Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85062
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃天偉(Tian-Wei Huang)
dc.contributor.authorYu-Cheng Huangen
dc.contributor.author黃育成zh_TW
dc.date.accessioned2023-03-19T22:41:13Z-
dc.date.copyright2022-08-19
dc.date.issued2022
dc.date.submitted2022-08-15
dc.identifier.citationT. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong, J. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5G cellular: It will work!,” in IEEE Access, vol.1, pp. 335–349, 2013. E. Hossain and M. Hasan, '5G cellular: key enabling technologies and research challenges,' in IEEE Instrumentation & Measurement Magazine, vol. 18, no. 3, pp. 11-21, June 2015. I. F. Akyildiz, S. Nie, S.-C. Lin, and M. Chandrasekaran, “5G roadmap: 10 key enabling technologies,” Comput. Netw., vol. 106, pp. 17–48, Sep. 2016. K. Khawam, S. Lahoud, M. Ibrahim, M. Yassin, S. Martin, M. El Helou, and F. Moety, “Radio access technology selection in heterogeneous networks,” Physical Communication, vol. 18, pp. 125–139, 2016. K. A. B. Noordin, M. N. Hindia, F. Qamar, and K. Dimyati, ‘‘Power allocation scheme using PSO for amplify and forward cooperative relaying network,’’ in Science and Information Conference., Nov. 2018. https://www.analog.com/en/technical-articles/how-evm-measurement-improvessystem level-performance.html J. Lota, S. Sun, T. S. Rappaport and A. Demosthenous, '5G Uniform Linear Arrays With Beamforming and Spatial Multiplexing at 28, 37, 64, and 71 GHz for Outdoor Urban Communication: A Two-Level Approach,' in IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 9972-9985, Nov. 2017. P. Mogensen et al., 'Centimeter-Wave Concept for 5G Ultra-Dense Small Cells,' 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, 2014. W. Wang et al., ‘‘Spectrum analysis and regulations for 5G,’’ in 5G Mobile Communications. Switzerland: Springer, 2017, pp. 27–50 F. Qamar, M. H. S. Siddiqui, M. N. Hindia, K. Dimyati, T. A. Rahman and M. S. A. Talip, 'Propagation Channel Measurement at 38 GHz for 5G mm-wave communication Network,' 2018 IEEE Student Conference on Research and Development (SCOReD), Selangor, Malaysia, 2018. Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave (mmWave) communications for 5G: Opportunities and challenges,” Wireless Netw., 2015, 21, 2657–2676 N. Panwar, S. Sharma, and A. K. Singh, “A survey on 5G: The next generation of mobile communication,” Physical Communication, vol. 18, pp. 64–84, Mar. 2016. T. Abbas, F. Qamar, I. Ahmed, K. Dimyati and M. B. Majed, 'Propagation channel characterization for 28 and 73 GHz millimeter-wave 5G frequency band,' 2017 IEEE 15th Student Conference on Research and Development (SCOReD), Putrajaya, 2017. W. Hong, K. Baek and Y. Lee, 'Quantitative analysis of the effects of polarization and pattern reconfiguration for mm-Wave 5G mobile antenna prototypes,' in Proc. IEEE Radio and Wireless Symposium (RWS), Phoenix, AZ, 2017. W. Hong, 'Solving the 5G Mobile Antenna Puzzle: Assessing Future Directions for the 5G Mobile Antenna Paradigm Shift,' in IEEE Microwave Magazine, vol. 18, no. 7, pp. 86-102, Nov.-Dec. 2017. F. Qamar, K. B. Dimyati, M. N. Hindia, K. A. B. Noordin, and A. M. Al-Samman, 'A Comprehensive Review on Coordinated Multi-Point Operation for LTE-A,'Computer Networks, 2017. A. Gupta and R. K. Jha, 'A Survey of 5G Network: Architecture and Emerging Technologies,' in IEEE Access, vol. 3, pp. 1206-1232, 2015. J. G. Andrews et al., 'What Will 5G Be?,' in IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, June 2014. The Start of Something, 3rd Generation Partnership Project (3GPP) website [Online] https://www.3gpp.org/news-events/1734-ran_5g W. -J. Lin, J. -H. Tsai, J. -H. Cheng, W. -H. Lin, T. -T. Chiang and T. -W. Huang,'A 67-86 GHz Spectrum-Efficient CMOS Transmitter Supporting 1024-QAM With a Process-Variation-Tolerant Design,' in IEEE Access, vol. 8, pp. 74458-74471, 2020, doi: 10.1109/ACCESS.2020.2983913. N. Ebrahimi and J. F. Buckwalter, 'A High-Fractional-Bandwidth, MillimeterWave Bidirectional Image-Selection Architecture With Narrowband LO Tuning Requirements,' in IEEE Journal of Solid-State Circuits, vol. 53, no. 8, pp. 2164-2176, Aug. 2018, doi: 10.1109/JSSC.2018.2828855. Z. Li, L. Sun, L. Zhang, Y. Wang and Z. Yu, 'Effects of RF impairments on EVM performance of 802.11ac WLAN transmitters,' 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, 2014, pp. 1-2. Termos H, Nansour A. Real & Simulated QPSK Up-Converted Signals by a Sampling Method Using a Cascaded MZMs Link. Photonics. 2022; 9(1):34. https://doi.org/10.3390/photonics901003 Puglia, Kenneth,” Phase Noise Analysis of Component Cascades,” 2003 Microwave Magazine, IEEE, doi: 10.1109/MMW.2002.1145678 Jung-Hau Chen ; Huei Wang “A High Gain, High Power K-Band Frequency Doubler in 0.18 um CMOS Process”, IEEE Microwave and Wireless Components Letters, 2010 J. Kim et al., “ V-band ×8 Frequency Multiplier With Optimized Structure and High Spectral Purity Using 65-nm CMOS Process ”in IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 506-508, May 2017, doi:10.1109/LMWC.2017.2690825. P. -H. Tsai, Y. -H. Lin, J. -L. Kuo, Z. -M. Tsai and H. Wang, 'Broadband Balanced Frequency Doublers With Fundamental Rejection Enhancement Using a Novel Compensated Marchand Balun,' in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1913-1923, May 2013, doi:10.1109/TMTT.2013.2255618. H. Chang, G. Chen and Y. Hsin, 'A Broadband High Efficiency High Output Power Frequency Doubler,' in IEEE Microwave and Wireless Components Letters, vol. 20, no. 4, pp. 226-228, April 2010, doi: 10.1109/LMWC.2010.2042560. S. Chakraborty, L. E. Milner, S. Mahon, A. Parker and M. Heimlich, 'A GaAs Frequency Doubler with 38 dB fundamental rejection from 22 to 40 GHz using a Transformer Balun,' 2019 49th European Microwave Conference (EuMC), 2019, pp. 848-851, doi: 10.23919/EuMC.2019.8910725. S. Weng, G. Chen, H. Chang and Y. Hsin, 'A K-band high efficiency high output power CG-CS frequency doubler in 0.5-µm GaAs E/D-mode PHEMT process,' Asia-Pacific Microwave Conference 2011, 2011, pp. 1258-1261. Yuen-Sum Ng et al., 'A 38-GHz Millimeter Wave Transmission System for Unmanned Aerial Vehicle in 65 nm CMOS,' European Microwave Integrated Circuits Conference (EuMIC), Sept. 2022
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85062-
dc.description.abstract在第五代行動通訊(5G)之中,為了追求高傳輸速率的需求與大頻寬或是更複雜的調變,FR2 頻段中的 28 GHz 以及 38 GHz。在無線通訊系統中,收發機中得到好的 EVM 跟 BER 是相當重要且關鍵,本篇論文著重於人工智慧調整 EVM 跟 BER的研究。 本論文分為二個部分:第一部分(第二章)為一個應用在 Ka-band 之搭配人工智慧的 IQ 收發機。此部分展示了一個應用於 Ka-band 低中頻收發機 (1.5 GHz、100 MHz)在 33-40 GHz 的 EVM 跟 BER 表現,以及討論不同 IQ 不平衡和相位雜訊影的情況下 EVM 的變化。由於相位偏差會影響混頻器 EVM 跟 BER 的表現,因此由混頻器在 RF 的 IQ 端加入一對可變電容,藉以自動調整相位差異以及抵抗 PVT(製程、電壓、溫度)變異。經過可變電容的調整之後,此設計鏡像抑制寬頻的效果,從 33 到 40 GHz BER 和 EVM 的優化表現,再以人工智慧的輔助下,在運作過程中,實現自動優化 BER 和 EVM。在 4096-QAM 的調變訊號傳輸應用中,進一步將傳輸頻寬提升至 800 個通道,形成多通道系統。 第二部分(第三章)提出一個應用於 K-band 使用 180-nm 互補式金氧半導體製程之倍頻器。此倍頻器在直流功耗為 19 毫瓦的情況下展示了 7.3 dBm 的輸出功率,以及 30dB 以上的基頻抑制,以達到更好的通訊傳輸。zh_TW
dc.description.abstractIn the fifth generation of mobile communication (5G), 28 GHz and 38 GHz in the FR2 band are used to pursue high transmission rates and large bandwidths or more complex modulations. This paper focuses on the study of EVM and BER adjustment by artificial intelligence. This paper is divided into two parts: the first part (Chapter 2) is an IQ transceiver applied to Ka-band with artificial intelligence. This chapter shows the EVM and BER performance of a Ka-band low IF transceiver (1.5 GHz, 100 MHz) at 33-40 GHz, and discusses the variation of EVM with different IQ imbalance and phase noise. Since the phase deviation affects the performance of the mixer EVM and BER, a pair of varactors is added to the IQ path of the RF by the mixer to automatically adjust the phase deviation and resist the PVT (process, voltage, temperature) variation. After the adjustment of the varactors, the design mirrors the effect of broadband suppression, optimizing the performance of BER and EVM from 33 to 40 GHz, and then automatically optimizing BER and EVM during operation with the aid of human intelligence. In 4096-QAM modulated signal transmission applications, the transmission bandwidth is further increased to 800 channels, forming a multi-channel system. The second part (Chapter 3) presents a frequency doubler for K-band applications using 180-nm complementary gold-oxygen semiconductor process. This doubler demonstrates an output power of 7.3 dBm at a DC power consumption of 19 mW, and more than 30 dB of fundamental rejection for better communication transmission.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:41:13Z (GMT). No. of bitstreams: 1
U0001-1008202217084000.pdf: 7022720 bytes, checksum: cb857024cd4a077e44dbcedcc693a36c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 ii Abstract iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.2.1 Millimeter Wave Spectrum Efficient with RF Impairments Effect 3 1.2.2 Distortion of Converted Signal 3 1.2.3 Phase Noise Degradation on Harmonics Signal 4 1.3 Contributions 4 1.3.1 A 33-40GHz Communicate System in 65nm CMOS with Artifical Intelligence Optimization for 5G Applications 4 1.3.2 A 18-26 GHz Balance Doubler Supporting High Power Local Oscillator 5 1.4 Organization of this Dissertation 6 Chapter 2 A 38-GHz 4096-QAM Artificial Intelligence Transceiver BER/EVM Measurement under the Impact of Phase Noise 8 2.1 Basic Technology applied to 5G 8 2.2 Transceiver 12 2.2.1 Overview Transceiver 13 2.2.2 Sub-Harmonic transceiver 15 2.2.3 Super heterodyne Receiver 20 2.2.4 The Parameters of RF Transceiver 20 2.2.5 Modulation with Varactor Tuning 29 2.3 Measurement Results and Discussions 31 2.3.1 Basic Characteristics 31 2.3.2 Modulation and demodulation measurement 31 2.3.3 Effect of Image Rejection Ratio to EVM 51 2.3.4 Effect of Conversion Gain to EVM 53 2.3.5 Effect of Phase Noise to EVM 54 2.3.6 BER versus EVM with different QAM 61 2.3.7 Effect of Third Order Intermodulation to EVM 65 2.3.8 EVM and BER with varactor optimization 67 2.4 Operation of Artificial Intelligence Optimizer 68 2.4.1 Deep Learning Model Technique 70 2.4.2 LightGBM Model Technique 74 2.4.3 Comparison of artificial intelligent 78 2.5 Summary 79 Chapter 3 A 18-26-GHz Balance Doubler with 7.3 dBm output power 81 3.1 Introduction 81 3.2 Literature Survey 81 3.3 Overview of Microwave Frequency Doublers and Filters 82 3.3.1 The Parameters of Doubler 82 3.3.2 Classifications of Frequency Doubler 83 3.3.3 Chebyshev Filter Technique 88 3.4 Circuit Design 93 3.4.1 Circuit Architecture 93 3.4.2 Device Size and Bias Point Selection 95 3.4.3 Balance Doubler Technique 102 3.4.4 Matching Networks and Link Budget 109 3.4.5 Circuit Simulation Results 112 3.5 Measurement Results and Discussions 115 3.5.1 Input Power & Frequency versus Output Power & Conversion Gain & Fundamental Rejection 116 3.5.2 Phase Noise to Second Harmonic 120 3.6 Comparison of Published Result 124 3.7 Summary 125 REFERENCE 126
dc.language.isoen
dc.subject可變電容zh_TW
dc.subject第五代行動通訊zh_TW
dc.subject倍頻器zh_TW
dc.subject人工智慧zh_TW
dc.subjectVaractoren
dc.subject5Gen
dc.subjectFrequency Doubleren
dc.subjectArtificial intelligenceen
dc.title18-26-GHz 倍頻器及 38-GHz 4096-QAM 人工智慧收發機 EVM 與相位雜訊之研究zh_TW
dc.titleResearch of a 18-26-GHz Frequency Doubler and a 38-GHz 4096-QAM AI Transceiver EVM under the Impact of Phase Noiseen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡政翰(Jeng-Han Tsai),鍾杰穎(Jie-Ying Zhong)
dc.subject.keyword第五代行動通訊,倍頻器,可變電容,人工智慧,zh_TW
dc.subject.keyword5G,Frequency Doubler,Varactor,Artificial intelligence,en
dc.relation.page129
dc.identifier.doi10.6342/NTU202202269
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
dc.date.embargo-lift2027-08-15-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202217084000.pdf
  未授權公開取用
6.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved