Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85036
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志傑(Chih-Chieh Chen)
dc.contributor.authorHsing-Yu Yehen
dc.contributor.author葉星語zh_TW
dc.date.accessioned2023-03-19T22:39:34Z-
dc.date.copyright2022-10-03
dc.date.issued2022
dc.date.submitted2022-08-17
dc.identifier.citation第一部分 Baig, A. S., Knapp, C., Eagan, A. E., & Radonovich Jr, L. J. (2010). Health care workers' views about respirator use and features that should be included in the next generation of respirators. American journal of infection control, 38(1), 18-25. Bharatendu, C., Ong, J. J., Goh, Y., Tan, B. Y., Chan, A. C., Tang, J. Z., Leow, A. S., Chin, A., Sooi, K. W., & Tan, Y. L. (2020). Powered Air Purifying Respirator (PAPR) restores the N95 face mask induced cerebral hemodynamic alterations among Healthcare Workers during COVID-19 Outbreak. Journal of the Neurological Sciences, 417, 117078. Centers for Disease Control and Prevention U.S. (1994). Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care facilities, 1994. MMWR Recomm Rep, 43(Rr-13), 1-132. Centers for Disease Control and Prevention U.S. (2020). Interim Infection Prevention and Control Recommendations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic. https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html Chakladar, A., Jones, C. G., Siu, J., Hassan-Ibrahim, M. O., & Khan, M. (2021). Microbial contamination of powered air purifying respirators (PAPR) used by healthcare staff during the COVID-19 pandemic: an in situ microbiological study. American journal of infection control, 49(6), 707-712. Chen, C.-C., & Huang, S.-H. (1998). The effects of particle charge on the performance of a filtering facepiece. American Industrial Hygiene Association Journal, 59(4), 227-233. Chughtai, A. A., Seale, H., Rawlinson, W. D., Kunasekaran, M., & Macintyre, C. R. (2020). Selection and use of respiratory protection by healthcare workers to protect from infectious diseases in hospital settings. Annals of Work Exposures and Health, 64(4), 368-377. Coyne, K., Caretti, D., Scott, W., Johnson, A., & Koh, F. (2006). Inspiratory flow rates during hard work when breathing through different respirator inhalation and exhalation resistances. Journal of occupational and environmental hygiene, 3(9), 490-500. Department of Health and Aged Care Australian. (2022). Personal protective equipment (PPE) for the health workforce during COVID-19. https://www.health.gov.au/health-alerts/covid-19/coronavirus-covid-19-advice-for-the-health-and-disability-sector/personal-protective-equipment-ppe-for-the-health-workforce-during-covid-19 Eshbaugh, J. P., Gardner, P. D., Richardson, A. W., & Hofacre, K. C. (2008). N95 and P100 respirator filter efficiency under high constant and cyclic flow. Journal of occupational and environmental hygiene, 6(1), 52-61. European Committee for Standardization. (2008). European standard EN 12942-1998-A2, Respiratory protective devices: Power assisted filtering devices. incorporating full face masks, half masks or quarter masks-Requirements, testing, marking. Evanoff, B., Kim, L., Mutha, S., Jeffe, D., Haase, C., Andereck, D., & Fraser, V. (1999). Compliance with universal precautions among emergency department personnel caring for trauma patients. Annals of emergency medicine, 33(2), 160-165. Gershon, R. R., Vlahov, D., Felknor, S. A., Vesley, D., Johnson, P. C., Delcios, G. L., & Murphy, L. R. (1995). Compliance with universal precautions among health care workers at three regional hospitals. American journal of infection control, 23(4), 225-236. Gossweiler, O. (2013). Breath responsive filter blower respirator system. Guy, R. (1974). Powered air-purifying respirator helmet. HHS U.S. (2020). Approval Tests and Standards for Air-Purifying Particulate Respirators. https://www.federalregister.gov/documents/2020/04/14/2020-07804/approval-tests-and-standards-for-air-purifying-particulate-respirators Hinds, W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley. https://books.google.com.tw/books?id=ORxSAAAAMAAJ Janssen, L., Anderson, N., Cassidy, P., Weber, R., & Nelson, T. (2005). Interpretation of inhalation airflow measurements for respirator design and testing. Journal-International Society For Respiratory Protection, 22(3/4), 122. Japanese Standards Association. (2018). Japanese Industrial Standard JIS T8157, Powered air purifying respirator for particulate matter. Khoo, D., Yen, C.-C., Chow, W. T., Jain, P., Loh, N.-H. W., Teo, W. W., & Koh, C. (2020). Ultra-portable low-cost improvised powered air-purifying respirator: feasibility study. British journal of anaesthesia, 125(2), e264-e266. Kiely, P. M., Lian, K. y., Napper, G., & Lakkis, C. (2009). Influenza A (H1N1) and infection control guidelines for optometrists. Clinical and Experimental Optometry, 92(6), 490-494. Licina, A., Silvers, A., & Stuart, R. L. (2020). Use of powered air-purifying respirator (PAPR) by healthcare workers for preventing highly infectious viral diseases—a systematic review of evidence. Systematic reviews, 9(1), 1-13. Mahdavi, A., Haghighat, F., Bahloul, A., Brochot, C., & Ostiguy, C. (2015). Particle loading time and humidity effects on the efficiency of an N95 filtering facepiece respirator model under constant and inhalation cyclic flows. Annals of Occupational Hygiene, 59(5), 629-640. National Institute for Occupational Safety & Health U.S. (1995). 42 CFR Part 84 Respiratory Protective Devices. National Institute for Occupational Safety & Health U.S. (2020). 42 CFR Part 84 Respiratory Protective Devices. https://www.ecfr.gov/current/title-42/chapter-I/subchapter-G/part-84#subpart-K Nickell, L. A., Crighton, E. J., Tracy, C. S., Al-Enazy, H., Bolaji, Y., Hanjrah, S., Hussain, A., Makhlouf, S., & Upshur, R. E. (2004). Psychosocial effects of SARS on hospital staff: survey of a large tertiary care institution. Cmaj, 170(5), 793-798. Occupational Safety and Health Administration U.S. (1998). Respiratory protection. https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.134 Sekoguchi, S., Ando, H., Ikegami, K., Yoshitake, H., Nagano, C., & Ogami, A. (2022). Application of tight-fitting half-facepiece breath-response powered air-purifying respirator for internal body cooling in occupational environment. PLoS One, 17(4), e0266534. Silverman, L., Lee, G., Plotkin, T., Sawyers, L. A., & Yancey, A. R. (1951). Air flow measurements on human subjects with and without respiratory resistance at several work rates. Arch. Indust. Hyg. & Occupational Med., 3(5), 461-478. Standards Council of Canada. (2020). COVID-19 SCC Resources and response. Tilley, G. A. (2011). Breath responsive powered air-purifying respirator. Wang, Q., Golshahi, L., & Chen, D.-R. (2017). Evaluation of respirator filter media under inhalation-only conditions. Aerosol and Air Quality Research, 17(11), 2681-2690. Yu, Y., Jiang, L., Zhuang, Z., Liu, Y., Wang, X., Liu, J., Yang, M., & Chen, W. (2014). Fitting characteristics of N95 filtering-facepiece respirators used widely in China. PLoS One, 9(1), e85299. Yuasa, H., Kumita, M., Honda, T., Kimura, K., Nozaki, K., Emi, H., & Otani, Y. (2014). Breathing simulator of workers for respirator performance test. Industrial health. 勞動部職業安全衛生署. (2020). 呼吸防護計畫技術參考手冊 經濟部標準檢驗局. (2017). 中華民國國家標準CNS 16021:2017 Z2148,呼吸防護裝置-結合全面罩、半面罩或四分之一面罩之動力輔助過濾裝置-要求、 試驗、標示 第二部分 Arad, M., Heruti, R., Shaham, E., Atsmon, J., & Epstein, Y. (1992). The effects of powered air supply to the respiratory protective device on respiration parameters during rest and exercise. Chest, 102(6), 1800-1804. Baig, A. S., Knapp, C., Eagan, A. E., & Radonovich Jr, L. J. (2010). Health care workers' views about respirator use and features that should be included in the next generation of respirators. American journal of infection control, 38(1), 18-25. Calfee, C. S., & Matthay, M. A. (2005). Recent advances in mechanical ventilation. The American journal of medicine, 118(6), 584-591. Chughtai, A. A., Seale, H., Rawlinson, W. D., Kunasekaran, M., & Macintyre, C. R. (2020). Selection and use of respiratory protection by healthcare workers to protect from infectious diseases in hospital settings. Annals of Work Exposures and Health, 64(4), 368-377. den Hartog, E., & Heus, R. (2003). Positive pressure breathing during rest and exercise. Applied ergonomics, 34(2), 185-194. Dvořák, V., Moro, G., & Lampa, J. (2019). Experimental investigation of fan for personal protection equipment–influence of number of blades. Dvořák, V., Votrubec, R., Šafka, J., & Kracík, J. (2018). Experimental investigation of centrifugal fans for personal protection equipment–effect of used 3D printing technologies. EPJ Web of Conferences. Evanoff, B., Kim, L., Mutha, S., Jeffe, D., Haase, C., Andereck, D., & Fraser, V. (1999). Compliance with universal precautions among emergency department personnel caring for trauma patients. Annals of emergency medicine, 33(2), 160-165. Gershon, R. R., Vlahov, D., Felknor, S. A., Vesley, D., Johnson, P. C., Delcios, G. L., & Murphy, L. R. (1995). Compliance with universal precautions among health care workers at three regional hospitals. American journal of infection control, 23(4), 225-236. Jürß, H., Degner, M., & Ewald, H. (2018). A new compact and low-cost respirator concept for one way usage. IFAC-PapersOnLine, 51(27), 367-372. Japanese Standards Association. (2018). Japanese Industrial Standard JIS T8157, Powered air purifying respirator for particulate matter. Jayan, V., Ajan, A., Mohan, H., Manikutty, G., Sasi, D., Kappanayil, M., Vijayaraghavan, S., & Rao, R. B. (2020). Design and development of a low-cost powered air-purifying respirator for frontline medical workers for COVID-19 response. 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC). Johnson, A. T., Koh, F. C., Scott, W. H., & Rehak, T. E. (2011). Using CO2 to Determine Inhaled Contaminant Volumes and Blower Effectiveness in Several Types of Respirators. Journal of Environmental and Public Health, 2011. Johnson, A. T., Mackey, K. R., Scott, W. H., Koh, F. C., Chiou, K. Y., & Phelps, S. J. (2005). Exercise performance while wearing a tight-fitting powered air purifying respirator with limited flow. Journal of occupational and environmental hygiene, 2(7), 368-373. Kroo, L., Kothari, A., Hannebelle, M., Herring, G., Pollina, T., Chang, R., Peralta, D., Banavar, S. P., Flaum, E., & Soto-Montoya, H. (2021). Modified full-face snorkel masks as reusable personal protective equipment for hospital personnel. PLoS One, 16(1), e0244422. Manthiram, A. (2017). An outlook on lithium ion battery technology. ACS central science, 3(10), 1063-1069. Moro, G. (2018). Experimental Investigations of fans for Personal Protective Equipment. National Institute for Occupational Safety & Health U.S. (2020). 42 CFR Part 84 Respiratory Protective Devices. https://www.ecfr.gov/current/title-42/chapter-I/subchapter-G/part-84#subpart-K Nickell, L. A., Crighton, E. J., Tracy, C. S., Al-Enazy, H., Bolaji, Y., Hanjrah, S., Hussain, A., Makhlouf, S., & Upshur, R. E. (2004). Psychosocial effects of SARS on hospital staff: survey of a large tertiary care institution. Cmaj, 170(5), 793-798. Powell, J. B., Kim, J.-H., & Roberge, R. J. (2017). Powered air-purifying respirator use in healthcare: Effects on thermal sensations and comfort. Journal of occupational and environmental hygiene, 14(12), 947-954. Sekoguchi, S., Ando, H., Ikegami, K., Yoshitake, H., Nagano, C., & Ogami, A. (2022). Application of tight-fitting half-facepiece breath-response powered air-purifying respirator for internal body cooling in occupational environment. PLoS One, 17(4), e0266534. StraitsResearch. (2022). Powered Air Purifying Respirator Market: Information by Product (Half Mask, Full Face Mask, Helmets), Application (Oil & Gas, Metal Fabrication, Agricultural), and Region — Forecast till 2030. https://www.grandviewresearch.com/industry-analysis/powered-air-purifying-respirator-papr-market Yan, S., ZHANG, H., & Zihao, L. (2019). Mechanical ventilation intelligent control technology based on fuzzy adaptive pid. 2019 IEEE 8th International Conference on Fluid Power and Mechatronics (FPM). Zulfiqar, S., Nadeem, H., Tahir, Z., Mazhar, M., & Hasan, K. (2018). Portable, Low Cost, Closed-Loop Mechanical Ventilation Using Feedback from Optically Isolated Analog Sensors. TENCON 2018-2018 IEEE Region 10 Conference.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85036-
dc.description.abstract近年來由於民眾對於氣膠傳播的概念日漸清晰,以及呼吸道傳染疾病頻傳之下,激發了各界對於呼吸防護具的重視,然而傳統的呼吸防護具因其各自的缺點,而不符合現今的使用需求,有鑑於此,市面上已出現數種較輕、較便宜的呼吸回饋式PAPR (Breath-Responsive PAPR, BR-PAPR),但目前國內尚未建立相關的標準來認證及管理此類產品,因此本研究旨在建立相關產品的性能指標與測試方法,實際評估市售BR-PAPR的性能,並透過實驗結果進一步研發我國第一代BR-PAPR。 在實際使用BR-PAPR時,面罩內的壓力是確保防護效果和舒適度的重要指標,因此可以參照美國(42 CFR part 84 subpart K)和日本產業標準(JIS T 8157: 2018)的作法,以CNS 16021 Z2148的內容為基礎,再加入動態測試方法,以及要求面罩內壓力限值,並註明需在完全密合的佩戴方式下進行測試,才可以獲得最保守的結果。由於BR-PAPR可以降低緊密接合式面罩對於密合度的需求,所以不同過濾效率的濾罐能提供的不同程度的保護性,未來可以考慮重新定義指定防護係數的分類。由於當防護具佩戴不密合且面罩內為負壓時,保護係數會急劇下降,因此建議BR-PAPR須加裝負壓警報裝置,以提醒使用者注意。 BR-PAPR的運作原理主要是依賴各元件之間的相互配合,以達到給的比需要的再多一點的概念,實現維持面罩內些微正壓的理想,但礙於每個元件皆有各自的專業技術,因此本研究以市售材料為基礎,利用回饋程式的設計,作為所有元件的溝通管道,並進一步製作成BR-PAPR原型機。研發製作之BR-PAPR原型機經性能測試後,可使用於分鐘通氣量在45 L/min,大約是60%的工作負荷下,仍能保持面罩內正壓的狀態,另外有設計負壓警示燈,提醒佩戴者注意防護具的使用範圍,未來若送風機和回饋程式有進一步的突破時,將有利於提升BR-PAPR的性能。zh_TW
dc.description.abstractThe recent outbreaks of COVID-19 pandemics highlighted the importance of aerosol transmission and stirred up a surging demand for respirators. However, traditional respiratory protective equipment does not meet users' needs due to its shortcomings. Recently, several half-face breath-responsive PAPR (BR-PAPR), lightweight and affordable, were commercially available. Therefore, This study aims to set up test systems to evaluate commercial BR-PAPR’s performance and develop performance indicators and test methods. Additionally, a BR-PAPR prototype of the breath-responsive concept is developed. The pressure inside the facepiece is a critical indicator of protection and comfort. According to the Japanese industrial standard and the NIOSH standard, the dynamic test method and requirements for internal pressure evaluation are recommended as a supplement to CNS 16021 Z2148 to evaluate the performance of BR-PAPR. The test needs to be evaluated in a completely sealed to get the most conservative results. Because BR-PAPR can reduce the fit requirement of tight-fitting respirators, the protection mainly varies with the level of the cartridge filter. Relevant units can consider the reclassification of assigned protection factor in the future. When the respirator leaks and the pressure in the mask is negative, the protection factor decreases sharply. Therefore, it is recommended that a negative pressure alarm needs be added to BR-PAPR to remind wearers. In order to maintain the positive pressure in the mask, the operation principle of BR-PAPR is through the cooperation between various components to achieve the concept that the supply air flow rate is a little more than the inspiratory flow rate. Since each component has the expertise, this study is based on commercial materials to develop the BR-PAPR prototype. The developed BR-PAPR in the present study can maintain a positive pressure in the facepiece with minute ventilation of about 45 L/min, about 60% of the workload. In addition, a negative pressure alarm is added to BR-PAPR to notice the use range of respiratory protective equipment. The performance of the developed product can be further improved if the blower and response program technology advances in the future.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:39:34Z (GMT). No. of bitstreams: 1
U0001-1208202216054800.pdf: 2688360 bytes, checksum: 5a676afbcd4c1f2b19adb6c83381eab7 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 誌 謝 II 摘 要 III Abstract IV 第一部分 第一章 背景分析 2 1.1 研究緣起 2 1.2 研究目的 3 第二章 文獻探討 4 2.1 呼吸防護具 4 2.2 BR-PAPR性能評估標準分析 6 2.3 測試流率 7 2.4 密合係數與保護係數 8 第三章 研究方法 10 第四章 結果與討論 12 4.1 BR-PAPR相關測試標準 12 4.2 面罩內最大及最小靜壓值 12 4.3 呼吸型態對性能指標的影響 13 4.4 密合度對性能指標的影響 13 4.5 佩戴方式對保護係數的影響 14 4.6 濾材等級對保護係數的影響 15 4.7 市售各款BR-PAPR之性能比較 15 第五章 結論與建議 17 參考文獻 18 第二部分 第一章 背景分析 40 1.1 研究緣起 40 1.2 研究目的 41 第二章 文獻探討 42 2.1 送風機 42 2.2 壓力感測元件 43 2.3 電池 44 2.4 面罩 44 第三章 研究方法 45 3.1 送風機測試 45 3.2 壓力感測器測試 46 3.3 BR-PAPR動態模擬測試 46 第四章 結果與討論 48 4.1 送風機性能曲線與反應時間測試 48 4.2 壓力感測器反應時間 49 4.3 回饋程式設計邏輯 49 4.4 研發之BR-PAPR整體性能表現 50 4.5 性能比對測試 51 第五章 結論與建議 53 參考文獻 54 附錄 57
dc.language.isozh-TW
dc.subject呼吸回饋zh_TW
dc.subject動力淨氣式呼吸防護具zh_TW
dc.subjectbreath responsiveen
dc.subjectpowered air-purifying respiratorsen
dc.title呼吸回饋動力淨氣式呼吸防護具性能測試與研發zh_TW
dc.titlePerformance Testing and Development of Breath Responsive Powered Air-Purifying Respiratorsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.advisor-orcid陳志傑(0000-0002-9050-3749)
dc.contributor.oralexamcommittee黃盛修(Sheng-Hsiu Huang),林志威(Chih-Wei Lin),林文印(Wen-Yinn Lin),蕭大智(Ta-Chih Hsiao)
dc.contributor.oralexamcommittee-orcid黃盛修(0000-0003-1372-0480),林志威(0000-0002-8028-5565)
dc.subject.keyword呼吸回饋,動力淨氣式呼吸防護具,zh_TW
dc.subject.keywordbreath responsive,powered air-purifying respirators,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202202348
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-17
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
dc.date.embargo-lift2024-08-12-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1208202216054800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved