Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85060
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡進發(Jing-Fa Tsai)
dc.contributor.authorYu-An Linen
dc.contributor.author林俞安zh_TW
dc.date.accessioned2023-03-19T22:41:05Z-
dc.date.copyright2022-10-14
dc.date.issued2022
dc.date.submitted2022-08-16
dc.identifier.citation[1] Dale, S. (2019). BP statistical review of world energy. BP Plc, London, United Kingdom, 14-16. [2] Agreement, P. (2015). Paris agreement. In Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change (21st Session, 2015: Paris). Retrived December (Vol. 4, p. 2017). HeinOnline. [3] Bouckaert, S., Pales, A. F., McGlade, C., Remme, U., Wanner, B., Varro, L., D’Ambrosio, D., & Spencer, T. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. [4] Michaelowa, A. (2021). The Glasgow Climate Pact: A Robust Basis for the International Climate Regime in the 2020s. Intereconomics, 56(6), 302-303. [5] Ruiz Manuel, I. (2021). Assessing Non-state Climate Action in Big Businesses: Evaluating Fortune Global 500 companies in the SBTi and RE100 initiatives. [6] Marcu, A., Maratou, A., Mehling, M., & Cosbey, A. (2021). The EU Carbon Border Adjustment Mechanism (CBAM). Preliminary analysis of the European Commission proposal for a regulation establishing a carbon border adjustment mechanism, July, 14, 564. [7] 台灣電力公司–近十年台電系統發購電量及結構 https://www.taipower.com.tw/tc/chart_m/b30_%e7%99%bc%e9%9b%bb%e8%b3%87%e8%a8%8a_%e7%81%ab%e5%8a%9b%e7%87%9f%e9%81%8b%e7%8f%be%e6%b3%81%e8%88%87%e7%b8%be%e6%95%88_%e8%bf%91%e5%8d%81%e5%b9%b4%e5%8f%b0%e9%9b%bb%e7%b3%bb%e7%b5%b1%e7%99%bc%e8%b3%bc%e9%9b%bb%e9%87%8f%e5%8f%8a%e7%b5%90%e6%a7%8b.html (2022年6月) [8] 4C Offshore–Global Offshore Wind Speeds Rankings https://www.4coffshore.com/windfarms/windspeeds.aspx [9] 經濟部能源局–能源統計查詢系統 https://www.esist.org.tw/Database/Search?PageId=4 [10] 台灣電力公司–再生能源發電概況 https://www.taipower.com.tw/tc/page.aspx?mid=204&cid=1581&cchk=82fb957e-2fe8-49b6-90a9-b750387de936 (2022年6月) [11] 經濟部能源局–風力發電四年推動計畫 https://www.twtpo.org.tw/upload/file/20220613/20220613105635_6657.pdf [12] Veritas, N. (2002). Guidelines for design of wind turbines. Det Norske Veritas: Wind Energy Department, Ris ̜National Laboratory. [13] 全球風能協會GWEC–Global Wind Report 2022 https://gwec.net/global-wind-report-2022/ [14] Wang, K. S., Sharma, V. S., & Zhang, Z. Y. (2014). SCADA data based condition monitoring of wind turbines. Advances in Manufacturing, 2(1), 61-69. [15] Zhao, Y., Ye, L., Wang, W., Sun, H., Ju, Y., & Tang, Y. (2017). Data-driven correction approach to refine power curve of wind farm under wind curtailment. IEEE Transactions on Sustainable Energy, 9(1), 95-105. [16] 楊其昌(2016), “高斯混合模型在風機預兆式健康管理上的應用研究,” 臺灣大學工程科學及海洋工程學研究所學位論文, 13-16. [17] 高睦修(2017), “風力發電機監控平台之演算法研究,” 臺灣大學工程科學及海洋工程學研究所學位論文, 17-20. [18] Morrison, R., Liu, X., & Lin, Z. (2022). Anomaly detection in wind turbine SCADA data for power curve cleaning. Renewable Energy, 184, 473-486. [19] Lydia, M., Kumar, S. S., Selvakumar, A. I., & Kumar, G. E. P. (2014). A comprehensive review on wind turbine power curve modeling techniques. Renewable and Sustainable Energy Reviews, 30, 452-460. [20] 洪瑞昕(2020), “應用雙向長短期記憶神經網路於異常風機部件之研究,” 臺灣大學工程科學及海洋工程學研究所學位論文, 1-38. [21] 卓杓晏(2021), “時間卷積神經網路在風機故障偵測的應用研究,” 臺灣大學工程科學及海洋工程學研究所學位論文, 1-27. [22] 鐘顥瑋(2021), “利用同儕比較方法進行風機故障之偵測,” 臺灣大學工程科學及海洋工程學研究所學位論文, 1-30. [23] 陳其昂(2021), “應用自適應增強演算法於風機控制系統異常之預警,” 臺灣大學工程科學及海洋工程學研究所學位論文, 1-29. [24] Lin, Z., & Liu, X. (2020). Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy, 201, 117693. [25] Ankerst, M., Breunig, M. M., Kriegel, H. P., & Sander, J. (1999). OPTICS: Ordering points to identify the clustering structure. ACM Sigmod record, 28(2), 49-60. [26] Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd (Vol. 96, No. 34, pp. 226-231). [27] Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 315-323). JMLR Workshop and Conference Proceedings. [28] Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747. [29] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [30] Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359. [31] Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: properties and enhancements. Technometrics, 32(1), 1-12. [32] 風力資訊整合平台–地理資訊系統 https://pro.twtpo.org.tw/GIS/# (2022年6月) [33] Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual review of psychology, 60(1), 549-576. [34] Vestas V80-2000 相關規格 https://www.thewindpower.net/turbine_en_30_vestas_v80-2000.php
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85060-
dc.description.abstract本研究使用深度神經網路(Deep Neural Network, DNN)建立風機功率曲線模型(Wind Turbine Power Curve Model)及風機功率預測模型(Wind Turbine Power Prediction Model),並以遷移學習(Transfer Learning)的訓練方式來提升模型之學習成效。 本研究使用台電麥寮風場15部風機的SCADA(Supervisory Control And Data Acquisition system)資料進行分析,各部風機以過去3個月的資料訓練出對應的風機功率曲線模型,以功率曲線最貼近保證功率曲線(Guaranteed Power Curve, GPC)的風機當選為當月的模範風機,以模範風機前三個月的資料訓練出作為標準之功率預測模型,並根據該模型之訓練結果求出次月用來判斷資料異常與否的閾值(Threshold),除此之外,將該模型作為預訓練模型(Pre-Training Model),複製出15個相同的模型對應到各部風機,各自使用前三個月的資料去對自己的模型由遷移學習進行微調(Fine-Tune),即可得出次月各部風機的功率預測模型。 使用風機次月的功率預測模型,得出每筆資料的預測值與實際值計算殘差(Residual),計算每日的平均殘差,若平均殘差超過設定之閾值便提出故障預警(Early Warning)。將異常風機的特徵資料分別與其他風機相比,可將預警分為主要感測器異常導致、相關元件異常導致和其他無紀錄元件異常導致等三類,根據此結果提早進行檢修,不但能縮短風機故障發電效能低落的時間,也可避免風機因突發性故障導致的額外毀損,進而提升風力發電之經濟收益。zh_TW
dc.description.abstractThe algorithm of the deep neural network was used to establish wind turbine power curve model and wind turbine power prediction model in this study. The transfer learning algorithm was used to improve the accuracy of the power prediction model. The SCADA datasets of 15 wind turbines from TaiPower Mai Liao wind farm were analyzed in this study. The history data in the past 3 months of each wind turbine were used to train its own power curve model. An exemplary wind turbine was selected by the minimum root mean square error between the trained power curve model and the guaranteed power curve. The exemplary wind turbine is the best performance wind turbine in the trained period. The standard power prediction model is trained by the history data in past 3 months of the exemplary wind turbine. The trained results were used to calculate the threshold of the anomaly data in the following month. In addition, the exemplary wind turbine power prediction model was used as a pre-training model. The pre-training model was used by other wind turbines and was fine-tuned by the transfer learning algorithm by and their own history data in the past 3 months. Then, the power prediction model of each wind turbine for the following month could be obtained. The trained power prediction model of each wind turbine was used to predict the power. The residual between the actual power and the predicted power could be calculated and the day average residual could also be calculated. An early warning will be issued when the day average residual exceeds the threshold. There are three types of early warning which include the main sensor abnormality, the related component abnormality and the unrecorded component abnormality based on the features of the wind turbines. According to this early warning, the maintenance work can be carried out in advance. It will not only reduce the time of low power generated but also avoid the unexpected damage due to failure of the wind turbine. The early warning model can enhance the economic benefits of wind power generation.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:41:05Z (GMT). No. of bitstreams: 1
U0001-1508202219291100.pdf: 7592056 bytes, checksum: ac2d24d75a148494201dc6ce87884a8b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 I ABSTRACT II 圖目錄 VI 表目錄 IX 符號說明 X 第一章、緒論 1 1-1 研究背景與研究動機 1 1-2 文獻回顧 2 1-3 研究內容 3 1-4 論文架構 3 第二章、使用方法及原理 4 2-1 OPTICS演算法 4 2-2 人工神經網路 5 2-3 遷移學習 9 2-4 指數加權移動平均法 10 第三章、資料介紹 12 3-1 使用資料 12 3-2 資料特徵選擇 12 第四章、實作與數據分析 14 4-1 前處理 14 4-1-1 異常資料濾除 14 4-1-2 雜訊濾除 15 4-1-3 前處理結果數據分析 16 4-2 模範風機篩選 17 4-3 功率預測 18 4-4 預警判別 20 4-4-1 閾值設定 20 4-4-2 觸發條件 21 4-4-3 預警結果數據分析 21 第五章、風機故障預警結果 23 5-1 故障推論 23 5-2 案例分析 24 第六章、結論與建議 27 6-1 結論 27 6-2 建議 27 參考文獻 29
dc.language.isozh-TW
dc.subject故障預警zh_TW
dc.subject風機功率預測zh_TW
dc.subject深度神經網路zh_TW
dc.subject遷移學習zh_TW
dc.subjectEarly Warningen
dc.subjectWind Turbine Power Prediction Modelen
dc.subjectDeep Neural Networken
dc.subjectTransfer Learningen
dc.title基於遷移學習於功率預測之風機故障預警zh_TW
dc.titleWind Turbine Fault Early Warning by Power Prediction Based on Transfer Learningen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林恆山,林宗岳,邵揮洲
dc.subject.keyword風機功率預測,深度神經網路,遷移學習,故障預警,zh_TW
dc.subject.keywordWind Turbine Power Prediction Model,Deep Neural Network,Transfer Learning,Early Warning,en
dc.relation.page80
dc.identifier.doi10.6342/NTU202202422
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
dc.date.embargo-lift2024-08-15-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1508202219291100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved