請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85070完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝之真(Chih-Chen Hsieh) | |
| dc.contributor.author | Yi-Fan Tsai | en |
| dc.contributor.author | 蔡翌凡 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:41:43Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-16 | |
| dc.identifier.citation | 1.謝明勳, 於脂雙層上拉伸 DNA 與其基因圖譜應用之研究, in 化學工程學研究所. 2014, 國立台灣大學'. p. 1-113. 2.Chang, C.-M., et al., Anomalous diffusion of DNA on a supported cationic lipid membrane. EPL (Europhysics Letters), 2015. 109(3): p. 38002. 3.王柏翔, DNA 於脂雙層上擴散行為受離子強度與膜電荷密度影響之研究, in 化學工程學研究所. 2018, 國立臺灣大學. p. 1-78. 4.李杰容, 研究基材表面粗糙度對DNA在脂雙層上擴散行為之影響, in 化學工程學研究所. 2020, 國立臺灣大學. p. 1-101. 5.郭厚均, DNA 於脂雙層上自發伸展機制及侷限行為之研究, in 臺灣大學化學工程學研究所學位論文. 2016. p. 1-95. 6.姜奕安, 利用布朗動態法研究基材曲率對脂質排列及DNA在脂雙層上自發伸展機制及侷限行為之影響, in 化學工程學研究所. 2020, 國立臺灣大學. p. 1-96. 7.Manning, G.S., The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophysical journal, 2006. 91(10): p. 3607-3616. 8.王靜寬, 模擬 DNA 於脂雙層上自發展開之行為, in 化學工程學研究所. 2016, 國立台灣大學. p. 1-83. 9.Teraoka, I., Polymer Solutions: an Introduction to Physical Properties 2002. John Wiley & Sons: New York, NY. 10.Gedde, U.W. and M.S. Hedenqvist, Conformations in Polymers, in Fundamental Polymer Science. 2019, Springer. p. 37-74. 11.MacKintosh, F.C., Active diffusion: the erratic dance of chromosomal loci. Proceedings of the National Academy of Sciences, 2012. 109(19): p. 7138-7139. 12.張恩誠, 以隨機旋轉動力學法模擬侷限於二維狹縫中DNA之行為, in 化學工程學研究所. 2012, 國立臺灣大學: 台北市. p. 1-100. 13.Liu, Y., et al., Influences of three kinds of springs on the retraction of a polymer ellipsoid in dissipative particle dynamics simulation. Journal of Polymer Science Part B: Polymer Physics, 2010. 48(23): p. 2484-2489. 14.張名熠, 以布朗動態法研究表面正電荷密度及溶液離子強度對DNA在脂雙層上擴散行為之影響, in 化學工程學研究所. 2018, 國立臺灣大學: 台北市. p. 1-82. 15.Huang, A. and A. Bhattacharya, DNA confined in a two-dimensional strip geometry. EPL (Europhysics Letters), 2014. 106(1): p. 18004. 16.Clark, M.A., J. Choi, and M. Douglas, Biology 2e. 2018: Rice University. 17.Lee, Y.-C., T.F. Taraschi, and N. Janes, Support for the shape concept of lipid structure based on a headgroup volume approach. Biophysical journal, 1993. 65(4): p. 1429. 18.Israelachvili, J.N., Intermolecular and surface forces. 2011: Academic press. 19.McMahon, H.T. and E. Boucrot, Membrane curvature at a glance. Journal of cell science, 2015. 128(6): p. 1065-1070. 20.Callan-Jones, A., B. Sorre, and P. Bassereau, Curvature-driven lipid sorting in biomembranes. Cold Spring Harbor perspectives in biology, 2011. 3(2): p. a004648. 21.Huang, M.-J., et al., Coarse-grain model for lipid bilayer self-assembly and dynamics: Multiparticle collision description of the solvent. The Journal of Chemical Physics, 2012. 137(5): p. 055101. 22.Skjevik, Å.A., et al., Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Physical Chemistry Chemical Physics, 2016. 18(15): p. 10573-10584. 23.Cooke, I.R. and M. Deserno, Coupling between lipid shape and membrane curvature. Biophysical journal, 2006. 91(2): p. 487-495. 24.Terzi, M.M. and M. Deserno, Lipid membranes: From self-assembly to elasticity, in The Role of Mechanics in the Study of Lipid Bilayers. 2018, Springer. p. 105-166. 25.Cooke, I.R. and M. Deserno, Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. The Journal of chemical physics, 2005. 123(22): p. 224710. 26.Maier, B. and J.O. Rädler, Conformation and self-diffusion of single DNA molecules confined to two dimensions. Physical review letters, 1999. 82(9): p. 1911. 27.Xie, A.F. and S. Granick, Phospholipid membranes as substrates for polymer adsorption. Nature Materials, 2002. 1(2): p. 129-133. 28.Maier, B. and J.O. Rädler, DNA on fluid membranes: a model polymer in two dimensions. Macromolecules, 2000. 33(19): p. 7185-7194. 29.Maier, B. and J.O. Rädler, Conformation and Self-Diffusion of Single DNA Molecules Confined to Two Dimensions. Physical Review Letters, 1999. 82(9): p. 1911-1914. 30.Olson, D.J., et al., Electrophoresis of DNA adsorbed to a cationic supported bilayer. Langmuir, 2001. 17(23): p. 7396-7401. 31.Kahl, V., et al., Conformational dynamics of DNA‐electrophoresis on cationic membranes. Electrophoresis, 2009. 30(8): p. 1276-1281. 32.Hochrein, M.B., et al., DNA molecules on periodically microstructured lipid membranes: localization and coil stretching. Physical Review E, 2007. 75(2): p. 021901. 33.Dias, R., et al., Polyion adsorption onto catanionic surfaces. A Monte Carlo study. The Journal of Physical Chemistry B, 2005. 109(23): p. 11781-11788. 34.Saxton, M.J., Anomalous diffusion due to obstacles: a Monte Carlo study. Biophysical journal, 1994. 66(2): p. 394-401. 35.Li, J., et al., Effects of surface roughness on the self-diffusion dynamics of a single polymer. Soft Matter, 2018. 14(18): p. 3550-3556. 36.Li, J., et al., Unusual self-diffusion behaviors of polymer adsorbed on rough surfaces. The Journal of Chemical Physics, 2019. 150(6): p. 064902. 37.Sorre, B., et al., Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proceedings of the National Academy of Sciences, 2009. 106(14): p. 5622-5626. 38.Baumgart, T., et al., Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annual review of physical chemistry, 2011. 62: p. 483-506. 39.Kamal, M.M., et al., Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proceedings of the National Academy of Sciences, 2009. 106(52): p. 22245-22250. 40.Goetz, R. and R. Lipowsky, Computer simulations of bilayer membranes: self-assembly and interfacial tension. The Journal of chemical physics, 1998. 108(17): p. 7397-7409. 41.Goetz, R., G. Gompper, and R. Lipowsky, Mobility and elasticity of self-assembled membranes. Physical review letters, 1999. 82(1): p. 221. 42.Van Gunsteren, W. and H. Berendsen, Algorithms for Brownian dynamics. Molecular Physics, 1982. 45(3): p. 637-647. 43.Do Carmo, M.P., Differential geometry of curves and surfaces: revised and updated second edition. 2016: Courier Dover Publications. 44.Kohlmeyer, A. and J. Vermaas, TopoTools. 2017, Zenodo. 45.梁祐榮, 於脂雙層上利用表面電泳拉伸DNA以加速建立基因圖譜之研究, in 化學工程學研究所. 2021, 國立臺灣大學. p. 1-132. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85070 | - |
| dc.description.abstract | 本實驗室先前開發出新型的DNA基因圖譜分析平台,其原理是在具有週期性溝槽結構之基材上鋪設帶正電脂雙層後,將帶負電的DNA吸附於脂雙層上,利用DNA會聚集在基材溝槽的正曲率處進行自發性伸展的特性,使DNA上的特定序列能被精確標定,從而產生基因圖譜。為了將本平台應用在醫療檢測上,我們以優化此檢測平台為目標,然而受限於實驗上觀察方法的限制,許多現象的背後機制難以驗證,因此本研究利用布朗動態法(Browian dynamics,BD)來模擬並進一步解析DNA於脂雙層上之特殊行為背後的基本原理。本研究之重點有二:(1)探討基材表面的正曲率處所引發的靜電位能井對DNA的擴散行為及型態之影響,(2)重現DNA吸附於脂雙層後擴散至正曲率面進行自發性伸展的過程。 在先前的實驗研究中發現,當DNA吸附於脂雙層上,會在短延遲時間下出現次擴散行為,代表DNA的運動行為因為某種不明原因而被侷限;而我們的研究團隊已經證明在基材溝槽的正曲率處具有一靜電位能井,使DNA可以感受到更低的靜電位能而聚集。故我們推測實驗上所使用的基材表面並不平整且具有局部的正曲率,使DNA鏈段可能會被侷限於上述靜電位能井中並造成次擴散現象。 為了驗證我們的假設,我們分別建立了凸結構和凹結構這兩種基材結構來模擬實驗上具有突起和凹陷的基材表面形貌。我們的模擬結果顯示,當DNA吸附於脂雙層後,其鏈段的確會被侷限於具有靜電位能井的正曲率處,使DNA的運動行為在短延遲時間下呈現次擴散,並在長延遲時間下回到正規擴散。為了進一步確認靜電位能井對DNA擴散行為的影響,我們使用了三個參數來增加靜電位能井的深度,也就是增加基材曲率、降低離子強度和增加脂雙層正電荷濃度。模擬結果顯示,當靜電位能井的深度較深時,不僅DNA的環動半徑較小,次擴散行為也更嚴重,與實驗上觀察到的趨勢一致,證明DNA的次擴散現象確實是由位能井所引起的。 對於DNA在溝槽的正曲率處進行自發性伸展的現象,先前我們的研究團隊已經分別透過實驗和模擬探討了其背後的基本原理,而在本研究中我們改良了原先的模擬系統,重現了實驗上DNA吸附於脂雙層後擴散至具有正曲率的彎曲面進行自發性伸展的過程,並探討了彎曲面的曲率大小對DNA伸展率的影響,模擬結果顯示當DNA達到高度伸展態時(平均伸展率大於80%),繼續增加基材曲率對DNA的平均伸展率的影響不大。 | zh_TW |
| dc.description.abstract | Our lab has previously developed a new DNA gene mapping platform utilizing the phenomenon that negatively charged DNA can adsorb on and spontaneously extend along the grooves on a glass substrate covered with cationic lipid bilayers. In order to apply this platform to practical medical diagnostics, we aim at optimizing this mapping platform. However, it is difficult to understand the mechanism behind the unexpected DNA behaviors due to the limitations of experimental observation methods. Therefore, we use Brownian dynamics (BD) to simulate and investigate the unexpected behavior of DNA adsorbed on lipid bilayers. This research focuses on two main topics: (1) To investigate how the diffusion behavior and conformation of DNA affected by the electrostatic potential well induced by the positive curvature of the substrate . (2) To reproduce the phenomenon that DNA adsorb on lipid bilayers and spontaneously extend along the places with positive curvature. Recent studies have reported that DNA adsorbed on cationic lipid bilayers exhibit an unexpected sub-diffusion behavior, but the cause of the phenomenon remains unclear. Previously our lab has also found that DNA adsorb on cationic lipid bilayers and aggregate spontaneously at the places with positive curvature where exists an electrostatic potential wells. Therefore, we speculated that these topology-induced potential wells are also the origin of the DNA sub-diffusion. To verify our speculation, we constructed in our simulations a substrate consisting of cavity and protrusion structures to represent the topology observed in experiments. The simulation results showed that those places with positive curvature do restrict the motion of DNA and induce sub-diffusion behavior at short delay time while the normal diffusion is recovered at long delay time. In addition, under the conditions of deeper potential wells: higher substrate curvature, lower ionic strength, and higher cationic lipid concentration, the radius of gyration of DNA decreases and the sub-diffusion behavior becomes more significant, also in accordance with our observation in experiments. Therefore, the simulation results support our speculation that those topology-induced potential wells do cause DNA sub-diffusion. In the second part of this study, we improved our simulation model with a substrate of more realistic topology and successfully reproduced the process of DNA adsorption on lipid bilayers and its spontaneous extension along the places with positive curvature. Furthermore, we also simulated the relationship between the substrate curvature and the degree of DNA extension. We found that when DNA reaches a highly stretched state (the average degree of extension is greater than 80%), increasing the substrate curvature has weak effect on DNA extension. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:41:43Z (GMT). No. of bitstreams: 1 U0001-1108202210472200.pdf: 11494360 bytes, checksum: 28b354d6370d41750556cde19ddc359d (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iv 目錄 vi 圖目錄 x 表目錄 xxvii 符號表 xxviii 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第2章 文獻回顧 3 2.1 DNA的物理性質 3 2.1.1 去氧核糖核苷酸(DNA) 3 2.1.2 堅韌長度(Persistence length) 3 2.1.3 輪廓長度(Contour length, Lc) 4 2.1.4 環動半徑(Radius of gyration) 5 2.1.5 擴散行為(Diffusion behavior) 6 2.2 DNA高分子模型 8 2.2.1 Bead-spring model 9 2.3 脂質 12 2.3.1 脂質結構 12 2.3.2 脂質構型與自組裝 12 2.3.3 膜曲率與脂質於彎曲面排序(Lipid sorting) 14 2.4 脂質模型 16 2.4.1 模擬脂質構型對脂質排序之影響 16 2.4.2 模擬尾基之間的疏水作用力對脂質自組裝之影響 19 2.5 DNA在脂雙層上的行為 21 2.5.1 DNA吸附於帶正電脂雙層 21 2.5.2 DNA在脂雙層上之次擴散行為 25 2.5.3 DNA在脂雙層上之電泳行為 27 2.5.4 DNA於脂雙層上進行自發性伸展 30 2.5.5 模擬高分子在二維平面之行為 32 2.6 本實驗室團隊對DNA吸附於脂雙層上行為之研究 37 2.6.1 DNA自發性伸展平台 37 2.6.2 模擬立體效應及幾何效應對DNA自發性伸展之影響 42 2.6.3 DNA在脂雙層表面上的擴散行為 44 2.6.4 模擬DNA在脂雙層平面上的擴散行為 50 2.7 本研究模擬策略之設計 53 第3章 模擬方法 55 3.1 布朗動態法(BD) 55 3.2 本研究脂質模型 58 3.2.1 體積排斥力 59 3.2.2 FENE彈簧力 60 3.2.3 靜電作用力 61 3.2.4 疏水作用力 62 3.3 脂質與基材間的作用力 64 3.4 本研究DNA模型 64 3.5 基材設計 65 3.5.1 凹凸基材結構 65 3.5.2 週期性彎曲面基材 66 3.6 週期性邊界(Period boundary conditions, PBC) 67 3.7 模擬參數 67 第4章 結果與討論 69 4.1 探討脂質於曲面上的分佈情形 69 4.1.1 基材形貌對脂質分佈之影響 70 4.1.2 靜電作用力對脂質分佈之影響 74 4.1.3 結構曲率對脂質分佈之影響 76 4.1.4 曲面上的脂質分布之總結 78 4.2 探討基材形貌對DNA在脂雙層上擴散行為及型態變化的影響 78 4.2.1 比較不同的基材結構(凸結構和凹結構) 78 4.2.2 基材結構的面積覆蓋率對DNA擴散行為及型態變化的影響 85 4.2.3 改變結構曲率對DNA擴散行為及型態變化的影響 99 4.2.4 和實驗結果比較 105 4.3 探討離子強度和脂雙層正電荷濃度對DNA在脂雙層上擴散行為及型態變化的影響 107 4.3.1 改變離子強度(德拜長度)對DNA擴散行為及型態變化的影響 108 4.3.2 改變脂雙層正電荷濃度對DNA擴散行為及型態變化的影響 110 4.3.3 探討凸結構和凹結構之間的競爭關係 114 4.3.4 和實驗結果比較 116 4.4 研究DNA於週期性曲面上的伸展行為 116 4.4.1 DNA經由擴散來到基材彎曲處並進行自發性伸展 116 4.4.2 DNA於週期性彎曲面上進行自發性伸展 120 4.4.3 彎曲面的曲率變化對DNA平均伸展率的影響 121 4.4.4 和實驗結果比較 123 第5章 結論 126 第6章 參考文獻 128 | |
| dc.language.iso | zh-TW | |
| dc.subject | 布朗動態法 | zh_TW |
| dc.subject | DNA自發性伸展 | zh_TW |
| dc.subject | 次擴散 | zh_TW |
| dc.subject | DNA | zh_TW |
| dc.subject | 脂雙層 | zh_TW |
| dc.subject | DNA | en |
| dc.subject | Sub diffusion | en |
| dc.subject | DNA extension | en |
| dc.subject | Brownian dynamics | en |
| dc.subject | Lipid bilayers | en |
| dc.title | 利用布朗動態法研究基材形貌對DNA在脂雙層上擴散及伸展行為之影響 | zh_TW |
| dc.title | Brownian Dynamics Simulations on the Influence of Substrate Topology to Diffusion and Extension Behavior of Adsorbed DNA on Lipid Bilayers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏憲鴻(Hsien-Hung Wei),莊怡哲(Yi-Je Juang),趙玲(Ling Chao) | |
| dc.subject.keyword | DNA,脂雙層,布朗動態法,次擴散,DNA自發性伸展, | zh_TW |
| dc.subject.keyword | DNA,Lipid bilayers,Brownian dynamics,Sub diffusion,DNA extension, | en |
| dc.relation.page | 130 | |
| dc.identifier.doi | 10.6342/NTU202202286 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-08-16 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202210472200.pdf 未授權公開取用 | 11.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
