Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85054
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗男(Tsung-Nan Lin)
dc.contributor.authorPang-Cheng Wuen
dc.contributor.author吳邦誠zh_TW
dc.date.accessioned2023-03-19T22:40:43Z-
dc.date.copyright2022-08-26
dc.date.issued2022
dc.date.submitted2022-08-15
dc.identifier.citationSuri and G. Varghese, “Packet filtering in high speed networks.,” in SODA, vol. 99, pp. 969–970, 1999. D. B. Chapman, “Network (in) security through ip packet filtering.,” in USENIX Summer, vol. 21, 1992. A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340, 1975. K. G. Anagnostakis and E. P. Markatos, “Generating realistic workloads for network intrusion detection system,” in Proceedings ACM Workshop on Software and Performance, 2004. P.-C. Lin, Y.-D. Lin, Y.-C. Lai, and T.-H. Lee, “Using string matching for deep packet inspection,” Computer, vol. 41, no. 4, pp. 23–28, 2008. C. Xu, S. Chen, J. Su, S.-M. Yiu, and L. C. Hui, “A survey on regular expression matching for deep packet inspection: Applications, algorithms, and hardware platforms,” IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2991–3029, 2016. G. Navarro and M. Raffinot, “Fast and flexible string matching by combining bit-parallelism and suffix automata,” Journal of Experimental Algorithmics (JEA), vol. 5, pp. 4–es, 2000. R. D. Cameron, T. C. Shermer, A. Shriraman, K. S. Herdy, D. Lin, B. R. Hull, and M. Lin, “Bitwise data parallelism in regular expression matching,” in 2014 23rd International Conference on Parallel Architecture and Compilation Techniques (PACT), pp. 139–150, IEEE, 2014. T. Liu, A. X. Liu, J. Shi, Y. Sun, and L. Guo, “Towards fast and optimal grouping of regular expressions via dfa size estimation,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 10, pp. 1797–1809, 2014. C. Xu, J. Su, and S. Chen, “Exploring efficient grouping algorithms in regular expression matching,” PloS one, vol. 13, no. 10, p. e0206068, 2018. F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and memory-efficient regular expression matching for deep packet inspection,” in Proceedings of the 2006 ACM/IEEE symposium on Architecture for networking and communications systems, pp. 93–102, 2006. J. Rohrer, K. Atasu, J. van Lunteren, and C. Hagleitner, “Memory-efficient distribution of regularexpressions for fast deep packet inspection,” in Proceedings of the 7th IEEE/ACM international conference on Hardware/software codesign and system synthesis, pp. 147–154, 2009. S. Kong, R. Smith, and C. Estan, “Efficient signature matching with multiple alphabet compression tables,” in Proceedings of the 4th international conference on Security and privacy in communication netowrks, pp. 1–10, 2008. M. Becchi and S. Cadambi, “Memory-efficient regular expression search using state merging,” in IEEE INFOCOM 2007-26th IEEE International Conference on Computer Communications, pp. 1064–1072, IEEE, 2007. S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Algorithms to accelerate multiple regular expressions matching for deep packet inspection,” ACM SIGCOMM computer communication review, vol. 36, no. 4, pp. 339–350, 2006. M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep packet inspection,” in Proceedings of the 2007 ACM CoNEXT conference, pp. 1–12, 2007. Y.-H. E. Yang and V. K. Prasanna, “Space-time tradeoff in regular expression matching with semi-deterministic finite automata,” in 2011 Proceedings IEEE INFOCOM, pp. 1853–1861, IEEE, 2011. S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing regular expressions matching algorithms from insomnia, amnesia, and acalculia,” in Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking and Communications Systems, pp. 155–164, 2007. R. Smith, C. Estan, and S. Jha, “Xfa: Faster signature matching with extended automata,” in 2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 187–201, IEEE, 2008. M. Becchi, C. Wiseman, and P. Crowley, “Evaluating regular expression matching engines on network and general purpose processors,” in Proceedings of the 5th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, pp. 30–39, 2009. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013. Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in International conference on machine learning, pp. 1188–1196, PMLR, 2014. G. He, Y. Wang, and X. Wu, “A regular expression grouping algorithm based on partitioning method,” in 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content, pp. 271–274, IEEE, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85054-
dc.description.abstract模式匹配是各種重要應用程序的關鍵,例如在封包檢測,它偵測惡意封包以保護網絡。為了使應用程序更強大,我們可能需要在資源受限的設備上執行模式匹配。例如,嘗試在智能網卡上應用DPI,以使我們的服務能夠在短時間內處理更多的封包。但是,DPI的內存需求可能比 NIC 所擁有的記憶體量大得多。因此,我們嘗試將正規表達式 分群,讓每個運算資源只需要構建較小的自動機。 為了實現這個想法,我們設計了一種通用的分群算法,稱為Evolutionary Rule Balancer。通過合適的估計和評估函數,該算法能夠適用於各種自動機模型。整個系統由FA Engine、Matched String Generator、FA Size Estimator和Intelligent Optimization Algorithm組成。該算法是有效率的,因為我們透過估計自動機大小避免構造過多的資動機。另一方面,利用 RegEx 的嵌入模型,我們的做法也支持動態更新。根據實驗結果,對於在多個 NFA 上執行的模式匹配,Rule Balancer 可以獲得更好的結果。zh_TW
dc.description.abstractPattern matching is the key component of various important applications such as deep packet inspection, which detects malicious packets to protect our network. To make the applications be more stronger, we may need to perform pattern matching on resource-constrained devices. For instance, we try apply DPI on smart network interface card to make our service be able to handle more packets in a short time. However, the memory space requirement can be much larger than NIC have. Therefore, we try to divide RegExes into several groups and build smaller FA for each core. To realize the idea, we design a general grouping algorithm, called Evolutionary Rule Balancer. With suitable estimation and evaluation functions, the algorithm should be able to work for various FA models. The entire system consists of FA Engine, Matched String Generator, FA Size Estimator and Intelligent Optimization Algorithm. This method is efficient as we estimate FA size to avoid too many FA constructions and the entire algorithm supports dynamic update by utilizing RegEx Embedding Model. Our experiments show that for pattern matching performed on multi-NFAs, Rule Balancer achieves better results.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:40:43Z (GMT). No. of bitstreams: 1
U0001-1408202220564800.pdf: 800375 bytes, checksum: 94e6ab13dea16ce208814451f1020c7d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents中文摘要 i Abstract iii 1 Introduction 1 2 Background 3 2.1 Rule Groping 3 2.2 Other Optimization Approach 3 2.2.1 Compression Algorithm 3 2.2.2 Semi-Deterministic Finite Automaton 5 2.2.3 Decomposed Finite Automaton 5 3 Methodology 7 3.1 Problem Formulation 7 3.2 Evolutionary Rule Balancer 7 3.2.1 Evolutionary Optimization Algorithm 8 3.2.2 RegEx Embedding Model 9 3.3 Case Study. Pattern Matching Using Multiple NFAs 12 3.3.1 Objective. Minimize Total NFA Sizes 12 3.3.2 Objective. Minimize Largest NFA Size 14 3.3.3 Optimization Algorithm Design 16 4 Result and Discussion 17 4.1 Experiment Setup 17 4.2 Space-Time Tradeoff 17 4.3 Grouping Algorithm Comparison 17 4.4 NFA Estimation 18 4.5 Partition Refinement 19 5 Conclusion 21 Bibliography 23
dc.language.isoen
dc.subject模式匹配zh_TW
dc.subject智能優化zh_TW
dc.subject正規表達式匹配zh_TW
dc.subject深度封包檢測zh_TW
dc.subject記憶體受限zh_TW
dc.subjectmemory constraineden
dc.subjectregular expression matchingen
dc.subjectpattern matchingen
dc.subjectdeep packet inspectionen
dc.subjectintelligent optimizationen
dc.title針對記憶體受限裝置執行模式匹配的正規表達式分群演算法zh_TW
dc.titleEvolutionary Rule Balancer: A RegEx Algorithm for Memory-Constrained Devices to Perform Pattern Matchingen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor杜憶萍(I-Ping Tu)
dc.contributor.oralexamcommittee陳俊良(Chun-Liang Chen),蔡子傑(Tzu-Chieh Tsai),鄧惟中(Wei-Chung Teng)
dc.subject.keyword深度封包檢測,正規表達式匹配,模式匹配,記憶體受限,智能優化,zh_TW
dc.subject.keyworddeep packet inspection,regular expression matching,pattern matching,memory constrained,intelligent optimization,en
dc.relation.page24
dc.identifier.doi10.6342/NTU202202383
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
dc.date.embargo-lift2022-08-26-
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
U0001-1408202220564800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
781.62 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved