請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85057完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳惠美(Hui-Mei Chen) | |
| dc.contributor.author | Yi Lu | en |
| dc.contributor.author | 盧藝 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:40:54Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-15 | |
| dc.identifier.citation | 中文文獻: 1、財政部財政資訊中心(2018)。107年度綜稅所得總額各縣市鄉鎮村里統計分析表-縣市別:臺北市。上網日期:2022年6月20日。網址:https://data.gov.tw/dataset/17983 2、陳惠美、林晏州(1997)。景觀知覺與景觀品質關係之研究。造園學報,4:1 1997.06,1-16。 3、戶政司(2018)。107各村里教育程度資料。上網日期:2022年6月20日。網址:https://data.gov.tw/dataset/8409 4、江彥政、翁珮怡(2012)。多走路多健康:步行環境與居民健康之關係。戶外遊憩研究,25(4),25-50。 5、內政部營建署(2001)。市區道路工程規劃及設計規範之研究。上網日期:2021年6月30日。網址:http://myway.cpami.gov.tw/eBook/90CityRoadResearch/html5/index.html 6、內政部營建署(2003)。市區道路人行道設計手冊。上網日期:2022年6月3日。網址: https://myway.cpami.gov.tw/admin/images/source/eBook/Sidewalk_Design/html5/mobile/index.html 7、全國法規資料庫(2021)。市區道路及附屬工程設計標準。上網日期:2022年5月25日。網址:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0070156 8、台北市政府(2018)。臺北市中正區都市計畫通盤檢討 (細部計畫)案。上網日期:2021年6月30日。網址: https://www.udd.gov.taipei/overall-review/documents/district_1/%E4%B8%AD%E6%AD%A3%E5%8D%80%E7%B4%B0%E9%83%A8%E8%A8%88%E7%95%AB%E6 9、台北市政府(2014)。擬定「臺北市大內湖科技園區次核心產業使用許可回饋規定」細部計畫案。上網日期:2022年5月27日。網址: https://www-ws.gov.taipei/001/Upload/public/Data/412810271071.pdf 10、台北市政府(2008)。台北市松山區第二期市地重劃報告書。上網日期:2022年5月27日。網址: https://www-ws.gov.taipei/Download.ashx?u=LzAwMS9VcGxvYWQvNDQ5L3JlbGZpbGUvMjY2ODMvMzg5Nzc1OC9kZGJiZTY4MS1mOWI3LTQ3YjMtYjFiNS02ZDhhZjM3MTI3YjIucGRm&n=5p2%2b5bGx5Y2A56ys5LqM5pyf5biC5Zyw6YeN5YqD5aCx5ZGK5pu4LnBkZg%3d%3d&icon=..pdf 11、台北市政府都市發展局(2015)。臺北市基隆河大彎北段地區發展策略及都市計畫檢討案。上網日期:2022年5月27日。網址: https://www-ws.gov.taipei/Download.ashx?u=LzAwMS9VcGxvYWQvcHVibGljL0F0dGFjaG1lbnQvNTkxODEyNTEzNy5wZGY%3D&n=NTkxODEyNTEzNy5wZGY%3D&icon=..pdf&ccms_cs=1 12、臺北市政府工務局大地工程處(2022)。臺北市山坡地範圍圖。上網日期:2022年1月25日。網址:政府資料開放平台。https://data.gov.tw/dataset/121420 13、臺北市政府都市發展局(2022)。台北市土地使用分區圖。上網日期:2022年1月25日。網址:政府資料開放平台。https://data.gov.tw/dataset/121998 14、臺北市交通管制工程處(2021)。標線型人行道圖資。上網日期:2022年5月28日。網址:政府資料開放平台https://data.gov.tw/dataset/145867 台北市政府工務局新建工程處(2021)。台北人本環境大躍進。台北:臺北市政府工務局新建工程處。上網日期:2022年5月26日。網址:https://www-ws.gov.taipei/Download.ashx?u=LzAwMS9VcGxvYWQvMzQ2L3JlbGZpbGUvNDU3ODcvODQ4ODYyNS8yNDJjMWE5OC03ZTljLTQ2NDItOWY1NC02OTcxYjAyZWQ2OWEucGRm&n=MjAyMSDoh7rljJfkurrmnKznkrDlooPlpKfouo3pgLIucGRm&icon=.pdf 15、台北市政府民政局(2018)。臺北市每年人口數依性別及年齡分(按行政區、里別)。上網日期:2022年6月20日。網址:https://ca.gov.taipei/News_Content.aspx?n=8693DC9620A1AABF&sms=D19E9582624D83CB&s=78DC4B104D9D374E 16、余凱、賈磊、陳雨強和徐偉(2013)。深度學習的昨天、今天和明天。計算機研究與發展。2013,50(9): 1799-1804.ISSN 1000-1239/CN 11-1777/TP 17、張帆、胡明遠和林琿(2018)。大数据背景下的虚拟地理认知实验方法。測繪學報。2018,47(8):1043G1050.DOI: 10·11947/j·AGCS·2018·20180103 18、張祥甫、 劉健、石章松、 吳中紅和王智 (2019)。基于深度学习的语义分割问题研究综述. 激光与光电子学进展Laser & Optoelectronics Progress, 第56卷 第15期. 英文文獻: 1、Adkins, A., Barillas-Longoria, G., Martinez, D. N., & Ingram, M. (2019). Differences in social and physical dimensions of perceived walkability in Mexican American and non-hispanic white walking environments in Tucson, Arizona. J Transp Health, 14, 100585. doi:10.1016/j.jth.2019.100585 2、Adkins, A., Dill, J., Luhr, G., & Neal, M. (2012). Unpacking Walkability: Testing the Influence of Urban Design Features on Perceptions of Walking Environment Attractiveness. Journal of Urban Design, 17(4), 499-510. doi:10.1080/13574809.2012.706365 3、Aghaabbasi, M., Moeinaddini, M., Zaly Shah, M., & Asadi-Shekari, Z. (2016). A new assessment model to evaluate the microscale sidewalk design factors at the neighbourhood level. doi:10.1016/j.jth.2016.08.012 4、Agyeman, J., Schlosberg, D., Craven, L., & Matthews, C. (2016). Trends and Directions in Environmental Justice: From Inequity to Everyday Life, Community, and Just Sustainabilities. Annual Review of Environment and Resources, 41(1), 321-340. doi:10.1146/annurev-environ-110615-090052 5、Alfonzo, M. A. (2005). To Walk or Not to Walk? The Hierarchy of Walking Needs. Environment and Behavior, 37(6), 808-836. doi:10.1177/0013916504274016 6、Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481-2495. doi:10.1109/tpami.2016.2644615 7、Baró, F., Calderón-Argelich, A., Langemeyer, J., & Connolly, J. J. T. (2019). Under one canopy? Assessing the distributional environmental justice implications of street tree benefits in Barcelona. Environ Sci Policy, 102, 54-64. doi:10.1016/j.envsci.2019.08.016 8、Bereitschaft, B. (2017). Equity in Microscale Urban Design and Walkability: A Photographic Survey of Six Pittsburgh Streetscapes. Sustainability, 9(7), 1233. doi:10.3390/su9071233 9、Bertram, C., & Rehdanz, K. (2015). The role of urban green space for human well-being. Ecological Economics, 120, 139-152. doi:10.1016/j.ecolecon.2015.10.013 10、Berzi, C., Gorrini, A., & Vizzari, G. (2017). Mining the Social Media Data for a Bottom-Up Evaluation of Walkability ArXiv, abs/1712.04309. 11、Blečić, I., Canu, D., Cecchini, A., Congiu, T., & Fancello, G. (2016). Factors of Perceived Walkability: A Pilot Empirical Study. In (pp. 125-137): Springer International Publishing. 12、Blečić, I., Cecchini, A., & Trunfio, G. A. (2018). Towards Automatic Assessment of Perceived Walkability. In (pp. 351-365): Springer International Publishing. 13、Boarnet, M. G., Day, K., Alfonzo, M., Forsyth, A., & Oakes, M. (2006). The Irvine–Minnesota Inventory to Measure Built Environments. 30(2), 153-159.e143. doi:10.1016/j.amepre.2005.09.018 14、Bogar, S., & Beyer, K. M. (2016). Green Space, Violence, and Crime. Trauma, Violence, & Abuse, 17(2), 160-171. doi:10.1177/1524838015576412 15、Boone, C. G., Fragkias, M., Buckley, G. L., & Grove, J. M. (2014). A long view of polluting industry and environmental justice in Baltimore. Cities, 36, 41-49. doi:10.1016/j.cities.2013.09.004 16、Brostow, G. J., Fauqueur, J., & Cipolla, R. (2009). Semantic object classes in video: A high-definition ground truth database. Pattern Recognition Letters, 30(2), 88-97. doi:10.1016/j.patrec.2008.04.005 17、Brownson, R. C., Hoehner, C. M., Brennan, L. K., Cook, R. A., Elliott, M. B., & McMullen, K. M. (2004). Reliability of 2 Instruments for Auditing the Environment for Physical Activity. Journal of Physical Activity and Health, 1(3), 191-208. doi:10.1123/jpah.1.3.191 18、Brownson, R. C., Hoehner, C. M., Day, K., Forsyth, A., & Sallis, J. F. (2009). Measuring the Built Environment for Physical Activity. American Journal of Preventive Medicine, 36(4), S99-S123.e112. doi:10.1016/j.amepre.2009.01.005 19、Carr, L. J., Dunsiger, S. I., & Marcus, B. H. (2010). Walk Score™ As a Global Estimate of Neighborhood Walkability. American Journal of Preventive Medicine, 39(5), 460-463. doi:10.1016/j.amepre.2010.07.007 20、Cerin, E., Chan, K.-W., Macfarlane, D. J., Lee, K.-Y., & Lai, P.-C. (2011). Objective assessment of walking environments in ultra-dense cities: Development and reliability of the Environment in Asia Scan Tool—Hong Kong version (EAST-HK). Health & Place, 17(4), 937-945. doi:10.1016/j.healthplace.2011.04.005 21、Cerin, E., Conway, T. L., Saelens, B. E., Frank, L. D., & Sallis, J. F. (2009). Cross-validation of the factorial structure of the Neighborhood Environment Walkability Scale (NEWS) and its abbreviated form (NEWS-A). International Journal of Behavioral Nutrition and Physical Activity, 6(1), 32. doi:10.1186/1479-5868-6-32 22、Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3), 199-219. doi:10.1016/s1361-9209(97)00009-6 23、Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv pre-print server. doi:None arxiv:1706.05587 24、Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In (pp. 833-851): Springer International Publishing. 25、Clifton, K. J., Livi Smith, A. D., & Rodriguez, D. (2007). The development and testing of an audit for the pedestrian environment. Landscape and Urban Planning, 80(1-2), 95-110. doi:10.1016/j.landurbplan.2006.06.008 26、Creatore, M. I., Glazier, R. H., Moineddin, R., Fazli, G. S., Johns, A., Gozdyra, P., . . . Booth, G. L. (2016). Association of Neighborhood Walkability With Change in Overweight, Obesity, and Diabetes. JAMA, 315(20), 2211. doi:10.1001/jama.2016.5898 27、Curtis, J. W., Curtis, A., Mapes, J., Szell, A. B., & Cinderich, A. (2013). Using google street view for systematic observation of the built environment: analysis of spatio-temporal instability of imagery dates. International Journal of Health Geographics, 12(1), 53. doi:10.1186/1476-072x-12-53 28、Cutts, B. B., Darby, K. J., Boone, C. G., & Brewis, A. (2009). City structure, obesity, and environmental justice: An integrated analysis of physical and social barriers to walkable streets and park access. Social Science & Medicine, 69(9), 1314-1322. doi:10.1016/j.socscimed.2009.08.020 29、Dobesova, Z., & Krivk, T. (2012). Walkability Index in the Urban Planning: A Case Study in Olomouc City. In: InTech. 30、Duncan, D. T., Aldstadt, J., Whalen, J., Melly, S. J., & Gortmaker, S. L. (2011). Validation of Walk Score® for Estimating Neighborhood Walkability: An Analysis of Four US Metropolitan Areas. International Journal of Environmental Research and Public Health, 8(11), 4160-4179. doi:10.3390/ijerph8114160 31、Duncan, D. T., Goedel, W. C., & Chunara, R. (2018). Quantitative methods for measuring neighborhood characteristics in neighborhood health research. Neighborhoods and Health; Oxford University Press: Oxford, UK, 57-90. 32、Emery, J., Crump, C., & Bors, P. (2003). Reliability and Validity of Two Instruments Designed to Assess the Walking and Bicycling Suitability of Sidewalks and Roads. American Journal of Health Promotion, 18(1), 38-46. doi:10.4278/0890-1171-18.1.38 33、Evans, G. W., & Wood, K. W. (1980). Assessment of Environmental Aesthetics in Scenic Highway Corridors. Environment and Behavior, 12(2), 255-273. doi:10.1177/0013916580122009 34、Ewing, R., & Handy, S. (2009). Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. Journal of Urban Design, 14(1), 65-84. doi:10.1080/13574800802451155 35、Ewing, R., Handy, S., Brownson, R. C., Clemente, O., & Winston, E. (2006). Identifying and Measuring Urban Design Qualities Related to Walkability. Journal of Physical Activity and Health, 3(s1), S223-S240. doi:10.1123/jpah.3.s1.s223 36、Fan, X., Lam, K. C., & Yu, Q. (2012). Differential exposure of the urban population to vehicular air pollution in Hong Kong. Sci Total Environ, 426, 211-219. doi:10.1016/j.scitotenv.2012.03.057 37、Forsyth, A. (2015). What is a walkable place? The walkability debate in urban design. URBAN DESIGN International, 20(4), 274-292. doi:10.1057/udi.2015.22 38、Frank, L. D., Sallis, J. F., Conway, T. L., Chapman, J. E., & et al. (2006). Many Pathways from Land Use to Health. American Planning Association. Journal of the American Planning Association, 72(1), 75-87. Retrieved from https://search.proquest.com/docview/229621552?accountid=6724 39、Frank, L. D., Sallis, J. F., Saelens, B. E., Leary, L., Cain, K., Conway, T. L., & Hess, P. M. (2010). The development of a walkability index: application to the Neighborhood Quality of Life Study. British Journal of Sports Medicine, 44(13), 924-933. doi:10.1136/bjsm.2009.058701 40、Fung, T., So, L. L. H., Chen, Y., Shi, P., & Wang, J. (2008). Analysis of green space in Chongqing and Nanjing, cities of China with ASTER images using object‐oriented image classification and landscape metric analysis. International Journal of Remote Sensing, 29(24), 7159-7180. doi:10.1080/01431160802199868 41、Gebel, K., Bauman, A. E., Sugiyama, T., & Owen, N. (2011). Mismatch between perceived and objectively assessed neighborhood walkability attributes: Prospective relationships with walking and weight gain. Health & Place, 17(2), 519-524. doi:10.1016/j.healthplace.2010.12.008 42、Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision benchmark suite. 43、Ghadiyaram, D., & Bovik, A. C. (2017). Perceptual quality prediction on authentically distorted images using a bag of features approach. Journal of Vision, 17(1), 32. doi:10.1167/17.1.32 44、Gochfeld, M., & Burger, J. (2011). Disproportionate Exposures in Environmental Justice and Other Populations: The Importance of Outliers. American Journal of Public Health, 101(S1), S53-S63. doi:10.2105/ajph.2011.300121 45、Greenberg, M. R. (2005). Where Does Walkability Matter the Most? An Environmental Justice Interpretation of New Jersey Data. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 82(1), 90-100. doi:10.1093/jurban/jti011 46、Hanibuchi, T., Nakaya, T., & Inoue, S. (2019). Virtual audits of streetscapes by crowdworkers. Health & Place, 59, 102203. doi:10.1016/j.healthplace.2019.102203 47、Harvey, C., Aultman-Hall, L., Hurley, S. E., & Troy, A. (2015). Effects of skeletal streetscape design on perceived safety. Landscape and Urban Planning, 142, 18-28. doi:10.1016/j.landurbplan.2015.05.007 48、Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507. doi:10.1126/science.1127647 49、Holifield, R. (2001). Defining Environmental Justice and Environmental Racism. Urban Geography, 22, 78-90. 50、Huang, X., Cheng, X., Geng, Q., Cao, B., Zhou, D., Wang, P., . . . Yang, R. (2018). The apolloscape dataset for autonomous driving. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 51、Humpel, N., Marshall, A. L., Leslie, E., Bauman, A., & Owen, N. (2004). Changes in neighborhood walking are related to changes in perceptions of environmental attributes. Annals of Behavioral Medicine, 27(1), 60-67. doi:10.1207/s15324796abm2701_8 52、Jacobs, A. B. (1993). Great Streets. ACCESS Magazine, 1(3). 53、Jansson, M., Fors, H., Lindgren, T., & Wiström, B. (2013). Perceived personal safety in relation to urban woodland vegetation – A review. Urban Forestry & Urban Greening, 12(2), 127-133. doi:10.1016/j.ufug.2013.01.005 54、Jennings, V., Larson, L., & Yun, J. (2016). Advancing Sustainability through Urban Green Space: Cultural Ecosystem Services, Equity, and Social Determinants of Health. International Journal of Environmental Research and Public Health, 13(2), 196. doi:10.3390/ijerph13020196 55、Jiang, B., Chang, C.-Y., & Sullivan, W. C. (2014). A dose of nature: Tree cover, stress reduction, and gender differences. Landscape and Urban Planning, 132, 26-36. doi:10.1016/j.landurbplan.2014.08.005 56、Kelly, C. M., Schootman, M., Baker, E. A., Barnidge, E. K., & Lemes, A. (2007). The association of sidewalk walkability and physical disorder with area-level race and poverty. Journal of Epidemiology & Community Health, 61(11), 978-983. doi:10.1136/jech.2006.054775 57、Kim, S., Park, S., & Lee, J. S. (2014). Meso- or micro-scale? Environmental factors influencing pedestrian satisfaction. Transportation Research Part D: Transport and Environment, 30, 10-20. doi:10.1016/j.trd.2014.05.005 58、Knura, M., Kluger, F., Zahtila, M., Schiewe, J., Rosenhahn, B., & Burghardt, D. (2021). Using Object Detection on Social Media Images for Urban Bicycle Infrastructure Planning: A Case Study of Dresden. ISPRS International Journal of Geo-Information, 10(11), 733. doi:10.3390/ijgi10110733 59、Koo, B. W., Guhathakurta, S., & Botchwey, N. (2021). How are Neighborhood and Street-Level Walkability Factors Associated with Walking Behaviors? A Big Data Approach Using Street View Images. Environment and Behavior, 001391652110146. doi:10.1177/00139165211014609 60、Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105. 61、Lee, C., & Chavez Jr, B. F. (1987). Toxic wastes and race in the United States: A national report on the racial and socio-economic characteristics of communities with hazardous waste sites. New York: Commission for Racial Justice, United Church of Christ. 62、Lee, S., & Talen, E. (2014). Measuring Walkability: A Note on Auditing Methods. Journal of Urban Design, 19(3), 368-388. doi:10.1080/13574809.2014.890040 63、Lee, S. M., Conway, T. L., Frank, L. D., Saelens, B. E., Cain, K. L., & Sallis, J. F. (2017). The Relation of Perceived and Objective Environment Attributes to Neighborhood Satisfaction. Environment and Behavior, 49(2), 136-160. doi:10.1177/0013916515623823 64、Lindelöw, D., Svensson, Å., Sternudd, C., & Johansson, M. (2014). What limits the pedestrian? Exploring perceptions of walking in the built environment and in the context of every-day life. Journal of Transport & Health, 1(4), 223-231. doi:10.1016/j.jth.2014.09.002 65、Lowe, K. (2016). Environmental Justice and Pedestrianism: Sidewalk Continuity, Race, and Poverty in New Orleans, Louisiana. Transportation Research Record: Journal of the Transportation Research Board, 2598(1), 119-123. doi:10.3141/2598-14 66、Lu, Y., Sarkar, C., & Xiao, Y. (2018). The effect of street-level greenery on walking behavior: Evidence from Hong Kong. Social Science & Medicine, 208, 41-49. doi:https://doi.org/10.1016/j.socscimed.2018.05.022 67、Cordts, M. O., S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, B. Schiele. (2016). The Cityscapes Dataset for Semantic Urban Scene Understanding. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 68、Marshall, J. D., Brauer, M., & Frank, L. D. (2009). Healthy neighborhoods: walkability and air pollution. Environmental health perspectives, 117(11), 1752-1759. 69、Nagata, S., Nakaya, T., Hanibuchi, T., Amagasa, S., Kikuchi, H., & Inoue, S. (2020). Objective scoring of streetscape walkability related to leisure walking: Statistical modeling approach with semantic segmentation of Google Street View images. Health & Place, 66, 102428. doi:10.1016/j.healthplace.2020.102428 70、Neuhold, G., Ollmann, T., Rota Bulo, S., & Kontschieder, P. (2017). The mapillary vistas dataset for semantic understanding of street scenes. Paper presented at the Proceedings of the IEEE international conference on computer vision. 71、O’Brien, R. M. (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity, 41(5), 673-690. doi:10.1007/s11135-006-9018-6 72、Omo-Irabor, O. O. (2016). A Comparative Study of Image Classification Algorithms for Landscape Assessment of the Niger Delta Region. Journal of Geographic Information System, 08(02), 163-170. doi:10.4236/jgis.2016.82015 73、Pikora, T. J., Bull, F. C. L., Jamrozik, K., Knuiman, M., Giles-Corti, B., & Donovan, R. J. (2002). Developing a reliable audit instrument to measure the physical environment for physical activity. American Journal of Preventive Medicine, 23(3), 187-194. doi:10.1016/s0749-3797(02)00498-1 74、PWA(Partnership for a Walkable America).(2001). Walkability Checklist. Accessed June 2022. From: https://19january2017snapshot.epa.gov/sites/production/files/2014-03/documents/checklist_walkability_0.pdf 75、Ribeiro, F., Florencio, D., & Nascimento, V. (2011). Crowdsourcing subjective image quality evaluation. Paper presented at the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium. 76、Rigolon, A. (2017). Parks and young people: An environmental justice study of park proximity, acreage, and quality in Denver, Colorado. Landscape and Urban Planning, 165, 73-83. doi:10.1016/j.landurbplan.2017.05.007 77、Rundle, A. G., Bader, M. D. M., Richards, C. A., Neckerman, K. M., & Teitler, J. O. (2011). Using Google Street View to Audit Neighborhood Environments. American Journal of Preventive Medicine, 40(1), 94-100. doi:10.1016/j.amepre.2010.09.034 78、Rzotkiewicz, A., Pearson, A. L., Dougherty, B. V., Shortridge, A., & Wilson, N. (2018). Systematic review of the use of Google Street View in health research: Major themes, strengths, weaknesses and possibilities for future research. Health & Place, 52, 240-246. doi:10.1016/j.healthplace.2018.07.001 79、Saelens, B. E., Sallis, J. F., Black, J. B., & Chen, D. (2003). Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation. American Journal of Public Health, 93(9), 1552-1558. doi:10.2105/ajph.93.9.1552 80、Salesses, P., Schechtner, K., & Hidalgo, C. A. (2013). The Collaborative Image of The City: Mapping the Inequality of Urban Perception. PLOS ONE, 8(7), e68400. doi:10.1371/journal.pone.0068400 81、Schlosberg, D. (2004). Reconceiving Environmental Justice: Global Movements And Political Theories. Environmental Politics, 13(3), 517-540. doi:10.1080/0964401042000229025 82、Silveira, E. M. d. O., Menezes, M. D. d., Júnior, F. W. A., Terra, M. C. N. S., & Mello, J. M. d. (2017). Assessment of geostatistical features for object-based image classification of contrasted landscape vegetation cover. Journal of Applied Remote Sensing, 11(3). doi:https://doi.org/10.1117/1.JRS.11.036004 83、Smith, M. E. (2007). Form and Meaning in the Earliest Cities: A New Approach to Ancient Urban Planning. Journal of Planning History, 6(1), 3-47. doi:10.1177/1538513206293713 84、Soares, M. R., & Pereira, C. A. D. C. (2011). Six-minute walk test: reference values for healthy adults in Brazil. Jornal Brasileiro de Pneumologia, 37(5), 576-583. doi:10.1590/s1806-37132011000500003 85、Southworth, M. (2005). Designing the Walkable City. Journal of Urban Planning and Development, Vol. 131, Issue 4 (December 2005), 12. doi:https://doi.org/10.1061/(ASCE)0733-9488(2005)131:4(246) 86、Speck, J. (2013). Walkable city: How downtown can save America, one step at a time: Macmillan. 87、Steinmetz-Wood, M., Velauthapillai, K., O’Brien, G., & Ross, N. A. (2019). Assessing the micro-scale environment using Google Street View: the Virtual Systematic Tool for Evaluating Pedestrian Streetscapes (Virtual-STEPS). BMC Public Health, 19(1). doi:10.1186/s12889-019-7460-3 88、Su, S., Pi, J., Xie, H., Cai, Z., & Weng, M. (2017). Community deprivation, walkability, and public health: Highlighting the social inequalities in land use planning for health promotion. Land Use Policy, 67, 315-326. doi:10.1016/j.landusepol.2017.06.005 89、Sundquist, K., Eriksson, U., Kawakami, N., Skog, L., Ohlsson, H., & Arvidsson, D. (2011). Neighborhood walkability, physical activity, and walking behavior: The Swedish Neighborhood and Physical Activity (SNAP) study. Social Science & Medicine, 72(8), 1266-1273. doi:10.1016/j.socscimed.2011.03.004 90、Suzuki, M., Mori, J., Maeda, T. N., & Ikeda, J. (2022). The economic value of urban landscapes in a suburban city of Tokyo, Japan: A semantic segmentation approach using Google Street View images. Journal of Asian Architecture and Building Engineering. doi:10.1080/13467581.2022.2070492 91、Sze, J., & London, J. K. (2008). Environmental Justice at the Crossroads. Sociology Compass, 2(4), 1331-1354. doi:10.1111/j.1751-9020.2008.00131.x 92、Towne, S. D., Won, J., Lee, S., Ory, M. G., Forjuoh, S. N., Wang, S., & Lee, C. (2016). Using Walk Score™ and Neighborhood Perceptions to Assess Walking Among Middle-Aged and Older Adults. Journal of Community Health, 41(5), 977-988. doi:10.1007/s10900-016-0180-z 93、USEPA(2014). Environmental Justice. Retrieved June 7th,from https://www.epa.gov/environmentaljustice 94、Wang, M., & Vermeulen, F. (2021). Life between buildings from a street view image: What do big data analytics reveal about neighbourhood organisational vitality? Urban Studies, 58(15), 3118-3139. doi:10.1177/0042098020957198 95、Wang, R., Liu, Y., Lu, Y., Yuan, Y., Zhang, J., Liu, P., & Yao, Y. (2019). The linkage between the perception of neighbourhood and physical activity in Guangzhou, China: using street view imagery with deep learning techniques. International Journal of Health Geographics, 18(1). doi:10.1186/s12942-019-0182-z 96、Wang, R., Lu, Y., Zhang, J., Liu, P., Yao, Y., & Liu, Y. (2019). The relationship between visual enclosure for neighbourhood street walkability and elders’ mental health in China: Using street view images. Journal of Transport & Health, 13, 90-102. doi:10.1016/j.jth.2019.02.009 97、Yang, Y., He, D., Gou, Z., Wang, R., Liu, Y., & Lu, Y. (2019). Association between street greenery and walking behavior in older adults in Hong Kong. Sustainable Cities and Society, 51. doi:10.1016/j.scs.2019.101747 98、Yasumoto, S. (2017). A Quantitative Environmental Justice Analysis in Yokohama, Japan: Relationship between Social Indicators and Environmental Quality. 立命館地理学, 第29号(2017), 31-43. 99、Yin, L., Cheng, Q., Shao, Z., Wang, Z., & Wu, L. (2017). ‘Big Data’: Pedestrian Volume Using Google Street View Images. In (pp. 461-469): Springer International Publishing. 100、Yin, L., & Wang, Z. (2016). Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street View imagery. Applied Geography, 76, 147-153. doi:10.1016/j.apgeog.2016.09.024 101、Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., & Darrell, T. (2018). Bdd100k: A diverse driving video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687, 2(5), 6. 102、Zhang, F., Zhou, B., Liu, L., Liu, Y., Fung, H. H., Lin, H., & Ratti, C. (2018). Measuring human perceptions of a large-scale urban region using machine learning. Landscape and Urban Planning, 180, 148-160. doi:10.1016/j.landurbplan.2018.08.020 103、Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. 104、Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., & Torralba, A. (2019). Semantic Understanding of Scenes Through the ADE20K Dataset. International Journal of Computer Vision, 127(3), 302-321. doi:10.1007/s11263-018-1140-0 105、Zhou, H., He, S., Cai, Y., Wang, M., & Su, S. (2019). Social inequalities in neighborhood visual walkability: Using street view imagery and deep learning technologies to facilitate healthy city planning. Sustainable Cities and Society, 50, 101605. doi:https://doi.org/10.1016/j.scs.2019.101605 106、Zhu, W., Sun, Y., Kurka, J., Geremia, C., Engelberg, J. K., Cain, K., . . . Adams, M. A. (2017). Reliability between online raters with varying familiarities of a region: Microscale Audit of Pedestrian Streetscapes (MAPS). Landscape and Urban Planning, 167, 240-248. doi:10.1016/j.landurbplan.2017.06.014 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85057 | - |
| dc.description.abstract | 城市規劃日益重視人行體驗,而步行環境的改善,已被證實能提高民眾的步行意願,並促進其身體健康。為了防止社會資源過分集中於特定區域而侵損到其他群體的利益,許多研究開始以可步行性的概念從環境正義的角度來審視城市內不同區域步行環境的資源分配狀況。過去研究多透過客觀環境或是主觀知覺衡量可都市環境之步行性,但這些研究多將客觀環境與主觀感知分開評估。雖有學者指出感知可步行性對行人步行體驗與步行意願等的反映較客觀可步行性更為準確,但感知可步行性也會受客觀環境的影響,卻鮮少研究探討可步行性之客觀環境與主觀知覺之關聯。而且,囿於現地調查成本較高,研究範圍侷限。拜科技進步所賜,街景服務普及,這些資訊能不僅提供街道立面環境屬性,且達全面性覆蓋,便於大範圍評估。 而最近的研究以語義分割計算街景各環境屬性面積,大幅減少了客觀環境評估成本,但鮮有研究真正探討到環境屬性對感知可步行性的具體影響程度。因此,本研究將運用Google街景研究都市環境之主客觀可步行性,同時利用語義分割與主觀感知建構環實質境屬性對感知可步行性之預測模型。並以此模型預測台北市各路段可步行性,關聯各地區的社經特性檢視台北市步行空間的環境正義問題。 本研究選擇臺北市作為研究案例,第一階段以中正區為抽樣地點,將區內道路按每50m為一取樣點,採分層隨機抽樣,共計取樣1,022點;再依道路四種功能分級,按25%比例進行抽樣,最後抽取256張街景圖片。在客觀可步行環境評估方面,運用由Cityscapes數據集訓練的深度卷積神經網絡模型(DeepLab v3+),計算街景中人行道、樹等環境屬性面積佔比。另外,在主觀可步行性感知評估方面,則透過網路問卷進行使用者照片評估,請受測者針對照片內容以便利性、舒適度、安全性、吸引力四種指標評估感知可步行性。第二階段針對台北市非山坡地區域之道路按每50m為一取樣點進行普查,利用第一階段得到的預測模型進行感知可步行性得分預測,建立可步行性地圖,並以台北市各區以及各里別的收入、年齡、學歷之社經特性探討步行空間分佈的公平性。 第一階段的預測模型經由逐步回歸分析顯示,人行道、其他植物、喬木等對舒適感有顯著正面影響(R2=0.523);人行道、立桿、道路對便利性有顯著正面影響,而牆壁對便利性則有顯著負面影響(R2=0.271);人行道、其他植物、道路等對安全性有顯著正面影響,而牆壁、建築對便利性則有顯著負面影響(R2=0.513);其他植物、道路、立桿對吸引力有顯著正面影響,而建築、卡車、牆壁對吸引力有顯著負面影響(R2=0.464)。將四種指標平均計算成平均感知而言,道路、其他植物、人行道等對感知可步行性有顯著正面影響,而牆壁則對感知可步行性有顯著負面影響(R2=0.501)。 第二階段可步行性地圖則顯示,台北市可步行性較高的街道主要位於主次要幹道及市地重劃區,且但台北市步行空間在里別級的分佈上存在一定的環境不正義現象,社經狀況較為弱勢的各里可步行性通常也較低。 | zh_TW |
| dc.description.abstract | Urban planning is increasingly focusing on the pedestrian experience, and improvements to the walking environment have been shown to increase people’s willingness to walk and improve their health. In order to prevent social resources from being overly concentrated in a specific area and infringing on the interests of other groups, many studies have begun to use the concept of walkability to examine the resource allocation of pedestrian environments in different areas of the city from the perspective of environmental justice. In the past, most studies measured the walkability of urban environments through objective environment or subjective perception, but most of these studies evaluated the objective environment and subjective perception separately. Although some scholars have pointed out that perceived walkability reflects pedestrians’ walking experience and willingness to walk more accurately than objective walkability, perceived walkability is also affected by the objective environment, but few studies have explored the relationship between the environment and subjective perception. Moreover, due to the high cost of on-site investigation, the research scope was limited. Thanks to the advancement of technology and the popularization of street view services, this information can not only provide the environmental attributes of street facades, but also achieve comprehensive coverage, which is convenient for large-scale evaluation. However, recent researches use semantic segmentation to calculate the area of each environmental attribute of streetscape, which greatly reduces the cost of objective environmental assessment, but few studies have really explored the specific impact of environmental attributes on perceived walkability. Therefore, this study will use Google Street View to study the subjective and objective walkability of urban environments, and at the same time use semantic segmentation and subjective perception to construct a predictive model of perceived walkability by the physical environment attributes of the environment. And using this model to predict the walkability of each road section in Taipei City, and examine the environmental justice issues of Taipei City's pedestrian space in relation to the social and economic characteristics of each region. This study selects Taipei City as a case study. In the first stage, Zhongzheng District is used as the sampling site, and every 50m of roads in the area is taken as a sampling point, and a stratified random sampling is used to sample a total of 1,022 points. Sampling is carried out at a ratio of 25%, and finally 256 street view images are selected. In terms of objective walkable environment assessment, the deep convolutional neural network model (DeepLab v3+) trained by the Cityscapes dataset is used to calculate the area ratio of environmental attributes such as sidewalks and trees in the street view. In addition, in terms of subjective walkability perception evaluation, the photos are evaluated through an online questionnaire, and the subjects are asked to evaluate the perceived walkability according to the content of the photo by four indicators: convenience, comfort, safety, and attractiveness. The second stage is to conduct a census on the roads in the non-hillside areas of Taipei City at every 50m sampling point, and use the prediction model obtained in the first stage to predict the perceived walkability score, build a walkability map, and use the districts in Taipei City. And the social and economic characteristics of income, age, and educational background of each distict and each village to explore the fairness of the distribution of walking space. The first-stage prediction model showed through stepwise regression analysis that sidewalks, ground cover, plants, etc. had a significant positive impact on comfort (R2=0.523); the number of destinations, sidewalks, poles, and roads had a significant positive impact on convenience. , and walls have a significant negative impact on convenience (R2=0.271); sidewalks, ground cover, roads, etc. have a significant positive impact on safety, while walls and buildings have a significant negative impact on convenience (R2=0.513) ; Ground cover, roads, and poles have a significant positive impact on attractiveness, while buildings, trucks, and fences have a significant negative impact on attractiveness (R2=0.464). Taking the average of the four indicators to calculate the perceived walkability, roads, ground cover plants, sidewalks, etc. have a significant positive impact on perceived walkability, while walls have a significant negative impact on perceived walkability (R2=0.501). The second-stage walkability map shows that the streets with high walkability in Taipei City are mainly located in the main and secondary arterial roads and urban rezoning areas. However, there is a certain degree of environmental injustice in the distribution of pedestrian spaces in Taipei City, and the walkability of each village with weaker socioeconomic status is usually lower. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:40:54Z (GMT). No. of bitstreams: 1 U0001-1508202211321600.pdf: 6266824 bytes, checksum: 23d316fb10d4cacbd9be47819559ecba (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 中文摘要 I 英文摘要 III 目 錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 第一節 研究背景及動機 1 第二節 研究目的 3 第二章 文獻回顧 4 第一節 可步行性的評估 4 一、客觀可步行性之評估 4 二、感知可步行性之評估 8 三、客觀與感知可步行性之關係 10 第二節 可步行性與環境正義 12 一、環境正義的概念發展 12 二、環境正義的指標因素 12 三、可步行性與環境正義 13 第三節 機器學習判讀街景環境 15 一、機器學習環境判讀的發展 15 二、機器學習之語義分割技術 16 三、Google街景語義分割在可步行性評估上的應用 21 第三章 研究方法 23 第一節 第一階段主客觀可步行性研究方法 23 一、研究架構 23 二、第一階段街景抽樣地點 26 三、街景圖像處理 30 四、問卷設計 32 五、操作流程 36 六、資料分析方法 37 第二節 第二階段全市可步行性預測方法 39 一、研究架構 39 二、第二階段街景抽樣地點 40 三、社經指標資料取得 42 四、第二階段操作流程 42 五、資料分析方法 42 第四章 第一階段主客觀可步行性研究結果 44 第一節 問卷及街景基本資料 44 一、問卷受訪者基本資料 44 二、感知數據描述性統計 45 三、街景環境屬性描述性統計 46 四、皮爾森相關分析結果 47 第二節 街景環境屬性與舒適感的關係 49 一、舒適感預測模型 49 二、環境屬性與舒適感的關係 49 第三節 街景環境屬性與便利性的關係 57 一、便利性預測模型 57 二、環境屬性與便利性的關係 58 第四節 街景環境屬性與安全性的關係 65 一、安全性預測模型 65 二、環境屬性與安全性的關係 66 第五節 街景環境屬性與吸引力的關係 74 一、吸引力預測模型 74 二、環境屬性與吸引力的關係 75 第六節 街景環境屬性與平均感知的關係 83 一、平均感知預測模型 83 二、環境屬性與平均感知的關係 84 第五章 第二階段全市可步行性預測方法研究結果 92 第一節 台北市街景可步行性預測 92 一、預測模型選擇 92 二、台北市街景可步行性預測得分 92 二、台北市各里可步行性預測得分 97 第二節 台北市步行空間可步行性的環境正義問題 101 第六章 結論與建議 108 第一節 第一階段主客觀可步行性結果與討論 108 一、道路在街景中所佔面積增加會使街道可步行性上升 109 二、各類植物在街景中所佔面積增加使街道可步行性上升 109 三、人行道及人行道公共設施在街景中所佔面積增加使街道可步行性上升 110 四、牆壁在街景中所佔面積增加會使可步行性下降 110 第二節 第二階段全市可步行性預測結果與討論 111 一、主次要幹道及市地重劃區街道可步行性較高 111 二、台北市社經狀況較為弱勢的各里可步行性通常也較低 112 第三節 研究限制與未來研究建議 113 附 錄 115 問卷示意 115 參考文獻 119 | |
| dc.language.iso | zh-TW | |
| dc.subject | 語義分割 | zh_TW |
| dc.subject | Google街景 | zh_TW |
| dc.subject | 環境正義 | zh_TW |
| dc.subject | 感知可步行性 | zh_TW |
| dc.subject | Perceived Walkability | en |
| dc.subject | Google Street View | en |
| dc.subject | Environmental Justice | en |
| dc.subject | Semantic Segmentation | en |
| dc.title | 以Google街景探究都市環境之主客觀可步行性之關係 | zh_TW |
| dc.title | Using Google Street View to study the relation between objective and perceived walkability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何立智(Li-Chih Ho),林晏州(Yann-Jou Lin),張俊彥(Chun-Yen Chang),林寶秀(Bau-Show Lin) | |
| dc.subject.keyword | 環境正義,感知可步行性,Google街景,語義分割, | zh_TW |
| dc.subject.keyword | Environmental Justice,Perceived Walkability,Google Street View,Semantic Segmentation, | en |
| dc.relation.page | 129 | |
| dc.identifier.doi | 10.6342/NTU202202393 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| dc.date.embargo-lift | 2023-08-15 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1508202211321600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
