請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85048完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 龔秀妮(Hsiu-Ni Kung) | |
| dc.contributor.author | An Hsiao | en |
| dc.contributor.author | 蕭安 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:40:20Z | - |
| dc.date.copyright | 2022-10-03 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-16 | |
| dc.identifier.citation | 1. Lustig, R.H.J.J.o.t.A.D.A., Fructose: metabolic, hedonic, and societal parallels with ethanol. Journal of the American Dietetic Association, 2010. 110(9): p. 1307-1321. 2. Havel, P.J., Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutrition reviews, 2005. 63(5): p. 133-157. 3. Bentley, R.A., et al., US obesity as delayed effect of excess sugar. Economics & Human Biology, 2020. 36: p. 100818. 4. Hannou, S.A., et al., Fructose metabolism and metabolic disease. The Journal of clinical investigation, 2018. 128(2): p. 545-555. 5. Febbraio, M.A. and M.J.C.m. Karin, “Sweet death”: Fructose as a metabolic toxin that targets the gut-liver axis. Cell metabolism, 2021. 33(12): p. 2316-2328. 6. Jamar, G., D.A. Ribeiro, and L.P.J.C.r.i.f.s. Pisani, High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Critical reviews in food science nutrition, 2021. 61(5): p. 836-854. 7. Silva-Veiga, F.M., et al., Gut-liver axis modulation in fructose-fed mice: a role for PPAR-alpha and linagliptin. Journal of Endocrinology 2020. 247(1): p. 11-24. 8. 黃安生, 富含三萜類之苦瓜葉萃取物預防性保護葡聚醣硫酸鈉引致小鼠慢性腸炎. 國立臺灣師範大學(碩士論文). 2021, 台北市. 9. Kanneganti, T.-D., et al., Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 2006. 440(7081): p. 233-236. 10. Gerbe, F., et al., The intestinal epithelium tuft cells: specification and function. Cellular Molecular Life Sciences, 2012. 69(17): p. 2907-2917. 11. Bass, L., et al., Anatomy, histology, embryology and developmental anomalies of the small and large intestine. Sleisenger, 2016: p. 1649. 12. Leedham, S., et al., Intestinal stem cells. Journal of cellular molecular medicine, 2005. 9(1): p. 11-24. 13. Mörbe, U.M., et al., Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal immunology, 2021. 14(4): p. 793-802. 14. van Gijn, J. and J.P.J.N.T.V.G. Gijselhart, Treitz and his ligament. Nederlands Tijdschrift Voor Geneeskunde, 2011. 155(18): p. A2879-A2879. 15. Drake, R.L., W. Vogl, and A.W. Tibbitts, Mitchell; illustrations by Richard; Richardson, Paul. Gray’s anatomy for students. 2005, Philadelphia: Elsevier/Churchill Livingstone. 16. Igam, Y.J.N.T., Gastrointestinal tract 4: anatomy and role of the jejunum and ileum. Nurs Times, 2019. 115(9): p. 43-46. 17. Ahluwalia, B., M.K. Magnusson, and L.J.S.j.o.g. Öhman, Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scandinavian journal of gastroenterology, 2017. 52(11): p. 1185-1193. 18. Bao, L., B. Shi, and Y.-B. Shi, Intestinal homeostasis: a communication between life and death. Cell & Bioscience, 2020. 10(1): p. 1-3. 19. Lee, H.-W., et al., Phorbol 12-Myristate 13-Acetate Up-regulates the Transcription of MUC2Intestinal Mucin via Ras, ERK, and NF-κB. Journal of Biological Chemistry, 2002. 277(36): p. 32624-32631. 20. Wu, W., et al., Targeting gut microbiota dysbiosis: Potential intervention strategies for neurological disorders. Engineering, 2020. 6(4): p. 415-423. 21. Dominguez-Bello, M.G., et al., Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences, 2010. 107(26): p. 11971-11975. 22. Qin, J., et al., A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012. 490(7418): p. 55-60. 23. Maukonen, J. and M. Saarela, Human gut microbiota: does diet matter? Proceedings of the Nutrition Society, 2015. 74(1): p. 23-36. 24. De la Fuente, M., T.T. MacDonald, and M.A. Hermoso, Intestinal homeostasis and disease: a complex partnership between immune cells, non-immune cells, and the microbiome. Frontiers in Immunology, 2019. 10: p. 2775. 25. Caruso, R., B.C. Lo, and G. Núñez, Host–microbiota interactions in inflammatory bowel disease. Nature Reviews Immunology, 2020. 20(7): p. 411-426. 26. Olvera-Rosales, L.-B., et al., Impact of the gut microbiota balance on the health–disease relationship: The importance of consuming probiotics and prebiotics. Foods, 2021. 10(6): p. 1261. 27. Pelaseyed, T., et al., The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological reviews, 2014. 260(1): p. 8-20. 28. Paone, P. and P.D.J.G. Cani, Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut, 2020. 69(12): p. 2232-2243. 29. Hornef, M.W., et al., Bacterial strategies for overcoming host innate and adaptive immune responses. Nature immunology, 2002. 3(11): p. 1033-1040. 30. Stecher, B.r., et al., Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infection immunity, 2004. 72(7): p. 4138-4150. 31. Burger-van Paassen, N., et al., The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochemical Journal, 2009. 420(2): p. 211-219. 32. Hatayama, H., et al., The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochemical and biophysical research communications, 2007. 356(3): p. 599-603. 33. Kaden-Volynets, V., et al., Lack of liver steatosis in germ-free mice following hypercaloric diets. nutrition, 2019. 58(5): p. 1933-1945. 34. Muruve, D.A., et al., The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature, 2008. 452(7183): p. 103-107. 35. Tang, D., et al., PAMP s and DAMP s: signal 0s that spur autophagy and immunity. Immunological reviews, 2012. 249(1): p. 158-175. 36. Lu, Y.-C., W.-C. Yeh, and P.S. Ohashi, LPS/TLR4 signal transduction pathway. Cytokine, 2008. 42(2): p. 145-151. 37. Hayashi, F., et al., The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 2001. 410(6832): p. 1099-1103. 38. Venuprasad, K. and A.L.J.C.r. Theiss, NLRP6 in host defense and intestinal inflammation. Cell reports, 2021. 35(4): p. 109043. 39. Martinon, F., K. Burns, and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Molecular cell, 2002. 10(2): p. 417-426. 40. Lamkanfi, M. and V.M. Dixit, Mechanisms and functions of inflammasomes. Cell, 2014. 157(5): p. 1013-1022. 41. Chen, G.Y. and G. Núñez, Inflammasomes in intestinal inflammation and cancer. Gastroenterology, 2011. 141(6): p. 1986-1999. 42. Shao, B.-Z., et al., Targeting NLRP3 inflammasome in inflammatory bowel disease: putting out the fire of inflammation. Inflammation, 2019. 42(4): p. 1147-1159. 43. Ghimire, L., et al., NLRP6 negatively regulates pulmonary host defense in Gram-positive bacterial infection through modulating neutrophil recruitment and function. PLoS pathogens, 2018. 14(9): p. e1007308. 44. Wlodarska, M., et al., NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell, 2014. 156(5): p. 1045-1059. 45. Anand, P.K., et al., NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature, 2012. 488(7411): p. 389-393. 46. Hara, H., et al., The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell, 2018. 175(6): p. 1651-1664. e14. 47. Chen, G.Y., et al., A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. The Journal of immunology, 2011. 186(12): p. 7187-7194. 48. Grenier, J.M., et al., Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-κB and caspase-1. FEBS letters, 2002. 530(1-3): p. 73-78. 49. Li, M., et al., NLRP6 deficiency aggravates liver injury after allogeneic hematopoietic stem cell transplantation. International Immunopharmacology, 2019. 74: p. 105740. 50. Yin, J., et al., The protective roles of NLRP 6 in intestinal epithelial cells. Cell Proliferation, 2019. 52(2): p. e12555. 51. Groschwitz, K.R. and S.P. Hogan, Intestinal barrier function: molecular regulation and disease pathogenesis. Journal of allergy and clinical immunology, 2009. 124(1): p. 3-20. 52. Van Der Flier, L.G. and H. Clevers, Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annual review of physiology, 2009. 71: p. 241-260. 53. Khan, N. and A.R. Asif, Transcriptional regulators of claudins in epithelial tight junctions. Mediators of inflammation, 2015. 2015. 54. Farin, H.F., J.H. Van Es, and H.J.G. Clevers, Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. 2012. 143(6): p. 1518-1529. e7. 55. Takahashi, T. and A.J.I.j.o.m.s. Shiraishi, Stem cell signaling pathways in the small intestine. nternational journal of molecular sciences, 2020. 21(6): p. 2032. 56. Kim, K.-A., et al., Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science, 2005. 309(5738): p. 1256-1259. 57. Mayer, E.A., et al., Gut microbes and the brain: paradigm shift in neuroscience. Journal of Neuroscience, 2014. 34(46): p. 15490-15496. 58. Wang, Y. and L.H. Kasper, The role of microbiome in central nervous system disorders. Brain, behavior, and immunity, 2014. 38: p. 1-12. 59. Dinan, T.G. and J.F. Cryan, The impact of gut microbiota on brain and behaviour: implications for psychiatry. Current Opinion in Clinical Nutrition & Metabolic Care, 2015. 18(6): p. 552-558. 60. Chen, J., et al., Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific reports, 2016. 6(1): p. 1-10. 61. Berer, K., et al., Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences, 2017. 114(40): p. 10719-10724. 62. Albillos, A., A. De Gottardi, and M. Rescigno, The gut-liver axis in liver disease: Pathophysiological basis for therapy. Journal of hepatology, 2020. 72(3): p. 558-577. 63. Szabo, G., Gut–liver axis in alcoholic liver disease. Gastroenterology, 2015. 148(1): p. 30-36. 64. Tarao, K., et al., Detection of endotoxin in plasma and ascitic fluid of patients with cirrhosis: its clinical significance. Gastroenterology, 1977. 73(3): p. 539-542. 65. Stone, N.J.J.T.A.j.o.c., Nonpharmacologic management of mixed dyslipidemia associated with diabetes mellitus and the metabolic syndrome: a review of the evidence. The American journal of cardiology, 2008. 102(12): p. 14L-18L. 66. Knight-Sepulveda, K., et al., Diet and inflammatory bowel disease. Gastroenterology and hepatology, 2015. 11(8): p. 511. 67. Bray, G.A.J.C.a.r., Fructose and risk of cardiometabolic disease. Current atherosclerosis reports, 2012. 14(6): p. 570-578. 68. Page, K.A., et al., Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. Jama, 2013. 309(1): p. 63-70. 69. Merino, B., et al., Intestinal fructose and glucose metabolism in health and disease. Nutrients, 2019. 12(1): p. 94. 70. Ishimoto, T., et al., Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proceedings of the National Academy of Sciences, 2012. 109(11): p. 4320-4325. 71. Jang, C., et al., The small intestine converts dietary fructose into glucose and organic acids. Cell metabolism, 2018. 27(2): p. 351-361. e3. 72. Mueckler, M. and B. Thorens, The SLC2 (GLUT) family of membrane transporters. Molecular aspects of medicine, 2013. 34(2-3): p. 121-138. 73. Bonthron, D.T., et al., Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase). Human molecular genetics, 1994. 3(9): p. 1627-1631. 74. Hayward, B.E. and D.T. Bonthron, Structure and alternative splicing of the ketohexokinase gene. European journal of biochemistry, 1998. 257(1): p. 85-91. 75. Asipu, A., et al., Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria. Diabetes, 2003. 52(9): p. 2426-2432. 76. Federico, A., et al., The role of fructose in non-alcoholic steatohepatitis: Old relationship and new insights. Nutrients, 2021. 13(4): p. 1314. 77. Tsilas, C.S., et al., Relation of total sugars, fructose and sucrose with incident type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Cmaj, 2017. 189(20): p. E711-E720. 78. Zhang, Y.H., et al., Very high fructose intake increases serum LDL-cholesterol and total cholesterol: a meta-analysis of controlled feeding trials. The Journal of nutrition, 2013. 143(9): p. 1391-1398. 79. Coronati, M., et al., Added Fructose in Non-Alcoholic Fatty Liver Disease and in Metabolic Syndrome: A Narrative Review. Nutrients, 2022. 14(6): p. 1127. 80. Jang, C., et al., The small intestine shields the liver from fructose-induced steatosis. Nature metabolism, 2020. 2(7): p. 586-593. 81. Camara-Lemarroy, C.R., et al., The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain, 2018. 141(7): p. 1900-1916. 82. Volynets, V., et al., Intestinal barrier function and the gut microbiome are differentially affected in mice fed a western-style diet or drinking water supplemented with fructose. The Journal of nutrition, 2017. 147(5): p. 770-780. 83. Régnier, M., et al., Gut microbiome, endocrine control of gut barrier function and metabolic diseases. Journal of Endocrinology, 2021. 248(2): p. R67-R82. 84. Burokas, A., et al., Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biological psychiatry, 2017. 82(7): p. 472-487. 85. Ridaura, V.K., et al., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 2013. 341(6150): p. 1241214. 86. Blacher, E., et al., Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 2019. 572(7770): p. 474-480. 87. Van Passel, M.W., et al., The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PloS one, 2011. 6(3): p. e16876. 88. Owens, B., Gut microbes may fight obesity and diabetes. Nature doi, 2013. 10. 89. Cani, P.D. and W.M. de Vos, Next-generation beneficial microbes: the case of Akkermansia muciniphila. Frontiers in microbiology, 2017. 8: p. 1765. 90. Plovier, H., et al., A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature medicine, 2017. 23(1): p. 107-113. 91. Ahn, I.S., et al., Host genetic background and gut microbiota contribute to differential metabolic responses to fructose consumption in mice. The Journal of nutrition, 2020. 150(10): p. 2716-2728. 92. Montrose, D.C., et al., Dietary fructose alters the composition, localization, and metabolism of gut microbiota in association with worsening colitis. Cellular and molecular gastroenterology and hepatology, 2021. 11(2): p. 525-550. 93. Li, J.-M., et al., Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids. Microbiome, 2019. 7(1): p. 1-14. 94. Gearry, R.B., et al., Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease—a pilot study. Journal of Crohn's and Colitis, 2009. 3(1): p. 8-14. 95. Basu, S., et al., GLUT5 is a determinant of dietary fructose-mediated exacerbation of experimental colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2021. 321(2): p. G232-G242. 96. Johansson, M.E., et al., The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the national academy of sciences, 2008. 105(39): p. 15064-15069. 97. Knights, D., et al., Complex host genetics influence the microbiome in inflammatory bowel disease. Genome medicine, 2014. 6(12): p. 1-11. 98. Alipour, M., et al., Mucosal barrier depletion and loss of bacterial diversity are primary abnormalities in paediatric ulcerative colitis. Journal of Crohn's and Colitis, 2016. 10(4): p. 462-471. 99. Sun, Y., et al., Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice. Gastroenterology, 2013. 144(7): p. 1478-1487. e8. 100. Zheng, D., L. Kern, and E.J.I. Elinav, The NLRP6 inflammasome. Immunology, 2021. 162(3): p. 281-289. 101. Cho, Y.E., et al., Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol‐inducible cytochrome P450‐2E1–mediated oxidative and nitrative stress. Hepatology, 2021. 73(6): p. 2180-2195. 102. Kawabata, K., et al., A high‑fructose diet induces epithelial barrier dysfunction and exacerbates the severity of dextran sulfate sodium‑induced colitis. International journal of molecular medicine, 2019. 43(3): p. 1487-1496. 103. Lambertz, J., et al., Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Frontiers in immunology, 2017. 8: p. 1159. 104. Spruss, A. and I. Bergheim, Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. The Journal of nutritional biochemistry, 2009. 20(9): p. 657-662. 105. Mastrocola, R., et al., Fructose liquid and solid formulations differently affect gut integrity, microbiota composition and related liver toxicity: a comparative in vivo study. 2018. 55: p. 185-199. 106. Stojanov, S., A. Berlec, and B.J.M. Štrukelj, The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms, 2020. 8(11): p. 1715. 107. Abenavoli, L., et al., Gut microbiota and obesity: a role for probiotics. Nutrients, 2019. 11(11): p. 2690. 108. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. nature, 2006. 444(7122): p. 1027-1031. 109. Castaner, O., et al., The gut microbiome profile in obesity: a systematic review. International journal of endocrinology, 2018. 2018. 110. Vaiserman, A., et al., Differences in the gut Firmicutes to Bacteroidetes ratio across age groups in healthy Ukrainian population. BMC microbiology, 2020. 20(1): p. 1-8. 111. Manichanh, C., et al., Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut, 2006. 55(2): p. 205-211. 112. Wu, S.-J. and L.-T. Ng, Antioxidant and free radical scavenging activities of wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) in Taiwan. LWT-Food Science and Technology, 2008. 41(2): p. 323-330. 113. Dandawate, P.R., et al., Bitter melon: a panacea for inflammation and cancer. Chinese journal of natural medicines, 2016. 14(2): p. 81-100. 114. Ciou, S.-Y., et al., Effect of wild bitter gourd treatment on inflammatory responses in BALB/c mice with sepsis. BioMedicine, 2014. 4(3): p. 1-7. 115. Chao, C.-Y., M.-C. Yin, and C.-j. Huang, Wild bitter gourd extract up-regulates mRNA expression of PPARα, PPARγ and their target genes in C57BL/6J mice. Journal of Ethnopharmacology, 2011. 135(1): p. 156-161. 116. Clouatre, D.L., S.N. Rao, and H.G. Preuss, Bitter melon extracts in diabetic and normal rats favorably influence blood glucose and blood pressure regulation. Journal of Medicinal Food, 2011. 14(12): p. 1496-1504. 117. Bai, L.-Y., et al., A triterpenoid from wild bitter gourd inhibits breast cancer cells. Scientific reports, 2016. 6(1): p. 1-10. 118. Tsai, T.-H., et al., Antioxidant, cell-protective, and anti-melanogenic activities of leaf extracts from wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) cultivars. Botanical studies, 2014. 55(1): p. 1-11. 119. 李詠彤, 富含三萜類之山苦瓜葉萃取物對高脂/高膽固醇飲食誘導倉鼠非酒精性脂肪肝的保護效應. 實踐大學(碩士論文). 2019: 台北市. 120. Chang, M.-L., et al., A triterpenoid-enriched extract of bitter melon leaves alleviates hepatic fibrosis by inhibiting inflammatory responses in carbon tetrachloride-treated mice. Food Function, 2021. 12(17): p. 7805-7815. 121. Augeron, C. and C.L.J.C.r. Laboisse, Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer research, 1984. 44(9): p. 3961-3969. 122. Marincola Smith, P., et al., Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2021. 320(6): p. G936-G957. 123. Ahn, J., et al., Human gut microbiome and risk for colorectal cancer. Journal of the National Cancer Institute, 2013. 105(24): p. 1907-1911. 124. Karcher, N., et al., Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biology, 2021. 22(1): p. 1-24. 125. Ottman, N., et al., Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Applied environmental microbiology, 2017. 83(18): p. e01014-17. 126. Muriel, P., P. López-Sánchez, and E. Ramos-Tovar, Fructose and the Liver. International Journal of Molecular Sciences, 2021. 22(13): p. 6969. 127. Yesudhas, D., et al., Multiple roles of toll-like receptor 4 in colorectal cancer. Frontiers in immunology, 2014. 5: p. 334. 128. Kotani, T., et al., Role of Ras in regulation of intestinal epithelial cell homeostasis and crosstalk with Wnt signaling. PloS one, 2021. 16(8): p. e0256774. 129. Higashimori, A., et al., Mechanisms of NLRP3 inflammasome activation and its role in NSAID-induced enteropathy. Mucosal immunology, 2016. 9(3): p. 659-668. 130. Lim, S.M., et al., A high amylose wheat diet improves gastrointestinal health parameters and gut microbiota in male and female mice. Foods, 2021. 10(2): p. 220. 131. Bankole, E., et al., The relationship between mucins and ulcerative colitis: a systematic review. Journal of Clinical Medicine, 2021. 10(9): p. 1935. 132. 林妤叡, 山苦瓜葉萃取物對高果糖飲食誘導非酒精性肝病之保護作用. 國立台灣大學(碩士論文). 2021, 台北市. 133. Santos, A.J., et al., The intestinal stem cell niche: homeostasis and adaptations. Trends in cell biology, 2018. 28(12): p. 1062-1078. 134. Cheng, H., et al., High fructose diet: A risk factor for immune system dysregulation. Human Immunology, 2022. 135. Ambort, D., et al., Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proceedings of the National Academy of Sciences, 2012. 109(15): p. 5645-5650. 136. Gill, N., M. Wlodarska, and B.B. Finlay, Roadblocks in the gut: barriers to enteric infection. Cellular microbiology, 2011. 13(5): p. 660-669. 137. Carriere, J., A. Dorfleutner, and C.J.I. Stehlik, NLRP7: From inflammasome regulation to human disease. Immunology, 2021. 163(4): p. 363-376. 138. Gupta, B., et al., Western diet‐induced increase in colonic bile acids compromises epithelial barrier in nonalcoholic steatohepatitis. The FASEB Journal, 2020. 34(5): p. 7089-7102. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85048 | - |
| dc.description.abstract | 我們的日常生活中充斥著高果糖食物,高果糖食物在攝入後首先到達小腸,造成腸道菌相改變、引起腸道發炎並破壞腸道屏障,進而造成代謝性疾病、慢性發炎、非酒精性脂肪肝等,因此保護小腸為高果糖飲食下的首要關鍵。在先前研究中發現山苦瓜葉萃取物中富含三萜類化合物 (Triterpenoid-enriched extract, TEE)能降低DSS (Dextran sulfate sodium)誘導的慢性腸炎,並且對於腸道屏障也有恢復的作用,因此本研究利用TEE減輕果糖所誘導的腸道損傷,探討TEE保護腸道免於高果糖傷害的機制為何。 在動物實驗中以週齡12週大的C57BL/6公鼠作為模式動物以固態和液態兩種果糖添加於飲水或飼料中的模式作為誘導14週,同時給予TEE進行比較,發現在腸道菌相中TEE能有效恢復兩種果糖對腸道菌相的豐富度,並增加Akkermansia spp.在腸道菌中所佔比例,對腸道菌叢有正面的影響。在分析與腸道共生菌直接接觸的黏膜屏障及分泌黏液(mucin)的杯狀細胞數量上,給予TEE的組別能有效恢復杯狀細胞數量且增加MUC2的表現,顯示TEE能促進杯狀細胞生長及mucin分泌以保護腸道。果糖引起的腸道發炎在給予TEE的組別中提升了NLRP6的表現量,且有效降低p-P65, TLR4造成的發炎反應。最後結果發現TEE能保護固態果糖飼料組別中腸道上皮細胞屏障的完整性,進而降低血清中內毒素和肝指標,而液態果糖中,TEE在腸道上皮細胞屏障和內毒素入侵方面則沒有發揮保護效果。 在單獨培養Akkermansia muciniphila的實驗中發現TEE對於腸道菌叢中Akkermansia spp.的增加並非直接促進其生長,可能是經由提高杯狀細胞分泌的mucin提供碳源,而使其數量增加。因此探討了TEE提升杯狀細胞分泌mucin的途徑,實驗中利用HT29細胞進行分化為類杯狀細胞後,發現TEE經由K-Ras, Raf-1, MEK1/2, ERK1/2最終提高MUC2的表達量,我們更近一步發現在分化過程中給予TEE會提升Wnt3a, Wnt5a, ESE1的表現量,表示TEE可能促進細胞分化的過程產生較多腸道幹細胞(Intestinal stem cells, ISC),並使ISC趨向於分化成為具有分泌mucin能力的杯狀細胞。另外TEE作用於果糖所引發的IEC-6腸細胞發炎,不僅提高NLRP6與其下游訊號分子IL-18的表現量,同時降低NLRP3, IL-1β, TNF-α等促發炎因子的表現量下降,並利用NLRP6 shRNA knockdown的腸細胞進行反證,確認TEE降低腸道發炎的機制是經由NLRP6主導的途徑達成,綜合上述結果TEE對高果糖所引起的腸道損傷確實具有保護效果。 | zh_TW |
| dc.description.abstract | Foods contained high fructose are rich in our daily life, these foods reach the small intestine first, cause intestinal flora alteration, induce intestinal inflammation, damage intestinal barrier and further lead to disease, such as metabolic syndrome, chronic inflammation, and non-alcoholic fatty liver disease (NAFLD). Therefore, fiinding an effective therapy to protect small intestine from fructose-induced damages is necessary. Previous study showed that triterpenoid enrich extract (TEE) obtained from wild bitter melon leaves can alleviate DSS induced intestinal inflammation, and recover colon epithelial barrier. In this study we aim to find out whether TEE can protect the small intestine under high fructose diet and explore the under lying mechanisms. In in vivo model, 12-week-old C57BL/6 male mice were fed with fructose in two forms, solid or liquid for 14 weeks, and TEE was given at the same time. Microbiota diversity altered by fructose was restored by TEE, and the ratio of beneficial bacteria, Akkermansia spp. was increased in both TEE fed group, indicating TEE had a positive impact on intestinal flora. With the direct interaction with bacteria, mucin and its producer, goblet cell were investigated. TEE promoted mucin secreion with higher expression of MUC2 and elevated number of goblet cells, which revealed that TEE protect intestinal mucus barrier under high fructose diet. Intestinal inflammation is another damage caused by high fructose, TEE alleviated the inflammation by increasing NLRP6 and reducing p-P65, TLR4 expessions. At last, the intestinal epithelial barrier integrity was examined, TEE protected the disruption of epithelial junction to reduc the serum endotoxin level in solid, but not liquid fructose fed group. The reduced liver inflammation was observed in both groups. In the in vitro models, the growth curve of Akkermansia muciniphila (A. muciniphila) was studied with supplements of fructose and TEE. TEE didn’t accelerate the growth of A. muciniphila, and thus TEE was speculated to elevate Akkermansia spp. ratio in intestinal flora by increasing mucin sectretion, which is the major carbon source of A. muciniphila. In addition, TEE induced mucin secreion through K-Ras/Raf-1/MEK1/2/ ERK1/2 pathway and MUC2 expression in HT29-differentiated goblet cell. TEE not only promoted mucin secreion in goblet cells, but also stimulated the differentiation of intestinal stem cells. Next, TEE protected intestinal cells from fructose-induced inflammation through increasing NLRP6 and its downstream product IL-18, and decreasing NLRP3, IL-1β, and TNF-α. With the shRNA targeting NLRP6, NLRP6 was proved to be the key for the protective effect of TEE in the intestinal cells. In summary, TEE effectively protected fructose-induced intestinal injuries, and further rescue the systemic inflammation. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:40:20Z (GMT). No. of bitstreams: 1 U0001-1608202210000900.pdf: 8510826 bytes, checksum: ab2e22570652cefaa1d76508184e8e8e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 第一章 緒論 1 第二章 文獻回顧 2 第一節 小腸 2 一、 基本結構 2 二、 生理功能 6 三、 腸道恆定(Homeostasis) 8 四、 腸道疾病 15 第二節 高果糖飲食 16 一、 簡介 16 二、 吸收、代謝機制 16 三、 高果糖飲食影響 18 四、 高果糖飲食──形式差異 24 第三節 山苦瓜葉萃取物 26 第四節 研究動機 28 一、 實驗假說 28 二、 實驗架構 28 第三章 材料與方法 29 第一節 材料與儀器 29 一、 富含三萜類萃取物(triterpenoid-enriched extract, TEE) 29 二、 動物實驗 29 三、 細胞實驗 30 四、 細菌培養 31 五、 實驗藥品 31 六、 試劑儀器 32 第二節 製備山苦瓜葉萃取物 34 一、 烘乾磨粉 34 二、 粗萃取物BMLE製備 34 三、 萃取物TEE製備 34 第三節 動物實驗 36 一、 實驗動物 36 二、 實驗設計 36 第四節 細胞實驗 40 一、 細胞培養 40 二、 實驗設計 41 第五節 細菌實驗 44 一. 細菌培養 44 二. 實驗設計 45 第六節 實驗技術 46 第四章 結果 62 第一節 不同形式果糖對小鼠生理狀態之影響 62 第二節 TEE對攝食果糖小鼠生理狀態之影響 63 第三節 TEE能夠增加菌相豐富度與益菌屬所佔比例 64 第四節 果糖和TEE對於A. muciniphila MucT (ATCC 65 第五節 TEE可以增加杯狀細胞數量以保護小腸黏膜屏障 66 第六節 TEE能夠保護腸道降低發炎反應 67 第七節 TEE能夠保護腸道上皮細胞物理屏障 68 第八節 TEE能夠提升因果糖而降低的杯狀細胞黏液分泌 68 第九節 TEE透過NLRP6 inflammasome來減緩果糖所引 70 第十節 TEE 無法減緩NLRP6 knockdown造成的小腸上 72 第五章 討論 73 第一節 不同形式果糖對小鼠飲食、飲水、熱量攝取影響 73 第二節 TEE針對不同果糖形式果糖對小鼠飲食、飲水、 74 第三節 TEE在不同形式果糖中對腸道菌相組成和F/B 74 第四節 TEE保護小腸、大腸黏膜以及大腸長度的恢復 75 第五節 TEE在兩種果糖形式下對小腸緊密連結蛋白的恢復情形 77 第六節 TEE在兩種果糖形式下對小腸幹細胞數量的影響 77 第七節 TEE能促進類杯狀細胞釋放mucin 78 第八節 果糖和TEE在NLRs家族中可能的調控機制 79 第九節 TEE不透過增加代謝減緩果糖傷害 79 第六章 結論 81 第七章 附圖 84 第八章 參考文獻 112 第九章 附錄 122 | |
| dc.language.iso | zh-TW | |
| dc.subject | 天然萃取物 | zh_TW |
| dc.subject | 高果糖飲食 | zh_TW |
| dc.subject | 小腸損傷 | zh_TW |
| dc.subject | TEE | zh_TW |
| dc.subject | small intestine injuries | en |
| dc.subject | High fructose diet | en |
| dc.subject | Triterpenoid-enriched extract (TEE) | en |
| dc.subject | nature extract | en |
| dc.title | 山苦瓜葉萃取物對高果糖飲食誘導小腸損傷之保護效果 | zh_TW |
| dc.title | The protective effect of wild bitter melon leaf extract against high-fructose diet induced small intestine injuries | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余佳慧(Chia-Hui Yu),蔡帛蓉(Po-Jung Tsai) | |
| dc.subject.keyword | 高果糖飲食,小腸損傷,天然萃取物,TEE, | zh_TW |
| dc.subject.keyword | High fructose diet,small intestine injuries,nature extract,Triterpenoid-enriched extract (TEE), | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU202202432 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2027-08-16 | - |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202210000900.pdf 未授權公開取用 | 8.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
