Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛承輝(Chun-Hway Hsueh)
dc.contributor.authorLiang-Yan Guoen
dc.contributor.author郭亮言zh_TW
dc.date.accessioned2023-03-19T22:41:50Z-
dc.date.copyright2022-08-18
dc.date.issued2022
dc.date.submitted2022-08-15
dc.identifier.citation[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-Entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (5) (2004) 299–303. [2] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375 (2004) 213–218. [3] A. Gali, E.P. George, Tensile properties of high and medium entropy alloys, Intermetallics 39 (2013) 74–78. [4] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the superior mechanical properties of medium entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292–303. [5] M. Feuerbacher, T. Lienig, C. Thomas, A single phase bcc high-entropy alloy in the refractory ZrNbTiVHf system, Scr. Mater. 152 (2018) 40–43. [6] X. Feng, J. Zhang, Y. Wang, Z. Hou, K. Wu, G. Liu, J. Sun, Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films, Int. J. Plast. 95 (2017) 264–277. [7] Y. Zhao, J. Qiao, S. Ma, M. Gao, H. Yang, M. Chen, Y. Zhang, A hexagonal close-packed high-entropy alloy: the effect of entropy, Mater. Des. 96 (2016) 10–15. [8] J.W. Yeh, Physical metallurgy of high entropy alloys, JOM 67 (10) (2015) 2254–2261. [9] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93. [10] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high entropy alloys, Prog. Mater. Sci. 118 (2021) 1–93. [11] C. Lee, Y. Chen, C. Hsu, J. Yeh, H. Shih, The effect of boron on the corrosion resistance of the high entropy alloys Al0. 5CoCrCuFeNiBx, J. Electrochem. Soc. 154 (8) (2007) 424–430. [12] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A review on fundamental of high entropy alloys with promising high temperature properties, J. Alloys Compd. 760 (2018) 15–30. [13] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics 46 (2014) 131–140. [14] J.P. Liu, J.X. Chen, T.W. Liu, C. Li, Y. Chen, L.H. Dai, Superior strength-ductility CoCrNi medium-entropy alloy wire, Scr. Mater. 181 (2020) 19–24. [15] A.S. Tirunilai, T. Hanemann, C. Reinhart, V. Tschan, K.P. Weiss, G. Laplanche, J. Freudenberger, M. Heilmaier, A. Kauffmann, Comparison of cryogenic deformation of the concentrated solid solutions CoCrFeMnNi, CoCrNi and CoNi, Mater. Sci. Eng. A 783 (2020) 139290 . [16] J.Q. Zhao, H. Tian, Z. Wang, X.J. Wang, J.W. Qiao, FCC to HCP phase transformation in CoCrNix medium-entropy alloys, Acta Metall. Sin. 33 (8) (2020) 1151–1158. [17] H. Liu, C. Gu, K. Zhai, C. Wang, Strengthening and toughening the FeNiCrMn medium entropy alloy by novel ultrafine precipitate networks, Vac. 184 (2021) 109995. [18] J.J. Wang, F.Y. Ouyang, Nanotwinned medium entropy alloy CoCrFeNi thin films with ultra-high hardness: modifying residual stress without scarifying hardness through tuning substrate bias, Surf. Coat. Technol. 434 (2022) 128191. [19] N. Chawake, J. Zálešák, C. Gammer, R. Franz, M.J. Cordill, J.T. Kim, J. Eckert, Microstructural characterization of medium entropy alloy thin films, Scr. Mater. 177 (2020) 22–26. [20] Y. Chen, D. Chen, X. An, Y. Zhang, Z. Zhou, S. Lu, P. Munroe, S. Zhang, X. Liao, T. Zhu, Unraveling dual phase transformations in a CrCoNi medium-entropy alloy, Acta Mater. 215 (2021) 117112. [21] Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen, Y. Liu, Y. Ren, N. Li, P.K. Liaw, Solid solution CrCoCuFeNi high entropy alloy thin films synthesized by sputter deposition, Mater. Res. Lett. 3 (4) (2015) 203–209. [22] F. Cao, P. Munroe, Z. Zhou, Z. Xie, Medium entropy alloy CoCrNi coatings: enhancing hardness and damage-tolerance through a nanotwinned structuring, Surf. Coat. Technol. 335 (2018) 257–264. [23] X. Feng, J.U. Surjadi, X. Li, Y. Lu, Size dependency in stacking fault-mediated ultrahard high-entropy alloy thin films, J. Alloys Compd. 844 (2020) 156187. [24] J. Moon, M.J. Jang, J.W. Bae, D. Yim, J.M. Park, J. Lee, H.S. Kim, Mechanical behavior and solid solution strengthening model for face-centered cubic single crystalline and polycrystalline high-entropy alloys, Intermetallics 98 (2018) 89–94. [25] M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scr. Mater. 72 (2014) 5–8. [26] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258–268. [27] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys, J. Alloys Compd. 790 (2019) 732–743. [28] L.J. Zhang, M.D. Zhang, Z. Zhou, J.T. Fan, P. Cui, P.F. Yu, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Effects of rare-earth element, Y, additions on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng. A 725 (2018) 437–446. [29] Y. Pan, A. Dong, Y. Zhou, D. Du, D. Wang, G. Zhu, B. Sun, Enhanced strength-ductility synergy in a novel V-containing γ″-strengthened CoCrNi-based multi-component alloy, Mater. Sci. Eng. A 816 (2021) 141289. [30] N. An, Y. Sun, Y. Wu, J. Tian, Z. Li, Q. Li, J. Chen, X. Hui, High temperature strengthening via nanoscale precipitation in wrought CoCrNi-based medium-entropy alloys, Mater. Sci. Eng. A 798 (2020) 140213. [31] W. Liu, Z. Lu, J. He, J. Luan, Z. Wang, B. Liu, Y. Liu, M. Chen, C. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater. 116 (2016) 332–342. [32] J. He, H. Wang, Y. Wu, X. Liu, H. Mao, T. Nieh, Z. Lu, Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys, Intermetallics 79 (2016) 41–52. [33] T.T. Shun, C.H. Hung, C.F. Lee, The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700 °C, J. Alloys Compd. 495 (1) (2010) 55–58. [34] S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, J. Li, Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy, Mater. Sci. Eng. A 671 (2016) 82–86. [35] H. Chang, T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, Z.H. Wang, Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off, Mater. Des. 197 (2021) 109202. [36] H. Jiang, K. Han, D. Qiao, Y. Lu, Z. Cao, T. Li, Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy, Mater. Chem. Phys. 210 (2018) 43–48. [37] J.W. Bae, J.M. Park, J. Moon, W.M. Choi, B.J. Lee, H.S. Kim, Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys, J. Alloys Compd. 781 (2019) 75–83. [38] Z.G. Wang, W. Zhou, L.M. Fu, J.F. Wang, R.C. Luo, X.C. Han, B. Chen, X.D. Wang, Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy, Mater. Sci. Eng. A 696 (2017) 503–510. [39] M.P. Agustianingrum, S. Yoshida, N. Tsuji, N. Park, Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy, J. Alloys Compd. 781 (2019) 866–872. [40] Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures, Acta Mater. 165 (2019) 228–240. [41] D. Lee, M.P. Agustianingrum, N. Park, N. Tsuji, Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy, J. Alloys Compd. 800 (2019) 372–378. [42] S. Fang, C. Wang, C.L. Li, J.H. Luan, Z.B. Jiao, C.T. Liu, C.H. Hsueh, Microstructures and mechanical properties of CoCrFeMnNiV high entropy alloy films, J. Alloys Compd. 820 (2020) 153388. [43] Y.C. Hsu, C.L. Li, C.H. Hsueh, Effects of Al addition on microstructures and mechanical properties of CoCrFeMnNiAlx high entropy alloy films, Entropy 22 (1) (2020) 2. [44] Y.H. Liang, C.L. Li, C.H. Hsueh, Effects of Nb addition on microstructures and mechanical properties of Nbx-CoCrFeMnNi high entropy alloy films, Coatings 11 (12) (2021) 1539-1554. [45] W. Lu, X. Luo, Y. Yang, B. Huang, Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-entropy alloy, Mater. Express 9 (4) (2019) 291–298. [46] X. Hong, C.H. Hsueh, Effects of yttrium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy, Intermetallics 140 (2022) 107405. [47] S.N. Chan, C.H. Hsueh, Effects of La addition on the microstructure and mechanical properties of CoCrNi medium entropy alloy, J. Alloys Compd. 894 (2022) 162401. [48] L.J. Zhang, P.F. Yu, M.D. Zhang, D.J. Liu, Z. Zhou, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Microstructure and mechanical behaviors of GdxCoCrCuFeNi high-entropy alloys, Mater. Sci. Eng. A 707 (2017) 708–716. [49] S. Seetharaman, C. Blawert, B.M. Ng, W.L.E. Wong, C.S. Goh, N. Hort, M. Gupta, Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg–Al alloys, J. Alloys Compd. 648 (2015) 759–770. [50] Y. Wang, X. Wu, L. Cao, X. Tong, M.J. Couper, Q. Liu, Effect of trace Er on the microstructure and properties of Al–Zn–Mg–Cu–Zr alloys during heat treatments, Mater. Sci. Eng. A 792 (2020) 139801. [51] Z. Nie, J. Fu, J. Zou, T. Jin, J. Yang, G. Xu, H. Ruan, T. Zuo, Advanced aluminum alloys containing rare-earth erbium, Materials forum. 28 (2004) 197–201. [52] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. Sci. Mater. 31 (6) (2006) 633–648. [53] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM 65 (12) (2013) 1759–1771. [54] J.W. Yeh, Physical metallurgy of high-entropy alloys, JOM 67 (10) (2015) 2254-2261. [55] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Adv. Eng. Mater. 10 (6) (2008) 534–538. [56] S. Ranganathan, Alloyed pleasures: multimetallic cocktails, Curr. Mater. Sci. 85 (10) (2003) 1404–1406. [57] M. H. Tsai, J.W. Yeh, High-Entropy Alloys: a Critical Review, Mater. Res. Lett. 2 (3) (2014) 107–123. [58] M.C. Gao, J. W. Yeh, P.K. Liaw, Y. Zhang, High-entropy alloys, Cham: Springer International Publishing, Switzerland 2016. [59] W. Lu, X. Luo, Y. Yang, J. Zhang, B. Huang, Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy, Mater. Chem. Phys. 238 (2019) 121841. [60] Y. Lin, C.L. Li, C.H. Hsueh, Effects of cerium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy films, Surf. Coat. Technol. 424 (2021) 127645. [61] X. Feng, S. Fan, F. Meng, J.U. Surjadi, K. Cao, W. Liao, Y. Lu, Effect of Zr addition on microstructure and mechanical properties of CoCrFeNiZrx high-entropy alloy thin films, Appl. Nanosci. 11 (3) (2019) 771-776. [62] Q. He, Y. Yang, On lattice distortion in high entropy alloys, Front. Mater. 5 (2018) 2294–2969. [63] N.Y. Yurchenko, N. Stepanov, D. Shaysultanov, M. Tikhonovsky, G. Salishchev, Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr high-entropy alloys, Mater. Charact. 121 (2016) 125–134. [64] C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, J.W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics 62 (2015) 76–83. [65] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441. [66] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (15) (2013) 5743–5755. [67] L.J. Zhang, P.F. Yu, J.T. Fan, M.D. Zhang, C.Z. Zhang, H.Z. Cui, G. Li, Investigating the micro and nanomechanical properties of CoCrFeNi-C high-entropy alloys containing eutectic carbides, Mater. Sci. Eng. A 796 (2020) 140065. [68] G. Sheng, C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase, Prog. Nat. Sci.: Mater. Int. 21 (6) (2011) 433–446. [69] Akira Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46 (2005) 2817–2829. [70] D. Zhenmin, D. Wang, W. Zhang, Thermodynamic assessment of the Co–Pr, Er–Ni and Ni–Pr systems, J. Alloys Compd. 284 (1999) 206–212. [71] E.J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, Int. Mater. Rev. 61 (3) (2016) 183–202. [72] N. Moelans, B. Blanpain, P. Wollants, Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations, Acta Mater. 55 (6) (2007) 2173–2182. [73] R. Song, D. Ponge, D. Raabe, Improvement of the work hardening rate of ultrafine grained steels through second phase particles, Scr. Mater. 52 (11) (2005) 1075–1080. [74] R. Chang, W. Fang, J. Yan, H. Yu, X. Bai, J. Li, S. Wang, S. Zheng, F. Yin, Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: experiments and first-principle calculations, J. Mater. Sci. Technol. 62 (2021) 25–33. [75] Y. Tong, H. Zhang, H. Huang, L. Yang, Y. Hu, X. Liang, M. Hua, J. Zhang, Strengthening mechanism of CoCrNiMox high entropy alloys by high-throughput nanoindentation mapping technique, Intermetallics 135 (2021) 107209. [76] C. Cáceres, D. Rovera, Solid solution strengthening in concentrated Mg–Al alloys, Light Met. 1 (3) (2001) 151–156. [77] T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol. 15 (1) (1999) 30–36. [78] L. Gao, R. Chen, E. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, J. Alloys Compd. 481 (2009) 379–384. [79] F.G. Coury, M. Kaufman, A.J. Clarke, Solid-solution strengthening in refractory high entropy alloys, Acta Mater. 175 (2019) 66–81. [80] M. Klimova, D. Shaysultanov, S. Zherebtsov, N. Stepanov, Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy, Mater. Sci. Eng. A 748 (2019) 228–235. [81] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier Kidlington, Oxford 1995. [82] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-Hill, New York 1976. [83] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater. 102 (2016) 187–196. [84] J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, Z. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62 (2014) 105–113. [85] S. Lee, J. Wadsworth, O.D. Sherby, Tensile properties of laminated composites based on ultrahigh carbon steel, J. Compos. Mater. 25 (7) (1991) 842–853. [86] U.M. Seelam, C. Suryanarayana, Metallography of sputter-deposited SS304+Al Coatings, Metallography, Microstructure, and Analysis (5) (2013) 287–298. [87] Y.Cui, J. Shen, S.M. Manladan, K. Geng, S. Hu, Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature, Appl. Surf. Sci. 512 (2020) 145736. [88] Y.C. Hsu, C.L. Li, C.H. Hsueh, Modifications of microstructures and mechanical properties of CoCrFeMnNi high entropy alloy films by adding Ti element, Surf. Coat. Technol. 399 (2020) 126149. [89] C.S. Wu, P.H. Tsai, C.M. Kuo, C.W. Tsai, Effect of atomic size difference on the microstructure and mechanical properties of high-entropy alloys, Entropy 20 (12) (2018) 967–977. [90] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233–238. [91] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511. [92] G. Van der Kolk, A. Miedema, A. Niessen, On the composition range of amorphous binary transition metal alloys, J. Less-Common Met. 145 (1988) 1–17. [93] B. Braeckman, F. Misják, G. Radnóczi, D. Depla, The influence of Ge and In addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films, Thin Solid Films 616 (2016) 703–710. [94] A. Zaddach, C. Niu, C. Koch, D. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM 65 (12) (2013) 1780–1789. [95] L. Zhang, J. Fan, D. Liu, M. Zhang, P. Yu, Q. Jing, M. Ma, P. Liaw, G. Li, R. Liu, The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state, J. Alloys Compd. 745 (2018) 75–83. [96] X. Gu, H. Luan, X. Yang, X. Wang, K. Fang, J. Li, Y. Jia, K. Yao, Z. Zhang, N. Chen, Formation and properties of amorphous multi-component (CrFeMoNbZr)100-xOx Thin Films, Metals. 10 (2020) 599–610. [97] S.N. Naik, S.M. Walley, The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals, J. Mater. Sci. 55 (2020) 2661–2681. [98] Z. Qi, P. Sun, F. Zhu, Z. Wang, D. Peng, C. Wu, The inverse Hall–Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol. 205 (2011) 3692–3697. [99] X. Zhang, K.E. Aifantis, Interpreting the softening of nanomaterials through gradient plasticity, J. Mater. Res. 26 (2011) 1399–1405. [100] W.K. Njoroge, H.-W. Wöltgens, M. Wuttig, Density changes upon crystallization of Ge2Sb2.04Te4.74 films, J. Vac. Sci. Technol., A 20 (2002) 230–233. [101] M. Apreutesei, A. Billard, P. Steyer, Crystallization and hardening of Zr-40 at.% Cu thin film metallic glass: effects of isothermal annealing, Mater. Des. 86 (2015) 555–563. [102] R. Zong, S. Wen, F. Zeng, Y. Gao, F. Pan, Nanoindentation studies of Cu–W alloy films prepared by magnetron sputtering, J. Alloys Compd. 464 (2008) 544–549. [103] Y. Zhang, Z. Zhang, W. Yao, X. Liang, Microstructure, mechanical properties and corrosion resistance of high-level hard Nb-Ta-W and Nb-Ta-W-Hf multi-principal element alloy thin films, J. Alloys Compd. 920 (2022) 166000. [104] X. Chen, Y. Du, Y.-W. Chung, Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings, Thin Solid Films 688 (2019) 137265. [105] J. Yang, M. Zhou, N. Liu, J. Yang, Influence of Si addition on the microstructure, mechanical and LBE corrosion properties of an amorphous AlCrFeMoTi high-entropy alloy coating, Surf. Coat. 441 (2022) 128502. [106] L.Z. Medina, M.V.T. da Costa, E.M. Paschalidou, G. Lindwall, L. Riekehr, M. Korvela, S. Fritze, S. Kolozsvári, E.K. Gamstedt, L. Nyholm, Enhancing corrosion resistance, hardness, and crack resistance in magnetron sputtered high entropy CoCrFeMnNi coatings by adding carbon, Mater. Des. 205 (2021) 109711. [107] I.S. Choi, Y. Gan, D. Kaufmann, O. Kraft, R. Schwaiger, Measurement of Young’s modulus of anisotropic materials using microcompression testing, J. Mater. Res. 27 (2012) 2752–2759. [108] I.N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3 (1965) 47–57. [109] Z. Cao, Y. Ma, Y. Cai, G. Wang, G. Pan, H. Ren, G. Zhai, Z. Zhang, P. Li, X. Meng, Nanolamellar medium entropy alloy composites with high strength and large plasticity, J. Alloys Compd. 873 (2021) 159775. [110] G. Yang, S.J. Park, Deformation of single crystals, polycrystalline materials, and thin films: A Review, Mater. 12 (2019) 2003–2021. [111] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater. 55 (2007) 4067–4109. [112] R. Qu, Z. Liu, G. Wang, Z. Zhang, Progressive shear band propagation in metallic glasses under compression, Acta Mater. 91 (2015) 19–33. [113] C.S. Chen, P. Yiu, C.L. Li, J.P. Chu, C.H. Shek, C.H. Hsueh, Effects of annealing on mechanical behavior of Zr–Ti–Ni thin film metallic glasses, Mater. Sci. Eng. A 608 (2014) 258–264.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85072-
dc.description.abstract本研究專注在塊材和薄膜兩個不同尺度下,稀土元素Er添加進入CoCrNi中熵合金對於微結構和機械性質的影響,在塊材方面,是以真空熔煉爐製備不同Er成分的(CoCrNi)100-xErx樣品(x = 0, 0.1, 0.3, 0.5, 0.7, 1.0, 1.3),再經由均質化等熱處理得到用於分析的試片;在微結構觀察中發現添加Er元素將導致在FCC相的CoCrNi基材中形成HCP相的ErNi5 (CaCu5型)析出物,而HCP相析出物的體積分率隨著Er含量的增加而增加。而晶粒大小則由18.1 µm減小到 5.1 µm。在機械性質方面,極限抗拉強度(UTS)、降伏強度(YS)和維氏硬度均隨Er添加量增加而增加,但延展性降低。與 CoCrNi中熵合金相比,(CoCrNi)98.7Er1.3的 UTS和維氏硬度分別從 878 MPa 增加到1143 MPa和212 HV到263 HV。此外,析出物和CoCrNi基材的奈米壓痕量測表明,HCP相析出物具有高硬度(~7.87 GPa)的特性,幾乎是 FCC 相基材(~4.72 GPa)的兩倍。在塊材(CoCrNi)100-xErx機械性質的提升是由於固溶強化、晶界強化和析出強化。在薄膜方面,CoCrNiEr合金薄膜則是利用磁控濺鍍機以CoCrNi合金靶和Er靶共鍍的方式將(CoCrNi)100-xErx薄膜鍍在單晶矽(111)的基板上,透過調控施加在Er靶上的功率來得到不同Er含量的(CoCrNi)100-xErx薄膜(x = 0, 0.89, 1.93, 2.57, 3.35, 4.08),和塊材的結果有所不同,在CoCrNiEr薄膜的微結構中並無觀察到HCP相的ErNi5析出物,結構維持單一的FCC相,直到最終形成完全的非晶相,由TEM 明場相的觀察,在x = 0, 0.89, 1.93, 2.57, 3.35呈現柱狀晶的結構,而柱狀晶的寬度則隨著Er含量增加而減少,奈米壓痕數據顯示硬度值和楊氏係數隨著Er含量增加而增加,由於固溶強化以及細晶粒尺寸強化使得在x = 1.93兩項數據分別達到最大值12.64 GPa和223.48 GPa,但由於在x > 1.93逐漸出現了結構較為鬆散的非晶相和inverse Hall-Petch effect因此此時硬度和楊氏係數皆下降,相同的強度變化趨勢也可以在微型柱壓縮試驗中看到。zh_TW
dc.description.abstractIn this study, the effects of Er content on the microstructures and mechanical properties of Er-doped CoCrNi medium entropy alloys (MEAs) and CoCrNi medium entropy alloy films (MEAFs) were systematically investigated. In the bulk alloy part, a series of Er-doped CoCrNi MEAs with 0, 0.1, 0.3, 0.5, 0.7 ,1.0, and 1.3 at.% Er was fabricated by vacuum arc melting. It was found that Er element addition led to the formation of Er-Ni riched hexagonal phase (CaCu5 type) precipitates embedded in the original FCC matrix. The volume fraction of the HCP phase increased with the increase in the Er content. The grain sizes decreased from 18.1 to 5.1 µm as the Er content increased from 0 to 1.3 at.%. Both the ultimate tensile strength (UTS) and Vickers hardness increased with the increasing Er content, while the ductility decreased. Compared to the CoCrNi MEA, the UTS and Vickers hardness of (CoCrNi)98.7Er1.3 MEA increased from 878 MPa to 1143 MPa and 212 HV to 263 HV, respectively. In addition, the nanoindentation measurements on different phases indicated that the HCP phase had a high hardness ( ~ 7.87 GPa), which was almost two times of the FCC phase ( ~ 4.72 GPa). The strengthening mechanisms of the present alloys included solid-solution strengthening, grain boundary strengthening, and precipitation strengthening. In the thin film part, a series of (CoCrNi)100-xErx (x = 0, 0.89, 1.93, 2.57, 3.35, and 4.08) MEAFs was fabricated by radio frequency magnetron (RF) co-sputtering. A crystal structure transition from single FCC phase to amorphous structure could be observed from XRD and TEM results with the increasing Er amounts from 0 to 4.08 at.%. According to TEM results, the SAED pattern of Er1.93 revealed a crystal-amorphous dual-phase structure. Nanoindentation tests indicated an initial increase in hardness and Young’s modulus, reached a maxima value at x = 1.93, and then decreased with further Er addition. Similar trends were also shown in the yield strength and compressive strength. The initial increment of mechanical properties could be ascribed to the solid solution strengthening and grain refinement strengthening with small Er additions. However, the excess Er addition would be accompanied by the inverse Hall–Petch effect, leading to the softening.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:41:50Z (GMT). No. of bitstreams: 1
U0001-0308202215531800.pdf: 15221600 bytes, checksum: ee23525c3c50123aa6bf97a3e2fd557c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 Chapter 2 Literature Review 6 2.1 High Entropy Alloys (HEAs) and Medium Entropy Alloys (MEAs) 6 2.1.1 Definition of HEAs and MEAs 6 2.2 Four Core Effects of HEAs and MEAs 8 2.2.1 High entropy effect 8 2.2.2 Sluggish diffusion effect 10 2.2.3 Severe lattice distortion effect 11 2.2.3 Cocktail effect 12 2.3 Mechanical Behavior of HEAs and MEAs 14 2.3.1 Mechanical properties of HEAs/MEAs 14 2.3.2 CoCrNi MEAs/MEAFs 14 2.3.3 Effects of element addition 23 2.4 Rare Earth Element Addition 32 2.4.1 Er addition to Aluminum alloy 33 2.4.2 Y addition to HEAs/MEAs 34 2.4.3 Gd addition to HEAs 35 Chapter 3 Experimental 36 3.1 Sample preparations 36 3.1.1 Bulk alloy 36 3.1.2 Thin film 36 3.2 Analysis instrument 37 3.2.1 X-ray Diffraction (XRD) 37 3.2.2 Scanning electron microscopy (SEM) 38 3.2.3 Transmission electron microscopy (TEM) 39 3.2.4 Materials testing machine (MTS) 39 3.2.5 Vickers hardness tester 40 3.2.6 Nanoindentation 40 3.2.7 Micropillar compression tests 41 Chapter 4 Results and Discussion 42 4.1 (CoCrNi)100-xErx Bulk MEAs 42 4.1.1 Crystal structure and composition 42 4.1.2 Microstructure 44 4.1.3 Mechanical properties 52 4.1.4 Strengthening mechanism 56 4.1.5 Fracture surface 58 4.2 (CoCrNi)100-xErx Thin Film MEAFs 60 4.2.1 Chemical compositions 60 4.2.2 Crystal structure 61 4.2.3 Microstructure 62 4.2.4 Mechanical properties 68 Chapter 5 Conclusion 76 5.1 (CoCrNi)100-xErx Bulk MEAs 76 5.2 (CoCrNi)100-xErx MEAFs 77 Chapter 6 Future work 79 References 80
dc.language.isoen
dc.subject顯微結構zh_TW
dc.subject機械性質zh_TW
dc.subject中熵合金zh_TW
dc.subject稀土元素 Er 添加zh_TW
dc.subject中熵合金薄膜zh_TW
dc.subjectmicrostructureen
dc.subjectmedium entropy alloyen
dc.subjectmedium entropy alloy filmsen
dc.subjectrare element Er additionen
dc.subjectmechanical propertiesen
dc.titleEr 對於 CoCrNi 中熵合金顯微結構與機械性質的影響zh_TW
dc.titleEffects of erbium additions on the microstructures and mechanical properties of CoCrNi medium entropy alloysen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊哲人(Zhe-Ren Yang),郭俞麟(Yu-Lin Kuo)
dc.subject.keyword中熵合金,中熵合金薄膜,稀土元素 Er 添加,機械性質,顯微結構,zh_TW
dc.subject.keywordmedium entropy alloy,medium entropy alloy films,rare element Er addition,microstructure,mechanical properties,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202202014
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-08-18-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-0308202215531800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
14.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved