Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85068
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Chen Hsieh)
dc.contributor.authorYuan-Hung Tuanen
dc.contributor.author段沅宏zh_TW
dc.date.accessioned2023-03-19T22:41:35Z-
dc.date.copyright2022-08-18
dc.date.issued2022
dc.date.submitted2022-08-16
dc.identifier.citation1. US Genomics. 2. 梁祐榮, 於脂雙層上利用表面電泳拉伸 DNA 以加速建立基因圖譜之研究. 2021, 國立臺灣大學化學工程研究所: 碩士論文. 3. Watson, J.D. and F.H. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 1953. 171(4356): p. 737-738. 4. Feng, B., et al., Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects. Proceedings of the National Academy of Sciences, 2019. 116(35): p. 17169-17174. 5. P.C. Turner, A.G.M., A.D. Bates & M.R.H. White, 分子生物學速成 Instant Notes Molecular Biology. 合記圖書出版社, 2003. 6. Hsieh, C.-C., A. Balducci, and P.S. Doyle, Ionic effects on the equilibrium dynamics of DNA confined in nanoslits. Nano letters, 2008. 8(6): p. 1683-1688. 7. Odijk, T., POLYELECTROLYTES NEAR THE ROD LIMIT. Journal of Polymer Science Part B-Polymer Physics, 1977. 15(3): p. 477-483. 8. Maier, B. and J.O. Rädler, Conformation and Self-Diffusion of Single DNA Molecules Confined to Two Dimensions. Physical Review Letters, 1999. 82(9): p. 1911-1914. 9. 童世煌, 高分子物理-固態物理. 10. Iain Johnson, M.T.Z.S., A GUIDE TO FLUORESCENT PROBES AND LABELING TECHNOLOGIES 11th Edition. 2010. 11. Günther, K., M. Mertig, and R. Seidel, Mechanical and structural properties of YOYO-1 complexed DNA. Nucleic Acids Research, 2010. 38(19): p. 6526-6532. 12. Larsson, A., et al., Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized light spectroscopy. Journal of the American Chemical Society, 1994. 116(19): p. 8459-8465. 13. Kucharska, K., et al., Two Intercalation Mechanisms of Oxazole Yellow Dimer (YOYO-1) into DNA. Molecules, 2021. 26(12): p. 3748. 14. Kundukad, B., J. Yan, and P.S. Doyle, Effect of YOYO-1 on the mechanical properties of DNA. Soft Matter, 2014. 10(48): p. 9721-9728. 15. Smith, D.E., T.T. Perkins, and S. Chu, Dynamical scaling of DNA diffusion coefficients. Macromolecules, 1996. 29(4): p. 1372-1373. 16. Brochard, F. and P.G. Degennes, Dynamics of Confined Polymer-Chains. Journal of Chemical Physics, 1977. 67(1): p. 52-56. 17. Reisner, W., et al., Statics and dynamics of single DNA molecules confined in nanochannels. Physical Review Letters, 2005. 94(19). 18. Rivetti, C., M. Guthold, and C. Bustamante, Scanning force microscopy of DNA deposited onto mica: EquilibrationversusKinetic trapping studied by statistical polymer chain analysis. Journal of molecular biology, 1996. 264(5): p. 919-932. 19. Hsieh, C.C. and P.S. Doyle, Studying confined polymers using single-molecule DNA experiments. Korea-Australia Rheology Journal, 2008. 20(3): p. 127-142. 20. Israelachvili, J.N., Intermolecular and surface forces. 2011: Academic press. 21. Baroud, M., et al., The evolution of nucleosidic analogues: Self-assembly of prodrugs into nanoparticles for cancer drug delivery. Nanoscale Advances, 2021. 3(8): p. 2157-2179. 22. Hardy, G.J., R. Nayak, and S. Zauscher, Model cell membranes: Techniques to form complex biomimetic supported lipid bilayers via vesicle fusion. Current Opinion in Colloid & Interface Science, 2013. 18(5): p. 448-458. 23. Jackman, J.A. and N.-J. Cho, Supported lipid bilayer formation: beyond vesicle fusion. Langmuir, 2020. 36(6): p. 1387-1400. 24. Hamai, C., et al., Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion. Biophysical journal, 2006. 90(4): p. 1241-1248. 25. Castellana, E.T. and P.S. Cremer, Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science Reports, 2006. 61(10): p. 429-444. 26. Sonnleitner, A., G. Schütz, and T. Schmidt, Free Brownian motion of individual lipid molecules in biomembranes. Biophysical journal, 1999. 77(5): p. 2638-2642. 27. Groves, J.T., N. Ulman, and S.G. Boxer, Micropatterning fluid lipid bilayers on solid supports. Science, 1997. 275(5300): p. 651-3. 28. Lenz, P., C.M. Ajo-Franklin, and S.G. Boxer, Patterned supported lipid bilayers and monolayers on poly (dimethylsiloxane). Langmuir, 2004. 20(25): p. 11092-11099. 29. Faysal, K.R., et al., Lipid bilayers are long-lived on solvent cleaned plasma-oxidized poly (dimethyl) siloxane (ox-PDMS). PloS one, 2017. 12(1): p. e0169487. 30. Olson, D.J., et al., Electrophoresis of DNA Adsorbed to a Cationic Supported Bilayer. Langmuir, 2001. 17(23): p. 7396-7401. 31. Reddy, P.M., et al., Functionalized magnetic iron oxide (Fe3O4) nanoparticles for capturing gram-positive and gram-negative bacteria. Journal of biomedical nanotechnology, 2014. 10(8): p. 1429-1439. 32. Teng, C.-H., et al., Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis. Analytical chemistry, 2004. 76(15): p. 4337-4342. 33. Fatima, H. and K.-S. Kim, Magnetic nanoparticles for bioseparation. Korean Journal of Chemical Engineering, 2017. 34(3): p. 589-599. 34. Ganapathe, L.S., et al., Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry, 2020. 6(4): p. 68. 35. Young, A.D. and J.P. Gillung, Phylogenomics—principles, opportunities and pitfalls of big‐data phylogenetics. Systematic Entomology, 2020. 45(2): p. 225-247. 36. Wang, Y., et al., Nanopore sequencing technology, bioinformatics and applications. Nature biotechnology, 2021. 39(11): p. 1348-1365. 37. Bleidorn, C., Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Systematics and biodiversity, 2016. 14(1): p. 1-8. 38. Wenger, A.M., et al., Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature biotechnology, 2019. 37(10): p. 1155-1162. 39. Eid, J., et al., Real-time DNA sequencing from single polymerase molecules. Science, 2009. 323(5910): p. 133-138. 40. Gruszka, D., et al., Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. Essays in Biochemistry, 2021. 65(1): p. 51-66. 41. Watson, J.D., DNA:生命的秘密 DNA:The secret of life. 2003: 時報文化. 42. Chan, E.Y., et al., DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Res, 2004. 14(6): p. 1137-46. 43. Chen, Y.-F., G. Blab, and J.-C. Meiners, Stretching sub-micron DNA fragments with optical tweezers. NanoScience + Engineering. Vol. 6644. 2007: SPIE. 44. Neuman, K.C. and A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature methods, 2008. 5(6): p. 491-505. 45. Bensimon, A., et al., Alignment and sensitive detection of DNA by a moving interface. Science, 1994. 265(5181): p. 2096-8. 46. Esmail Nazari, Z. and L. Gurevich, Controlled deposition and combing of DNA across lithographically defined patterns on silicon. Beilstein journal of nanotechnology, 2013. 4: p. 72-76. 47. 厲承翰, 於改良式漸縮微流道拉伸DNA之研究. 2012, 國立臺灣大學化學工程研究所: 碩士論文. 48. Douville, N., D. Huh, and S. Takayama, DNA linearization through confinement in nanofluidic channels. Analytical and Bioanalytical Chemistry, 2008. 391(7): p. 2395-2409. 49. Reisner, W., J.N. Pedersen, and R.H. Austin, DNA confinement in nanochannels: physics and biological applications. Rep Prog Phys, 2012. 75(10): p. 106601. 50. Dorfman, K.D., et al., Hydrodynamics of DNA confined in nanoslits and nanochannels. The European physical journal. Special topics, 2014. 223(14): p. 3179-3200. 51. Lam, E.T., et al., Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol, 2012. 30(8): p. 771-6. 52. Hochrein, M.B., et al., DNA localization and stretching on periodically microstructured lipid membranes. Phys Rev Lett, 2006. 96(3): p. 038103. 53. 郭厚均, DNA 於脂雙層上自發伸展機制及侷限行為之研究. 2016, 國立台灣大學化學工程研究所. 54. 謝明勳, 於脂雙層上拉伸DNA與其基因圖譜應用之研究. 2014, 國立台灣大學化學工程研究所: 碩士論文. 55. 郭朝琛, 以布朗動態法模擬由正向應力驅動DNA電泳分離. 2019, 國立台灣大學化學工程研究所. 56. Zohar, H. and S.J. Muller, Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA. Nanoscale, 2011. 3(8): p. 3027-3039. 57. Lukinavicius, G., et al., Targeted labeling of DNA by methyltransferase-directed transfer of activated groups (mTAG). J Am Chem Soc, 2007. 129(10): p. 2758-9. 58. Tomkuvienė, M., et al., Repurposing enzymatic transferase reactions for targeted labeling and analysis of DNA and RNA. Curr Opin Biotechnol, 2019. 55: p. 114-123. 59. Aiba, Y., M. Shibata, and O. Shoji, Sequence-Specific Recognition of Double-Stranded DNA by Peptide Nucleic Acid Forming Double-Duplex Invasion Complex. Applied Sciences, 2022. 12(7): p. 3677. 60. Vilaivan, T., Fluorogenic PNA probes. Beilstein Journal of Organic Chemistry, 2018. 14(1): p. 253-281. 61. Nielsen, P.E., Peptide nucleic acid targeting of double-stranded DNA, in Methods in Enzymology. 2001, Elsevier. p. 329-340. 62. Zohar, H., et al., Peptide Nucleic Acids as Tools for Single-Molecule Sequence Detection and Manipulation. Nano Letters, 2010. 10(11): p. 4697-4701. 63. 李宏恩, 以缺口標記法於脂雙層伸展之DNA上快速建立DNA圖譜. 2015, 國立台灣大學化學工程研究所. 64. Krerowicz, S.J., J.P. Hernandez-Ortiz, and D.C. Schwartz, A simple dialysis device for large DNA molecules. BioTechniques, 2019. 66(2): p. 93-95. 65. https://bionanogenomics.com/. 66. Wu, K., et al., Investigation of Commercial Iron Oxide Nanoparticles: Structural and Magnetic Property Characterization. ACS omega, 2021. 6(9): p. 6274-6283. 67. Erickson, H.P., Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biological procedures online, 2009. 11(1): p. 32-51. 68. Becker, L., et al., Comparison of six commercial kits to extract bacterial chromosome and plasmid DNA for MiSeq sequencing. Scientific reports, 2016. 6(1): p. 1-5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85068-
dc.description.abstract近年來交通便利性提升使傳染病更容易傳播,在醫療上需分析致病原才能達到精準治療,利用直接線性分析法建立DNA基因圖譜即為有潛力應用於疾病檢測的技術。其概念是先將DNA特定序列處以螢光標記後再將DNA拉伸呈線性,則DNA上的螢光標記點數量與相對位置可代表此樣本DNA的專一條碼,與基因資料庫比對後即可辨識病原體。相較於傳統基因檢測的方法,直接線性分析法不需要PCR步驟增量DNA也不需以膠體電泳做分析,因此具有操作簡單且省時的優勢。 直接線性分析法主要包含DNA標定及DNA拉伸的技術。本研究團隊先前已成功展示如何在脂雙層上拉伸DNA,並利用bisPNA標定λ-DNA以建立其基因圖譜。此基因圖譜分析平台除了具有低成本、簡易操作、圖譜準確性高等優點,也因使用bisPNA標定法而具有較高的序列選擇彈性,於疾病檢測技術上將更具潛力。然而本研究團隊先前以bisPNA標定DNA的時間需要約21小時,其中19小時是利用透析法將反應後多餘的bisPNA移除以避免錯誤標記點,使得此標定方法在實際醫療應用上受到限制,因此加速bisPNA標定的過程是本研究的主要目標。此外由於先前研究主要是使用實驗上常見的標準短鏈λ-DNA(48502bp),故為了展示此基因圖譜平台可用於更廣泛的DNA,我們不但自行合成長鏈λ-DNA多倍體並建立其基因圖譜,也進一步檢驗以此技術拉伸大腸桿菌DNA的可行性。 於本研究中為了加速移除反應後多餘bisPNA的步驟,我們提出利用奈米磁珠捕獲法取代先前使用的透析法。奈米磁珠捕獲法的概念是利用表面帶負電的奈米磁珠捕獲帶正電的bisPNA,並以強力磁鐵快速移除帶有bisPNA的奈米磁珠。在實驗上我們先對此方法進行可行性及操作參數測試,並透過此捕獲法成功建立高準確性的短鏈λ-DNA基因圖譜。實驗結果顯示我們建立的奈米磁珠捕獲bisPNA流程,可以取代原本相當耗時的透析法,將此分離步驟縮短至1小時內,整體加速近19倍。 由於長鏈λ-DNA多倍體上標記點的理論位置與數量即為單一λ-DNA的倍數,因此較容易驗證我們所開發基因圖譜平台對長鏈DNA的標定結果。我們自行合成長鏈λ-DNA多倍體(≈300kbp)並配合改良後的bisPNA標定法進行標記,實驗結果顯示隨著標定過程進行,長鏈λ-DNA多倍體的長度會逐漸減小,且雖然我們可以在約3倍λ-DNA(150kbp)上產生標記點,但其數量以及間隔皆與理論不符。造成上述實驗結果的原因我們認為與利用接合酵素合成λ-DNA多倍體有關,因為接合酵素可能會影響標定反應之結果,也可能引發使DNA長度減小的未知反應。 最後為了測試真實細菌DNA與本團隊所開發脂雙層拉伸技術之相容性。我們透過市售DNA萃取套組取得大腸桿菌的DNA,並成功以脂雙層裝置拉伸約350kbp的大腸桿菌片段,此片段大小已接近某些致病原之DNA大小如摩氏摩根氏菌(538kbp)及生殖道黴漿菌(580kbp),故本研究證明真實細菌DNA與脂雙層拉伸系統具相容性,也展現了本研究團隊所開發之基因圖譜平台應用於快速篩檢致病原之潛力。zh_TW
dc.description.abstractDNA optical gene mapping by direct linear analysis (DLA) is an efficient method to extract low-resolution genetic information from DNA for genomic study and pathogen identification. The concept of DLA is first to label specific sequences on DNA with fluorescent markers and then to linearize DNA to read the genetic information from the number and the positions of the markers. In brief, applying DLA for gene mapping mainly includes two key techniques: DNA labeling and DNA linearization. In our previous studies, we have developed a low-cost DLA platform based on bisPNA-labeling technique and the method of DNA linearization on patterned lipid bilayers. The bisPNA-labeling technique has high flexibility on the choice of target sequences and therefore bears more potential in detecting growing number of pathogens. However, removing redundant bisPNA during the labeling process to decrease false markers is too slow to make the bisPNA-labeling technique efficient for medical diagnostics. Therefore, accelerating the process of removing redundant bisPNA is the primary goal of this research. In addition, since our previous studies mainly used relative short λ-DNA (48502bp), we have also tested the potential of our DLA platform to more general long-chain DNA including the synthesized multi-λ-DNA and E. coli DNA extracted directly from E. coli bacterials. In order to accelerate the removal of redundant bisPNA, we proposed to use negatively charged magnetic-nanoparticles (MNPs) to capture positively charged bisPNA after the labeling reaction. The MNPs can later be quickly removed by a strong magnet. After testing the feasibility and operating parameters of this method, we have successfully constructed an accurate λ-DNA gene map. Using MNPs allowed us to remove redundant bisPNA within 1 hour, a 19 times acceleration in comparison with the dialysis method used in the past. We have also performed a bisPNA mapping of multi-λ-DNA using the new capturing process by MNPs. Experimental results showed that we can label and linearize multi-λ-DNA, but the number of markers and the length between markers were not in line with the expectation. Besides, we found that the length of multi-λ-DNA decreases during the process of bisPNA-labeling. We speculate that the ligase enzyme and other cofactors used in the synthesis of multi-λ-DNA may be the cause of DNA fragmentation. To test our platform with more general DNA, we have extracted E. coli DNA and successfully linearized E. coli DNA fragment of the size about 350 kbp, already close to the full length of the DNA of some common pathogens such as Morganella (538kbp) and Mycoplasma (580kbp). Hence, we have demonstrated the compatibility between bacterial DNA and our lipid bilayers based DNA linearizing system. Moreover, we demonstrated our DNA mapping platform has great potential in rapid pathogen identification.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:41:35Z (GMT). No. of bitstreams: 1
U0001-1208202210375900.pdf: 9577597 bytes, checksum: 8f3efd975e8909c24d9c96956f33445d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 致謝 I 摘要 II Abstract IV 目錄 VI 圖目錄 X 表目錄 XXIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 DNA介紹 3 2.1.1 DNA之結構 3 2.1.2 DNA之高分子性質 7 2.1.3 DNA於侷限空間下之行為 11 2.2 脂質介紹 14 2.2.1 脂質的基本性質 14 2.2.2 脂質之自組裝行為及其型態 15 2.2.3 支托脂雙層(Supported Lipid Bilayer) 18 2.3 DNA吸附於脂雙層上之行為 21 2.3.1 DNA於脂雙層上之平衡態行為 21 2.3.2 DNA於脂雙層上之表面電泳行為 22 2.4 奈米磁珠應用於生物分離 24 2.4.1 奈米磁珠之性質 24 2.4.2 奈米磁珠應用於生物分離之工作原理與成效 25 2.5 現行DNA定序技術 30 2.5.1 桑格定序法 30 2.5.2 次世代定序 31 2.5.3 第三代定序法 34 2.6 現行DNA圖譜技術 37 2.6.1 限制圖譜 37 2.6.2 直接線性分析法(direct linear analysis, DLA) 38 2.6.3 DNA拉伸技術 41 2.6.4 DNA標定技術 55 2.6.5 利用bisPNA標定λ-DNA過程之優化 61 2.6.5.1 兩步反應標記法 62 2.6.5.2 一步反應標記法 63 2.6.5.3 移除未反應bisPNA之方法 66 2.7 本研究團隊先前建立之基因圖譜平台與商業化產品之比較 68 2.8 研究目標與實驗概念 70 第三章 實驗設備與步驟 71 3.1 儀器設備 71 3.2 實驗藥品 73 3.3 實驗方法與步驟 75 3.3.1 圖案PDMS及其模具製作 75 3.3.2 脂質溶液配製 78 3.3.3 支托脂雙層之架設 79 3.3.4 DNA溶液配置 80 3.3.4.1 DNA之稀釋 80 3.3.4.2 DNA之染色 81 3.3.5 DNA接合 82 3.3.6 以bisPNA標記DNA 82 3.3.7 顯微鏡設備 83 3.3.8 數據分析方式 85 第四章 實驗結果分析與討論 87 4.1 以奈米磁珠分離bisPNA及短鏈λ-DNA之可行性測試 87 4.1.1 奈米磁珠的選擇 87 4.1.2 奈米磁珠是否能捕獲bisPNA 89 4.1.3 奈米磁珠對λ-DNA之影響 90 4.1.3.1 檢測奈米磁珠是否捕獲λ-DNA 90 4.1.3.2 檢驗外部磁場幫助系統混合對DNA之影響 91 4.1.3.3 檢驗以侵入性磁棒清除奈米磁珠對DNA之影響 93 4.2 以奈米磁珠分離bisPNA及短鏈λ-DNA之參數測試 94 4.2.1 奈米磁珠捕獲bisPNA之參數測試 94 4.2.1.1 捕獲bisPNA所需奈米磁珠之用量測試 94 4.2.1.2 利用奈米磁珠捕獲bisPNA所需時間測試 96 4.2.2 外加磁場分離奈米磁珠所需時間測試 99 4.2.2.1 非侵入式外加磁場使奈米磁珠沉澱過程之亮度分析 99 4.2.2.2 侵入式磁棒清除奈米磁珠過程之亮度分析 102 4.3 以bisPNA標記法建立DNA基因圖譜 106 4.3.1 短鏈λ-DNA基因圖譜 106 4.3.2 長鏈多倍λ-DNA基因圖譜 110 4.4 於圖案PDMS微流道系統拉伸長鏈大腸桿菌DNA 114 4.4.1 以分子梳拉伸法觀察利用市售套組萃取之大腸桿菌DNA 115 4.4.2 於圖案PDMS微流道系統拉伸大腸桿菌DNA之成效與限制 117 第五章 結論 121 第六章 參考文獻 123
dc.language.isozh-TW
dc.subject大腸桿菌DNAzh_TW
dc.subjectDNAzh_TW
dc.subject脂雙層zh_TW
dc.subject雙肽核酸標記法zh_TW
dc.subject奈米磁珠zh_TW
dc.subject快速DNA圖譜zh_TW
dc.subjectsupported lipid bilayersen
dc.subjectDNAen
dc.subjectEscherichia coli DNAen
dc.subjectrapid DNA optical mappingen
dc.subjectmagnetic nanoparticles (MNPs)en
dc.subjectbisPNA-labelingen
dc.title以雙肽核酸標定染色體DNA於脂雙層上快速建立基因圖譜zh_TW
dc.titleUsing bisPNA-Labeling Technique to Mark Chromosomal DNA for Rapid Gene Mapping on Lipid Bilayersen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊怡哲(Yi-Je Juang),魏憲鴻(Hsien-Hung Wei),趙玲(Ling Chao)
dc.subject.keywordDNA,脂雙層,雙肽核酸標記法,奈米磁珠,快速DNA圖譜,大腸桿菌DNA,zh_TW
dc.subject.keywordDNA,supported lipid bilayers,bisPNA-labeling,magnetic nanoparticles (MNPs),rapid DNA optical mapping,Escherichia coli DNA,en
dc.relation.page127
dc.identifier.doi10.6342/NTU202202328
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2027-08-16-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1208202210375900.pdf
  未授權公開取用
9.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved