Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85056
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鏡堂(Jing-Tang Yang)
dc.contributor.authorSheng-Kai Changen
dc.contributor.author張勝凱zh_TW
dc.date.accessioned2023-03-19T22:40:50Z-
dc.date.copyright2022-08-19
dc.date.issued2022
dc.date.submitted2022-08-16
dc.identifier.citationAncel, A. O., Eastwood, R., Vogt, D., Ithier, C., Smith, M., Wood, R., & Kovač, M. (2017). Aerodynamic evaluation of wing shape and wing orientation in four butterfly species using numerical simulations and a low-speed wind tunnel, and its implications for the design of flying micro-robots. Interface Focus, 7(1), 20160087. Ansari, S. A., Knowles, K., & Zbikowski, R. (2008). Insectlike flapping wings in the hover part II: effect of wing geometry. Journal of Aircraft, 45(6), 1976-1990. Berwaerts, K., Matthysen, E., & Van Dyck, H. (2008). Take‐off flight performance in the butterfly Pararge aegeria relative to sex and morphology: a quantitative genetic assessment. Evolution: International Journal of Organic Evolution, 62(10), 2525-2533. Betts, C. R., & Wootton, R. J. (1988). Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. Journal of Experimental Biology, 138(1), 271-288. Bhat, S. S., Zhao, J., Sheridan, J., Hourigan, K., & Thompson, M. C. (2019a). Aspect ratio studies on insect wings. Physics of Fluids, 31(12), 121301. Bhat, S. S., Zhao, J., Sheridan, J., Hourigan, K., & Thompson, M. C. (2019b). Uncoupling the effects of aspect ratio, Reynolds number and Rossby number on a rotating insect-wing planform. Journal of Fluid Mechanics, 859, 921-948. Betts, C., & Wootton, R. (1988). Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. Journal of Experimental Biology, 138(1), 271-288. Birch, J. M., & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412(6848), 729-733. Bomphrey, R. J., Lawson, N. J., Harding, N. J., Taylor, G. K., & Thomas, A. L. (2005). The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. Journal of Experimental Biology, 208(6), 1079-1094. Bomphrey, R. J., Nakata, T., Phillips, N., & Walker, S. M. (2017). Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature, 544(7648), 92-95. Bomphrey, R. J., Taylor, G. K., & Thomas, A. L. (2010). Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Animal Locomotion, 249-259. Carr, Z. R., DeVoria, A. C., & Ringuette, M. J. (2015). Aspect-ratio effects on rotating wings: circulation and forces. Journal of Fluid Mechanics, 767, 497-525. Chang, Y. H., Ting, S. C., Liu, C. C., Yang, J. T., & Soong, C. Y. (2011). An unconventional mechanism of lift production during the downstroke in a hovering bird (Zosterops japonicus). Experiments in Fluids, 51(5), 1231-1243. Chin, D. D., & Lentink, D. (2016). Flapping wing aerodynamics: from insects to vertebrates. Journal of Experimental Biology, 219(7), 920-932. Combes, S. A., & Daniel, T. L. (2003a). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17), 2979-2987. Combes, S. A., & Daniel, T. L. (2003b). Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. Journal of Experimental Biology, 206(17), 2999-3006. Dickinson, M. H., & Gotz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. Journal of Experimental Biology, 174(1), 45-64. Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954-1960. Du, G., & Sun, M. (2010). Effects of wing deformation on aerodynamic forces in hovering hoverflies. Journal of Experimental Biology, 213(13), 2273-2283. Dudley, R. (1990). Biomechanics of flight in neotropical butterflies: morphometrics and kinematics. Journal of Experimental Biology, 150(1), 37-53. Dudley, R., & Srygley, R. (1994). Flight physiology of neotropical butterflies: allometry of airspeeds during natural free flight. Journal of Experimental Biology, 191(1), 125-139. Dyhr, J. P., Morgansen, K. A., Daniel, T. L., & Cowan, N. J. (2013). Flexible strategies for flight control: an active role for the abdomen. Journal of Experimental Biology, 216(9), 1523-1536. Eberle, A. L., Dickerson, B. H., Reinhall, P. G., & Daniel, T. L. (2015). A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings. Journal of the Royal Society Interface, 12(104), 20141088. Eldredge, J. D., & Jones, A. R. (2019). Leading-edge vortices: mechanics and modeling. Annual Review of Fluid Mechanics, 75-104 Ellington, C. P. (1984). The aerodynamics of hovering insect flight. II. Morphological parameters. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 305(1122), 17-40. Ellington, C. P., Van Den Berg, C., Willmott, A. P., & Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature, 384(6610), 626-630. Fei, Y. H. J., & Yang, J. T. (2015). Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation. Physical Review E, 92(3), 033004. Fei, Y. H. J., & Yang, J. T. (2016). Importance of body rotation during the flight of a butterfly. Physical Review E, 93(3), 033124. Fu, J., Liu, X., Shyy, W., & Qiu, H. (2018). Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings. Bioinspiration & Biomimetics, 13(3), 036001. Fu, J. J., Hefler, C., Qiu, H. H., & Shyy, W. (2014). Effects of aspect ratio on flapping wing aerodynamics in animal flight. Acta Mechanica Sinica, 30(6), 776-786. Fuchiwaki, M., Kuroki, T., Tanaka, K., & Tababa, T. (2013). Dynamic behavior of the vortex ring formed on a butterfly wing. Experiments in Fluids, 54(1), 1-12. Fujikawa, T., Sato, Y., Makata, Y., Yamashita, T., & Kikuchi, K. (2009). Motion analysis of butterfly-style flapping robot for different wing and body design. in 2008 IEEE International Conference on Robotics and Biomimetics. Fujikawa, T., Sato, Y., Yamashita, T., & Kikuchi, K. (2010). Development of a lead-lag mechanism using simple flexible links for a small butterfly-style flapping robot. in 2010 World Automation Congress. Garmann, D. J., & Visbal, M. R. (2014). Dynamics of revolving wings for various aspect ratios. Journal of Fluid Mechanics, 748, 932-956. Gau, J., Gemilere, R., LDS-VIP (FM subteam), Lynch, J., Gravish, N., & Sponberg, S. (2021). Rapid frequency modulation in a resonant system: aerial perturbation recovery in hawkmoths. Proceedings of the Royal Society B, 288(1951), 20210352. Gutierrez, E., Quinn, D. B., Chin, D. D., & Lentink, D. (2016). Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics. Bioinspiration & Biomimetics, 12(1), 016004. Hinterwirth, A. J., & Daniel, T. L. (2010). Antennae in the hawkmoth Manduca sexta (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli. Journal of Comparative Physiology A, 196(12), 947-956. Huang, H., & Sun, M. (2012). Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations. Acta Mechanica Sinica, 28(6), 1590-1601. Jardin, T. (2017). Coriolis effect and the attachment of the leading edge vortex. Journal of Fluid Mechanics, 820, 312-340. Jardin, T., & David, L. (2014). Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings. Physical Review E, 90(1), 013011. Jardin, T., & David, L. (2015). Coriolis effects enhance lift on revolving wings. Physical Review E, 91(3), 031001. Jayakumar, J., Senda, K., & Yokoyama, N. (2018). Control of pitch attitude by abdomen during forward flight of two-dimensional butterfly. Journal of Aircraft, 55(6), 2327-2337. Johansson, L. C., & Henningsson, P. (2021). Butterflies fly using efficient propulsive clap mechanism owing to flexible wings. Journal of the Royal Society Interface, 18(174), 20200854. Jones, S. K., Laurenza, R., Hedrick, T. L., Griffith, B. E., & Miller, L. A. (2015). Lift vs. drag based mechanisms for vertical force production in the smallest flying insects. Journal of Theoretical Biology, 384, 105-120. Kang, C. K., Cranford, J., Sridhar, M. K., Kodali, D., Landrum, D. B., & Slegers, N. (2018a). Experimental characterization of a butterfly in climbing flight. AIAA Journal, 56(1), 15-24. Kang, C. K., Sridhar, M., & Landrum, D. B. (2018b). Dynamic relationship between flapping wing and body undulation of monarch butterflies in free flight. in 2018 AIAA Aerospace Sciences Meeting. Kruyt, J. W., Van Heijst, G. F., Altshuler, D. L., & Lentink, D. (2015). Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Journal of the Royal Society Interface, 12(105), 20150051. Kuethe, A., & Chow, C. Y. (1998). Foundations of Aerodynamics: Bases of Aerodynamic Design. New York: John Wiley & Sons. Lai, Y. H., Chang, S. K., Lan, B., Hsu, K. L., & Yang, J. T. (2022). Optimal thrust efficiency for a tandem wing in forward flight using varied hindwing kinematics of a damselfly. Physics of Fluids, 34, 061909. Lai, Y. H., Lin, Y. J., Chang, S. K., & Yang, J. T. (2020). Effect of wing–wing interaction coupled with morphology and kinematic features of damselflies. Bioinspiration & Biomimetics, 16(1), 016017. Lai, Y. H., Ma, J. F., & Yang, J. T. (2021). Flight maneuver of a damselfly with phase modulation of the wings. Integrative and Comparative Biology, 61(1), 20-36. Lee, Y., Lua, K., & Lim, T. (2016). Aspect ratio effects on revolving wings with Rossby number consideration. Bioinspiration & Biomimetics, 11(5), 056013. Lee, Y. J., & Lua, K. B. (2018). Wing–wake interaction: comparison of 2D and 3D flapping wings in hover flight. Bioinspiration & Biomimetics, 13(6), 066003. Lehmann, F. O., Sane, S. P., & Dickinson, M. (2005). The aerodynamic effects of wing–wing interaction in flapping insect wings. Journal of Experimental Biology, 208(16), 3075-3092. Lentink, D., & Dickinson, M. H. (2009a). Biofluiddynamic scaling of flapping, spinning and translating fins and wings. Journal of Experimental Biology, 212(16), 2691-2704. Lentink, D., & Dickinson, M. H. (2009b). Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Experimental Biology, 212(16), 2705-2719. Lentink, D., Dickson, W. B., Van Leeuwen, J. L., & Dickinson, M. H. (2009). Leading-edge vortices elevate lift of autorotating plant seeds. Science, 324(5933), 1438-1440. Liang, B., & Sun, M. (2013). Aerodynamic interactions between wing and body of a model insect in forward flight and maneuvers. Journal of Bionic Engineering, 10(1), 19-27. Lin, Y. J., Chang, S. K., Lai, Y. H., & Yang, J. T. (2021). Beneficial wake-capture effect for forward propulsion with a restrained wing-pitch motion of a butterfly. Royal Society Open Science, 8(8), 202172. Lin, T., Zheng, L., Hedrick, T., & Mittal, R. (2012). The significance of moment-of-inertia variation in flight manoeuvres of butterflies. Bioinspiration & Biomimetics, 7(4), 044002. Liu, H. (2020). Simulation-based insect-inspired flight systems. Current Opinion in Insect Science, 42, 105-109. Lua, K. B., Lai, K. C., Lim, T. T., & Yeo, K. S. (2010). On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings. Experiments in Fluids, 49(6), 1263-1291. Lua, K. B., Lim, T. T., & Yeo, K. S. (2011). Effect of wing–wake interaction on aerodynamic force generation on a 2D flapping wing. Experiments in Fluids, 51(1), 177-195. Lua, K. B., Lim, T., & Yeo, K. S. (2014). Scaling of aerodynamic forces of three-dimensional flapping wings. AIAA Journal, 52(5), 1095-1101. Luo, G., & Sun, M. (2005). The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings. Acta Mechanica Sinica, 21(6), 531-541. Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., ... & Zhou, X. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210), 763-767. Mitter, C., Davis, D. R., & Cummings, M. P. (2017). Phylogeny and evolution of Lepidoptera. Annual Review of Entomology, 62, 265-283. Mountcastle, A. M., & Daniel, T. L. (2010). Aerodynamic and functional consequences of wing compliance. Animal Locomotion, 311-320. Muijres, F. T., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R., & Hedenstrom, A. (2008). Leading-edge vortex improves lift in slow-flying bats. Science, 319(5867), 1250-1253. Muijres, F. T., Johansson, L. C., & Hedenström, A. (2012). Leading edge vortex in a slow-flying passerine. Biology Letters, 8(4), 554-557. Nakata, T., & Liu, H. (2012a). A fluid–structure interaction model of insect flight with flexible wings. Journal of Computational Physics, 231(4), 1822-1847. Nakata, T., & Liu, H. (2012b). Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proceedings of the Royal Society B: Biological Sciences, 279(1729), 722-731. Nakata, T., Noda, R., & Liu, H. (2018). Effect of twist, camber and spanwise bending on the aerodynamic performance of flapping wings. Journal of Biomechanical Science and Engineering, 17, 00618. Nakata, T., Phillips, N., Simões, P., Russell, I. J., Cheney, J. A., Walker, S. M., & Bomphrey, R. J. (2020). Aerodynamic imaging by mosquitoes inspires a surface detector for autonomous flying vehicles. Science, 368(6491), 634-637. Nakatani, Y., Suzuki, K., & Inamuro, T. (2016). Flight control simulations of a butterfly-like flapping wing–body model by the immersed boundary–lattice Boltzmann method. Computers & Fluids, 133, 103-115. Ozawa, Y., Fujikawa, T., & Kikuchi, K. (2018). Analysis of turning motion for developing a butterfly-style flapping robot. MM Science Journal, 2198-2204. Phan, H. V., Au, T. K. L., & Park, H. C. (2016). Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle. Royal Society Open Science, 3(12), 160746. Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 4191-4208. Santhanakrishnan, A., Robinson, A. K., Jones, S., Low, A. A., Gadi, S., Hedrick, T. L., & Miller, L. A. (2014). Clap and fling mechanism with interacting porous wings in tiny insect flight. Journal of Experimental Biology, 217(21), 3898-3909. Senda, K., Obara, T., Kitamura, M., Nishikata, T., Hirai, N., Iima, M., & Yokoyama, N. (2012a). Modeling and emergence of flapping flight of butterfly based on experimental measurements. Robotics and Autonomous Systems, 60(5), 670-678. Senda, K., Obara, T., Kitamura, M., Yokoyama, N., Hirai, N., & Iima, M. (2012b). Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspiration & Biomimetics, 7(2), 025002. Shahzad, A., Tian, F. B., Young, J., & Lai, J. C. (2016). Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover. Physics of Fluids, 28(11), 111901. Sridhar, M., Kang, C. K., & Landrum, D. B. (2016). Instantaneous lift and motion characteristics of butterflies in free flight. in 46th AIAA Fluid Dynamics Conference. Sridhar, M., Kang, C. K., & Lee, T. (2020). Geometric formulation for the dynamics of monarch butterfly with the effects of abdomen undulation. in AIAA Scitech 2020 Forum. Sun, M., & Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Journal of Experimental Biology, 205(1), 55-70. Sunada, S., Kawachi, K., Watanabe, I., & Azuma, A. (1993). Performance of a butterfly in take-off flight. Journal of Experimental Biology, 183(1), 249-277. Suzuki, K., Minami, K., & Inamuro, T. (2015). Lift and thrust generation by a butterfly-like flapping wing–body model: immersed boundary–lattice Boltzmann simulations. Journal of Fluid Mechanics, 767, 659-695. Suzuki, K., Aoki, T., & Yoshino, M. (2017). Effect of wing mass in free flight of a two-dimensional symmetric flapping wing–body model. Fluid Dynamics Research, 49(5), 055504. Suzuki, K., Aoki, T., & Yoshino, M. (2019a). Effect of chordwise wing flexibility on flapping flight of a butterfly model using immersed-boundary lattice Boltzmann simulations. Physical Review E, 100(1), 013104. Suzuki, K., Okada, I., & Yoshino, M. (2019b). Effect of wing mass on the free flight of a butterfly-like model using immersed boundary–lattice Boltzmann simulations. Journal of Fluid Mechanics, 877, 614-647. Suzuki, K., & Yoshino, M. (2019). A trapezoidal wing equivalent to a Janatella leucodesma’s wing in terms of aerodynamic performance in the flapping flight of a butterfly model. Bioinspiration & Biomimetics, 14(3), 036003. Srygley, R., & Thomas, A. (2002). Unconventional lift-generating mechanisms in free-flying butterflies. Nature, 420(6916), 660-664. Takahashi, H., Tanaka, H., Matsumoto, K., & Shimoyama, I. (2012). Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Bioinspiration & Biomimetics, 7(3), 036020. Tanaka, H., & Shimoyama, I. (2010). Forward flight of swallowtail butterfly with simple flapping motion. Bioinspiration & Biomimetics, 5(2), 026003. Thomas, A. L., Taylor, G. K., Srygley, R. B., Nudds, R. L., & Bomphrey, R. J. (2004). Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 207(24), 4299-4323. Van Den Berg, C., & Ellington, C. P. (1997). The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmoth. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1351), 329-340. Warrick, D. R., Tobalske, B. W., & Powers, D. R. (2009). Lift production in the hovering hummingbird. Proceedings of the Royal Society B: Biological Sciences, 276(1674), 3747-3752. Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology, 59(1), 169-230. Willmott, A. P., & Ellington, C. P. (1997). The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. Journal of Experimental Biology, 200(21), 2705-2722. Wilson, T., & Albertani, R. (2014). Wing-flapping and abdomen actuation optimization for hovering in the butterfly Idea leuconoe. 52nd Aerospace Sciences Meeting. Yokoyama, N., Senda, K., Iima, M., & Hirai, N. (2013). Aerodynamic forces and vortical structures in flapping butterfly's forward flight. Physics of Fluids, 25(2), 021902. Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K., & Thomas, A. L. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 1549-1552. Yu, X., & Sun, M. (2009). A computational study of the wing–wing and wing–body interactions of a model insect. Acta Mechanica Sinica, 25(4), 421-431. Zheng, L., Hedrick, T. L., & Mittal, R. (2013). Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PloS One, 8(1), e53060. Zou, P. Y., Lai, Y. H., & Yang, J. T. (2019). Effects of phase lag on the hovering flight of damselfly and dragonfly. Physical Review E, 100(6), 063102. 費約翰 (2017) 蝴蝶身體俯仰動態之飛行動力機制與飛行操控研究. 臺灣大學機械工程學系博士論文. 張勝凱 (2018) 利用腹部動態控制蝴蝶飛行研究. 臺灣大學機械工程學系碩士論文. 邱筠雅 (2020) 撓性與旋轉角於大白斑蝶及仿蝴蝶拍撲機構升力之影響. 臺灣大學機械工程學系碩士論文. 楊東穎 (2020) 蝴蝶翅膀形狀對飛行軌跡之影響以前翅掃掠角為主軸. 臺灣大學機械工程學系碩士論文. 洪千茵 (2021) 仿蝴蝶飛行器機構設計與模擬飛行測試. 台灣大學機械工程學系碩士論文 賴渝翔 (2021) 豆娘飛行動力最佳化分析與飛行操控機制研究. 臺灣大學機械工程學系博士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85056-
dc.description.abstract本研究受蝴蝶飛行特色啟發,結合生物力學與流體力學,以翅膀形狀、翅膀撓曲變形與翅膀身體耦合運動解析蝴蝶飛行動力機制;研究成果可為昆蟲飛行機制與仿生拍撲微飛行器之操控設計提出嶄新見解。 有別於一般昆蟲,蝴蝶拍翅頻率低,飛行時身體有足夠的時間響應翅膀動作,使翅膀與身體一起做上下起伏的耦合運動。此外,蝴蝶的前、後翅部分交疊,構成一片大翅膀;大面積翅膀在拍翅時會因自身撓性而變形,且前翅相對於後翅的掃掠動作同時改變整個翅膀形狀。本研究因此建立三維動態量測實驗,利用高速攝影機量測蝴蝶的飛行動作與翅膀形變,並開發應用於數值模擬之撓性翅膀曲面擬合重建技術,以實驗與數值方法分析翅膀身體運動交互作用與翅膀形狀對飛行的影響。 研究結果顯示,蝴蝶腹部相對於頭胸部的上下擺動透過翅膀與身體耦合運動增加拍翅產生之氣動力。當翅膀下拍時,往上擺的腹部使頭胸部相對於蝴蝶質心下移,增加翅膀相對於質心的下拍速度;上拍時,往下擺的腹部使頭胸部相對於質心上移,增加翅膀相對於質心的上拍速度。此建設性耦合運動增加翅膀的來流速度與攻角,從而產生較強的翼前緣與翼後緣渦漩,提升下拍時的升力與上拍時的推力。過去文獻指出,蝴蝶的腹部擺動相對於拍翅有一個約0.1週期的延遲相位差,本研究發現此相位差使翅膀與身體產生完全建設性耦合,使整個下拍與上拍階段翅膀相對於質心的拍翅速度最大化,並產生最大之升推力。本研究結果解釋蝴蝶採用0.1腹部擺動延遲相位差做飛行的原因。 在翅形部分,蝴蝶前翅相對於後翅的掃掠動作同時改變整個翅膀的掃掠角與展弦比。透過分離掃掠角與展弦比效應,本研究發現掃掠角與展弦比具有不同的流場與氣動力機制。後掠翅膀由於具有較大的展向流與翼尖渦漩,翼前緣渦漩貼附於翅膀,增加下拍升力;小展弦比翅膀在尾流區引起較大低壓,提供尾流吸力而增加下拍升力,在拍撲轉換階段,此尾流低壓引起強烈的誘導氣流,回拍的翅膀捕捉此氣流發生尾流捕獲,增加上拍推力。此外,透過可變形翅膀模擬,雖然下拍初期翅膀沿翼展軸向下的扭曲(twisting)延後翼前緣渦漩的生成,下拍中期翅膀會因氣動力向上拱曲(camber)與彎曲(bending),接著於下拍後期因彈性與慣性而向下拱曲與彎曲;此二次向下的拱彎曲增加翅膀下表面之高壓,增加升力;在上拍階段,翅膀沿翼展軸之向上扭曲將氣動力引導至水平方向,增加推力。結合以上效應,蝴蝶前翅向後的掃掠產生最大升力與最小推力,前翅向前的掃掠產生最小升力與最大推力;與剛性翅膀相比,撓曲變形翅膀的升力與推力皆有提升。 目前微飛行器設計之最大困難在於如何於微小體積下,增加翅膀機構的運動自由度以提升飛行機動性。透過本研究成果,未來微飛行器可將身體分為兩個部分,運用身體後端相對於前端的腹部擺動,在固定的拍翅動作下增加翅膀相對於質心的拍翅速度;同時也可將翅膀拆分為兩個部分重疊的前後翅,利用前翅掃掠控制整個翅膀形狀,並運用適當的拱曲、彎曲與扭曲,調控飛行氣動力。zh_TW
dc.description.abstractInspired from flight characteristics of butterfly, this study analyzes the flight mechanisms of wing shape, wing deformation and wing-body coupled motion in butterfly flight via biomechanics and fluid dynamics. The results provide new insights into flight of insect and control design of bionic flapping micro-aerial vehicles (MAVs). Unlike other insects, the flapping frequency of butterfly is small, making the body of a butterfly have sufficient time to respond to its wing movement and leading the wing and the body to do up-and-down coupled motion together during flight. In addition, the forewing and hindwing of a butterfly overlap partly, forming a large wing. When flapping, this large wing deforms due to wing flexibility, and a forewing-sweeping motion relative to a hindwing changes the shape of the entire wing. We hence established a 3D kinematics-measured experiment by using high-speed cameras to capture the flying motion and the wing deformation of butterflies, and developed a flexible-wing surface fitting-and-reconstruction technology for numerical simulation to analyze the wing-body coupled motion and the wing-shape effect. The results show that the up-and-down abdominal oscillation relative to the head-thorax of a butterfly increases aerodynamic forces via the wing-body coupled motion. During downstroke, an upward-oscillating abdomen makes the head-thorax move downward relative to the center of mass, increasing the downward wing-flapping speed relative to the center of mass. During upstroke, a downward-oscillating abdomen makes the head-thorax move upward relative to the center of mass, increasing the upward wing-flapping speed relative to the center of mass. This constructive wing-body coupled motion increases the incoming airflow speed and the angle of attack of the wing, results in stronger leading- and trailing-edge vortices, and increases lift in the downstroke and thrust in the upstroke. Previous literature has pointed out that the abdominal oscillation of butterflies has a delayed phase difference of about 0.1 period relative to the wing-flapping motion. We found that this phase difference produces a completely constructive wing-body couple motion, which maximizes the wing-flapping speed during the entire downstroke and upstroke and maximizes the lift and the thrust. This result provides a physical elucidation on why natural butterflies always utilize 0.1 abdomen-oscillating delayed phase for flight. As for the wing-shape effect, the forewing-sweeping motion relative to the hindwing simultaneously changes the wing-swept angle and aspect ratio of the entire wing. On separating the effects of wing-swept angle and aspect ratio, we found that the wing-swept angle and aspect ratio have distinct flow fields and aerodynamic mechanisms. A swept-backward wing increases the lift in the downstroke because of a leading-edge vortex attachment due to spanwise flow and wing-tip vortex. A small aspect ratio wing causes a large low-pressure in a wake, which provides a suction force and increases the lift in the downstroke; at wing-reversal stage, this low-pressure in the wake generates a strong induced flow, and the flapping wings captures this induced flow, enhancing wake-capture effect and increasing the thrust in the upstroke. In addition, in deformable-wing simulation, although the downward-twisting along wingspan axis in the early stage of downstroke delays the generation of leading-edge vortex, the wing cambers and bends upward due to aerodynamic forces in the mid-downstroke, and then cambers and bends downward due to elasticity and inertia forces in the later stage of downstroke. This secondary downward camber and bending increase the high-pressure on the lower surface of the wing; the lift thereby increases. During the upstroke, the upward-twisting along wingspan axis alters aerodynamic force into horizontal direction, increasing the thrust. Combining the above effects, the backward-sweeping forewing produces the maximum lift and the minimum thrust; the forward-sweeping forewing produces the minimum lift and the maximum thrust. Compared with rigid-wing, both the lift and thrust in the deformable wing increase. The biggest difficulty in the current design of MAVs is how to increase the degree of freedom of wing mechanism to improve flight maneuverability within a small volume. With the results of this study, we recommend that the body of a MAV can be designed with two parts; one can oscillate the rear part relative to the front part, i.e., abdominal oscillation, to increase the wing-flapping speed relative to the center of mass under a fixed wing-flapping motion. Also, the wing of a MAV can be designed with two partly-overlapping forewing and hindwing; one can use the forewing-sweeping motion, wing camber, bending and twisting to control the entire wing shape of the MAV, and further to regulate the aerodynamic forces.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:40:50Z (GMT). No. of bitstreams: 1
U0001-1508202204182700.pdf: 16514026 bytes, checksum: 69876abf75c8fe11646ad9368b41c3e8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 謝辭 ii 摘要 iii Abstract v 符號說明 ix 目 錄 xii 圖表目錄 xv 第一章 前言 1 第二章 文獻回顧 3 2-1 昆蟲翅膀名詞 3 2-2 昆蟲翅膀運動 5 2-3 飛行背景知識 6 2-3.1 攻角與有效攻角 6 2-3.2 庫塔-儒可夫斯基定理與庫塔條件 7 2-3.3 失速 8 2-3.4 華格納效應 8 2-4 拍撲翼氣動力學機制 9 2-4.1 翼前緣渦漩貼附 9 2-4.2 拍撲轉換階段之流場機制 14 2-4.3 夾翼與拋翼 18 2-5 蝴蝶飛行研究 20 2-5.1 飛行特色 20 2-5.2 翅膀身體耦合運動 22 2-5.3 翅膀形狀效應 28 2-5.4 翅膀撓曲變形效應 34 2-6 總結與研究動機 39 第三章 研究方法 41 3-1 研究對象 41 3-2 飛行動作量測、座標系與角度定義 42 3-2.1 剛性翅膀動態量測實驗 43 3-2.2 撓性翅膀動態量測實驗 47 3-3 物理模型前述 54 3-4 翅膀身體耦合運動研究之物理模型 55 3-4.1 模型幾何與質量設定 55 3-4.2 模型動作設定 57 3-4.3 翅膀身體耦合運動方程式與慣性力定義 60 3-5 剛性翅膀形狀研究之物理模型 62 3-5.1 模型幾何設定 62 3-5.2 模型動作設定 66 3-5.3 無因次參數分析與設定 67 3-6 翅膀撓曲變形研究之物理模型 70 3-6.1 模型幾何與質量設定 70 3-6.2 模型動作與翅膀身體耦合運動方程式 72 3-6.3 撓性翅膀曲面擬合與重建 76 3-7 數值模擬 83 3-7.1 流場統御方程式、邊界條件與初始條件 83 3-7.2 網格設定與動網格策略 86 3-7.3 使用者自定義函數、數值更新架構與求解器設定 88 3-7.4 模擬驗證 90 第四章 翅膀身體耦合運動效應 94 4-1 質心與胸腹節點飛行軌跡 94 4-2 不同腹部擺動下胸腹節點相對於質心的運動與飛行表現 98 4-3 流場結構與氣動力 101 4-4 頭胸部、腹部與翅膀之慣性力 107 第五章 剛性翅膀形狀之掃掠角與展弦比效應 112 5-1 不同掃掠角與展弦比翅形之氣動力 112 5-2 掃掠角流場機制 115 5-3 展弦比流場機制 121 5-4 前翅掃掠效應 125 5-5 升阻比與翅縫效應 130 第六章 翅膀撓曲變形效應 135 6-1 蝴蝶翅膀之拱度、曲度與撓度 135 6-2 飛行軌跡與氣動力 144 6-3 流場結構 146 第七章 結論與未來展望 159 7-1 結論 159 7-2 未來展望 161 第八章 參考文獻 163 作者簡歷 175
dc.language.isozh-TW
dc.subject尾流捕獲zh_TW
dc.subject蝴蝶飛行zh_TW
dc.subject翅膀撓曲變形zh_TW
dc.subject翅膀身體耦合運動zh_TW
dc.subject掃掠角zh_TW
dc.subject展弦比zh_TW
dc.subject翼前緣渦漩貼附zh_TW
dc.subjectwing deformationen
dc.subjectwake-captureen
dc.subjectbutterfly flighten
dc.subjectleading-edge vortex attachmenten
dc.subjectaspect ratioen
dc.subjectwing-swept angleen
dc.subjectwing-body coupled motionen
dc.title蝴蝶翅膀形狀、翅膀撓曲變形與翅膀身體耦合運動之飛行動力機制zh_TW
dc.titleFlight Mechanisms of Wing Geometry, Wing Deformation and Wing-body Coupled Motion in Butterflyen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊瑞珍(Ruey-Jen Yang),趙怡欽(Yei-Chin Chao),陳志臣(Jyh-Chen Chen),王安邦(An-Bang Wang),陳慶耀(Ching-Yao Chen),潘國隆(Kuo-Long Pan),葉思沂(Szu-I Yeh)
dc.subject.keyword蝴蝶飛行,翅膀撓曲變形,翅膀身體耦合運動,掃掠角,展弦比,翼前緣渦漩貼附,尾流捕獲,zh_TW
dc.subject.keywordbutterfly flight,wing deformation,wing-body coupled motion,wing-swept angle,aspect ratio,leading-edge vortex attachment,wake-capture,en
dc.relation.page173
dc.identifier.doi10.6342/NTU202202387
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2023-09-01-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-1508202204182700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
16.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved