiou),許天來(Tien-Lai Hsu),張家宜(Chia-Yi Chang),林昭男(Chao-Nan Lin),廖泰慶(Tai-Ching Liao)
dc.subject.keyword豬鐵士古病毒,生物資訊學,群特異性,病毒載體,標記病毒,zh_TW
dc.subject.keywordporcine teschovirus,bioinformatics,group–specific,viral vector,marker virus,en
dc.relation.page106
dc.identifier.doi10.6342/NTU202202239
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-11
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
dc.date.embargo-lift2022-08-18-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
U0001-1008202210192600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved