請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85034完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜至剛(Chih-Kang Chiang) | |
| dc.contributor.author | Yu-Chen Chiu | en |
| dc.contributor.author | 邱禹禎 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:39:26Z | - |
| dc.date.copyright | 2022-10-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-18 | |
| dc.identifier.citation | 1. Bellomo, R., J.A. Kellum, and C. Ronco, Acute kidney injury. The Lancet, 2012. 380(9843): p. 756-766. 2. Bellomo, R., et al., Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care, 2004. 8(4): p. R204. 3. Hoste, E.A.J., et al., Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Medicine, 2015. 41(8): p. 1411-1423. 4. Hoste, E.A.J., et al., Global epidemiology and outcomes of acute kidney injury. Nature Reviews Nephrology, 2018. 14(10): p. 607-625. 5. Srisawat, N., et al., Variation in Risk and Mortality of Acute Kidney Injury in Critically Ill Patients: A Multicenter Study. American Journal of Nephrology, 2015. 41(1): p. 81-88. 6. Silver, S.A. and G.M. Chertow, The Economic Consequences of Acute Kidney Injury. Nephron, 2017. 137(4): p. 297-301. 7. Abebe, A., et al., Mortality and predictors of acute kidney injury in adults: a hospital-based prospective observational study. Scientific Reports, 2021. 11(1). 8. Paul M Palevsky, M., Definition and staging criteria of acute kidney injury in adults, in UpToDate, M. Gary C Curhan, ScD, Editor. 2022. 9. Hoste, E.A., et al., RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Critical Care, 2006. 10(3): p. R73. 10. Ricci, Z., D. Cruz, and C. Ronco, The RIFLE criteria and mortality in acute kidney injury: A systematic review. Kidney International, 2008. 73(5): p. 538-546. 11. Van Biesen, W., R. Vanholder, and N. Lameire, Defining Acute Renal Failure: RIFLE and Beyond: Table 1. Clinical Journal of the American Society of Nephrology, 2006. 1(6): p. 1314-1319. 12. Lin, C.-Y., Acute kidney injury classification: AKIN and RIFLE criteria in critical patients. World Journal of Critical Care Medicine, 2012. 1(2): p. 40. 13. Mehta, R.L., et al., Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Critical Care, 2007. 11(2): p. R31. 14. Lopes, J.A. and S. Jorge, The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clinical Kidney Journal, 2013. 6(1): p. 8-14. 15. James, M., Bouchard, J., Ho, J., Klarenbach, S., Lafrance, J.-P., Rigatto, C., Wald, R., Zappitelli, M., & Pannu, N.. Canadian Society of Nephrology Commentary on the 2012 KDIGO Clinical Practice Guideline for Acute Kidney Injury. American Journal of Kidney Diseases, 2013. 61(5): p. 673-685. 16. Khwaja, A., KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron, 2012. 120(4): p. c179-c184. 17. Uchino, S., et al., An assessment of the RIFLE criteria for acute renal failure in hospitalized patients*. Critical Care Medicine, 2006. 34(7): p. 1913-1917. 18. Rahman, M., F. Shad, and M.C. Smith, Acute kidney injury: a guide to diagnosis and management. Am Fam Physician, 2012. 86(7): p. 631-9. 19. Divers, T.J., Chapter 10 - Urinary Tract Diseases, in Rebhun's Diseases of Dairy Cattle (Second Edition), T.J. Divers and S.F. Peek, Editors. 2008, W.B. Saunders: Saint Louis. p. 447-466. 20. Uta Erdbruegger, M., Mark D Okusa, MD, Etiology and diagnosis of prerenal disease and acute tubular necrosis in acute kidney injury in adults, in UpToDate, M. Paul M Palevsky, Editor. 2022. 21. Arora, P., et al., Preoperative Use of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Is Associated with Increased Risk for Acute Kidney Injury after Cardiovascular Surgery. Clinical Journal of the American Society of Nephrology, 2008. 3(5): p. 1266-1273. 22. Thongprayoon, C., et al., Diagnostics, Risk Factors, Treatment and Outcomes of Acute Kidney Injury in a New Paradigm. Journal of Clinical Medicine, 2020. 9(4): p. 1104. 23. Dishart, M.K. and J.A. Kellum, An Evaluation of Pharmacological Strategies for the Prevention and Treatment of Acute Renal Failure. Drugs, 2000. 59(1): p. 79-91. 24. Bonventre, J.V. and L. Yang, Cellular pathophysiology of ischemic acute kidney injury. Journal of Clinical Investigation, 2011. 121(11): p. 4210-4221. 25. Arai, S., et al., Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nature Medicine, 2016. 22(2): p. 183-193. 26. Basile, D.P., M.D. Anderson, and T.A. Sutton, Pathophysiology of Acute Kidney Injury. Comprehensive Physiology, 2012. 27. Heyman, S.N., C. Rosenberger, and S. Rosen, Experimental ischemia–reperfusion: biases and myths—the proximal vs. distal hypoxic tubular injury debate revisited. Kidney International, 2010. 77(1): p. 9-16. 28. Basile, D.P., M.D. Anderson, and T.A. Sutton, Pathophysiology of acute kidney injury. Compr Physiol, 2012. 2(2): p. 1303-53. 29. Lieberthal, W. and S.K. Nigam, Acute renal failure. I. Relative importance of proximal vs. distal tubular injury. American Journal of Physiology-Renal Physiology, 1998. 275(5): p. F623-F632. 30. Basile, D.P., et al., Progression after AKI: Understanding Maladaptive Repair Processes to Predict and Identify Therapeutic Treatments. Journal of the American Society of Nephrology, 2016. 27(3): p. 687-697. 31. Bonventre, J.V., Dedifferentiation and Proliferation of Surviving Epithelial Cells in Acute Renal Failure. Journal of the American Society of Nephrology, 2003. 14(suppl 1): p. S55-S61. 32. Kusaba, T., et al., Differentiated kidney epithelial cells repair injured proximal tubule. Proceedings of the National Academy of Sciences, 2014. 111(4): p. 1527-1532. 33. Humphreys, B.D., et al., Intrinsic Epithelial Cells Repair the Kidney after Injury. Cell Stem Cell, 2008. 2(3): p. 284-291. 34. Cantley, L.G., Adult stem cells in the repair of the injured renal tubule. Nature Clinical Practice Nephrology, 2005. 1(1): p. 22-32. 35. Reule, S. and S. Gupta, Kidney regeneration and resident stem cells. Organogenesis, 2011. 7(2): p. 135-139. 36. Ferenbach, D.A. and J.V. Bonventre, Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nature Reviews Nephrology, 2015. 11(5): p. 264-276. 37. James, M.T., et al., Long-term outcomes of acute kidney injury and strategies for improved care. Nature Reviews Nephrology, 2020. 16(4): p. 193-205. 38. Chawla, L.S. and P.L. Kimmel, Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney International, 2012. 82(5): p. 516-524. 39. Coca, S.G., S. Singanamala, and C.R. Parikh, Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney International, 2012. 81(5): p. 442-448. 40. Basile, D.P., et al., Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. American Journal of Physiology-Renal Physiology, 2001. 281(5): p. F887-F899. 41. Basile, D.P., Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Current Opinion in Nephrology and Hypertension, 2004. 13(1): p. 1-7. 42. Grgic, I., et al., Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney International, 2012. 82(2): p. 172-183. 43. Bonventre, J.V., Maladaptive Proximal Tubule Repair: Cell Cycle Arrest. Nephron Clinical Practice, 2014. 127(1-4): p. 61-64. 44. Yang, L., et al., Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nature Medicine, 2010. 16(5): p. 535-543. 45. Xu, J., S. Lamouille, and R. Derynck, TGF-β-induced epithelial to mesenchymal transition. Cell Research, 2009. 19(2): p. 156-172. 46. Wu, C.-F., et al., Transforming Growth Factor β-1 Stimulates Profibrotic Epithelial Signaling to Activate Pericyte-Myofibroblast Transition in Obstructive Kidney Fibrosis. The American Journal of Pathology, 2013. 182(1): p. 118-131. 47. Gregorio T Obrador, M., MPH, Epidemiology of chronic kidney disease, in UpToDate, M. Gary C Curhan, ScD, Editor. 2020. 48. Bikbov, B., et al., Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 2020. 395(10225): p. 709-733. 49. Wen, C.P., et al., All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. The Lancet, 2008. 371(9631): p. 2173-2182. 50. Ministry of Health and Welfare, T., 2020 Taiwan Health and Welfare Repor, M.o.H.a. Welfare, Editor. 2020, Ministry of Health and Welfare: Government Publications Bookstore. 51. Schwarz, D.S. and M.D. Blower, The endoplasmic reticulum: structure, function and response to cellular signaling. Cellular and Molecular Life Sciences, 2016. 73(1): p. 79-94. 52. Araki, K. and K. Nagata, Protein Folding and Quality Control in the ER. Cold Spring Harbor Perspectives in Biology, 2011. 3(11): p. a007526-a007526. 53. Ellgaard, L. and A. Helenius, Quality control in the endoplasmic reticulum. Nature Reviews Molecular Cell Biology, 2003. 4(3): p. 181-191. 54. Walter, P. and D. Ron, The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science, 2011. 334(6059): p. 1081-1086. 55. Rutkowski, D.T. and R.S. Hegde, Regulation of basal cellular physiology by the homeostatic unfolded protein response. Journal of Cell Biology, 2010. 189(5): p. 783-794. 56. Zhang, K. and R.J. Kaufman, From endoplasmic-reticulum stress to the inflammatory response. Nature, 2008. 454(7203): p. 455-462. 57. Inagi, R., Endoplasmic Reticulum Stress in the Kidney as a Novel Mediator of Kidney Injury. Nephron Experimental Nephrology, 2009. 112(1): p. e1-e9. 58. Malhotra, J.D. and R.J. Kaufman, Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Cycle or a Double-Edged Sword? Antioxidants & Redox Signaling, 2007. 9(12): p. 2277-2294. 59. Chiang, C.-K., et al., Endoplasmic Reticulum Stress Implicated in the Development of Renal Fibrosis. Molecular Medicine, 2011. 17(11-12): p. 1295-1305. 60. Inagi, R., Y. Ishimoto, and M. Nangaku, Proteostasis in endoplasmic reticulum—new mechanisms in kidney disease. Nature Reviews Nephrology, 2014. 10(7): p. 369-378. 61. Mohammed-Ali, Z., et al., Endoplasmic reticulum stress inhibition attenuates hypertensive chronic kidney disease through reduction in proteinuria. Scientific Reports, 2017. 7(1): p. 41572. 62. Inagi, R., et al., Preconditioning with Endoplasmic Reticulum Stress Ameliorates Mesangioproliferative Glomerulonephritis. Journal of the American Society of Nephrology, 2008. 19(5): p. 915-922. 63. Wu, C.T., et al., Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury. Toxicology and Applied Pharmacology, 2013. 266(1): p. 167-175. 64. Wu, C.T., et al., Salubrinal, an eIF2α dephosphorylation inhibitor, enhances cisplatin-induced oxidative stress and nephrotoxicity in a mouse model. Free Radical Biology and Medicine, 2011. 51(3): p. 671-680. 65. Gardner, B.M., et al., Endoplasmic Reticulum Stress Sensing in the Unfolded Protein Response. Cold Spring Harbor Perspectives in Biology, 2013. 5(3): p. a013169-a013169. 66. Bhattarai, K.R., et al., The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Experimental & Molecular Medicine, 2021. 53(2): p. 151-167. 67. Hetz, C., et al., The Unfolded Protein Response: Integrating Stress Signals Through the Stress Sensor IRE1α. Physiological Reviews, 2011. 91(4): p. 1219-1243. 68. Cybulsky, A.V., Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nature Reviews Nephrology, 2017. 13(11): p. 681-696. 69. Burman, A., et al., Localized hypoxia links ER stress to lung fibrosis through induction of C/EBP homologous protein. JCI Insight, 2018. 3(16). 70. Zhang, M., et al., Chop deficiency prevents UUO-induced renal fibrosis by attenuating fibrotic signals originated from Hmgb1/TLR4/NFκB/IL-1β signaling. Cell Death & Disease, 2015. 6(8): p. e1847-e1847. 71. Vij, N., et al., CHOP Transcription Factor Mediates IL-8 Signaling in Cystic Fibrosis Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2008. 38(2): p. 176-184. 72. Liu, S.-H., et al., C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget, 2016. 7(16): p. 21900-21912. 73. Bourougaa, K., et al., Endoplasmic Reticulum Stress Induces G2 Cell-Cycle Arrest via mRNA Translation of the p53 Isoform p53/47. Molecular Cell, 2010. 38(1): p. 78-88. 74. Qi, R. and C. Yang, Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death & Disease, 2018. 9(11). 75. Meng, X.-M., D.J. Nikolic-Paterson, and H.Y. Lan, TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology, 2016. 12(6): p. 325-338. 76. Gu, Y.-Y., et al., Diverse Role of TGF-β in Kidney Disease. Frontiers in Cell and Developmental Biology, 2020. 8. 77. Leslie, Transforming Growth Factor-β in the Acute Kidney Injury to Chronic Kidney Disease Transition. Nephron, 2019. 143(3): p. 154-157. 78. Yu, L., et al., TGF-β isoforms in renal fibrogenesis. Kidney International, 2003. 64(3): p. 844-856. 79. Biernacka, A., M. Dobaczewski, and N.G. Frangogiannis, TGF-β signaling in fibrosis. Growth Factors, 2011. 29(5): p. 196-202. 80. Sureshbabu, A., S.A. Muhsin, and M.E. Choi, TGF-β signaling in the kidney: profibrotic and protective effects. American Journal of Physiology-Renal Physiology, 2016. 310(7): p. F596-F606. 81. Massagué, J., How cells read TGF-β signals. Nature Reviews Molecular Cell Biology, 2000. 1(3): p. 169-178. 82. Xu, P., J. Liu, and R. Derynck, Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Letters, 2012. 586(14): p. 1871-1884. 83. Poniatowski, Ł.A., et al., Transforming Growth Factor Beta Family: Insight into the Role of Growth Factors in Regulation of Fracture Healing Biology and Potential Clinical Applications. Mediators of Inflammation, 2015. 2015: p. 1-17. 84. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature, 2003. 425(6958): p. 577-584. 85. Shi, Y., et al., Crystal Structure of a Smad MH1 Domain Bound to DNA. Cell, 1998. 94(5): p. 585-594. 86. Bhowmick, N.A., et al., Transforming Growth Factor-β1 Mediates Epithelial to Mesenchymal Transdifferentiation through a RhoA-dependent Mechanism. Molecular Biology of the Cell, 2001. 12(1): p. 27-36. 87. Bakin, A.V., et al., Phosphatidylinositol 3-Kinase Function Is Required for Transforming Growth Factor β-mediated Epithelial to Mesenchymal Transition and Cell Migration. Journal of Biological Chemistry, 2000. 275(47): p. 36803-36810. 88. Engel, M.E., et al., Interdependent SMAD and JNK Signaling in Transforming Growth Factor-β-mediated Transcription. Journal of Biological Chemistry, 1999. 274(52): p. 37413-37420. 89. Nieto, M.A., The snail superfamily of zinc-finger transcription factors. Nature Reviews Molecular Cell Biology, 2002. 3(3): p. 155-166. 90. Postigo, A.A., Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. The EMBO Journal, 2003. 22(10): p. 2453-2462. 91. Ansieau, S., et al., Induction of EMT by Twist Proteins as a Collateral Effect of Tumor-Promoting Inactivation of Premature Senescence. Cancer Cell, 2008. 14(1): p. 79-89. 92. Peinado, H., D. Olmeda, and A. Cano, Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer, 2007. 7(6): p. 415-428. 93. Miettinen, P.J., et al., TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. Journal of Cell Biology, 1994. 127(6): p. 2021-2036. 94. Fan, J.-M., et al., Transforming growth factor-β regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney International, 1999. 56(4): p. 1455-1467. 95. Bartel, D.P., MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 2004. 116(2): p. 281-297. 96. O'Brien, J., et al., Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 2018. 9. 97. Cai, Y., et al., A Brief Review on the Mechanisms of miRNA Regulation. Genomics, Proteomics & Bioinformatics, 2009. 7(4): p. 147-154. 98. Stefani, G. and F.J. Slack, Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 2008. 9(3): p. 219-230. 99. Croce, C.M., Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, 2009. 10(10): p. 704-714. 100. Pandey, A.K., et al., MicroRNAs in Diabetes: Tiny Players in Big Disease. Cellular Physiology and Biochemistry, 2009. 23(4-6): p. 221-232. 101. Zarjou, A., et al., Identification of a microRNA signature in renal fibrosis: role of miR-21. American Journal of Physiology-Renal Physiology, 2011. 301(4): p. F793-F801. 102. Lorenzen, J.M., H. Haller, and T. Thum, MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nature Reviews Nephrology, 2011. 7(5): p. 286-294. 103. Ichii, O. and T. Horino, MicroRNAs associated with the development of kidney diseases in humans and animals. Journal of Toxicologic Pathology, 2018. 31(1): p. 23-34. 104. Li, J.Y., et al., Review: The role of microRNAs in kidney disease. Nephrology, 2010. 15(6): p. 599-608. 105. Hajarnis, S., et al., Suppression of microRNA Activity in Kidney Collecting Ducts Induces Partial Loss of Epithelial Phenotype and Renal Fibrosis. Journal of the American Society of Nephrology, 2018. 29(2): p. 518-531. 106. Zhou, P., et al., Roles of Non-Coding RNAs in Acute Kidney Injury. Kidney and Blood Pressure Research, 2016. 41(6): p. 757-769. 107. Zhao, H., et al., microRNAs in chronic kidney disease. Clinica Chimica Acta, 2019. 491: p. 59-65. 108. 林穎成, DDX17調控上皮細胞間質轉化之腎臟纖維化研究. 2021: 國立臺灣大學毒理學研究所碩士論文. 109. Zhou, Q., et al., miR-30a Negatively Regulates TGF-β1–Induced Epithelial-Mesenchymal Transition and Peritoneal Fibrosis by Targeting Snai1. The American Journal of Pathology, 2013. 183(3): p. 808-819. 110. Mlcochova, H., et al., Epithelial-mesenchymal transition-associated microRNA/mRNA signature is linked to metastasis and prognosis in clear-cell renal cell carcinoma. Scientific Reports, 2016. 6(1): p. 31852. 111. Wang, H., et al., miR30a3p suppresses the proliferation and migration of lung adenocarcinoma cells by downregulating CNPY2. Oncol Rep, 2020. 43(2): p. 646-654. 112. Bruhn, H., A short guided tour through functional and structural features of saposin-like proteins. Biochemical Journal, 2005. 389(2): p. 249-257. 113. Hirate, Y. and H. Okamoto, Canopy1, a Novel Regulator of FGF Signaling around the Midbrain-Hindbrain Boundary in Zebrafish. Current Biology, 2006. 16(4): p. 421-427. 114. Schildknegt, D., et al., Characterization of CNPY5 and its family members. Protein Sci, 2019. 28(7): p. 1276-1289. 115. Uhlén, M., et al., Tissue-based map of the human proteome. Science, 2015. 347(6220): p. 1260419. 116. Hatta, K., et al., Expression of CNPY2 in Mouse Tissues: Quantification and Localization. PLoS ONE, 2014. 9(11): p. e111370. 117. Karlsson, M., et al., A single-cell type transcriptomics map of human tissues. Science Advances, 2021. 7(31): p. eabh2169. 118. Hong, F., et al., CNPY2 is a key initiator of the PERK-CHOP pathway of the unfolded protein response. Nat Struct Mol Biol, 2017. 24(10): p. 834-839. 119. Urra, H. and C. Hetz, Fine-tuning PERK signaling to control cell fate under stress. Nature Structural & Molecular Biology, 2017. 24(10): p. 789-790. 120. Li, A., et al., The Emerging Roles of Endoplasmic Reticulum Stress in Balancing Immunity and Tolerance in Health and Diseases: Mechanisms and Opportunities. Frontiers in Immunology, 2020. 10. 121. Wang, D., et al., Canopy Homolog 2 Expression Predicts Poor Prognosis in Hepatocellular Carcinoma with Tumor Hemorrhage. Cell Physiol Biochem, 2018. 50(6): p. 2017-2028. 122. Ito, S., et al., CNPY2 inhibits MYLIP-mediated AR protein degradation in prostate cancer cells. Oncotarget, 2018. 9(25): p. 17645-17655. 123. Yan, P., et al., Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway. Am J Pathol, 2016. 186(4): p. 1015-24. 124. Taniguchi, H., et al., CNPY2 promoted the proliferation of renal cell carcinoma cells and increased the expression of TP53. Biochem Biophys Res Commun, 2017. 485(2): p. 267-271. 125. Dou, Y., et al., The CNPY2 enhances epithelial-mesenchymal transition via activating the AKT/GSK3beta pathway in non-small cell lung cancer. Cell Biol Int, 2018. 42(8): p. 959-964. 126. Le Clef, N., et al., Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice. PLOS ONE, 2016. 11(3): p. e0152153. 127. Nakagawa, S., et al., Molecular Markers of Tubulointerstitial Fibrosis and Tubular Cell Damage in Patients with Chronic Kidney Disease. PLOS ONE, 2015. 10(8): p. e0136994. 128. Chen, Y.-T., et al., Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts. Journal of Clinical Investigation, 2021. 131(5). 129. Johno, H. and M. Kitamura, Pathological in Situ Reprogramming of Somatic Cells by the Unfolded Protein Response. The American Journal of Pathology, 2013. 183(3): p. 644-654. 130. System, U.S.R.D., 2021 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD. 131. Qin, W., et al., TGF-β/Smad3 Signaling Promotes Renal Fibrosis by Inhibiting miR-29. Journal of the American Society of Nephrology, 2011. 22(8): p. 1462-1474. 132. Xiong, M., et al., The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. American Journal of Physiology-Renal Physiology, 2012. 302(3): p. F369-F379. 133. Dixon, E.E., et al., Spatially Resolved Transcriptomic Analysis of Acute Kidney Injury in a Female Murine Model. Journal of the American Society of Nephrology, 2022. 33(2): p. 279-289. 134. Bornhauser, B.C., P.A. Olsson, and D. Lindholm, MSAP is a novel MIR-interacting protein that enhances neurite outgrowth and increases myosin regulatory light chain. J Biol Chem, 2003. 278(37): p. 35412-20. 135. Cheng, Z., et al., Overexpression of TMEM158 contributes to ovarian carcinogenesis. Journal of Experimental & Clinical Cancer Research, 2015. 34(1). 136. Lee, H.-J., et al., Identification of Transmembrane Protein 88 (TMEM88) as a Dishevelled-binding Protein. Journal of Biological Chemistry, 2010. 285(53): p. 41549-41556. 137. Sui, Y., et al., Inhibition of TMEM16A Expression Suppresses Growth and Invasion in Human Colorectal Cancer Cells. PLoS ONE, 2014. 9(12): p. e115443. 138. Zhang, X., et al., Cytosolic TMEM88 Promotes Invasion and Metastasis in Lung Cancer Cells by Binding DVLS. Cancer Research, 2015. 75(21): p. 4527-4537. 139. Ruiz-Ortega, M., et al., Targeting the progression of chronic kidney disease. Nature Reviews Nephrology, 2020. 16(5): p. 269-288. 140. He, W., et al., Wnt/β-Catenin Signaling Promotes Renal Interstitial Fibrosis. Journal of the American Society of Nephrology, 2009. 20(4): p. 765-776. 141. Hao, S., et al., Targeted Inhibition of β-Catenin/CBP Signaling Ameliorates Renal Interstitial Fibrosis. Journal of the American Society of Nephrology, 2011. 22(9): p. 1642-1653. 142. Xiao, L., et al., Sustained Activation of Wnt/<i>β</i>-Catenin Signaling Drives AKI to CKD Progression. Journal of the American Society of Nephrology, 2016. 27(6): p. 1727-1740. 143. Luo, C., et al., Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. Journal of the American Society of Nephrology, 2018. 29(4): p. 1238-1256. 144. Komiya, Y. and R. Habas, Wnt signal transduction pathways. Organogenesis, 2008. 4(2): p. 68-75. 145. Zhan, T., N. Rindtorff, and M. Boutros, Wnt signaling in cancer. Oncogene, 2017. 36(11): p. 1461-1473. 146. Acebron, S.P. and C. Niehrs, β-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends in Cell Biology, 2016. 26(12): p. 956-967. 147. Kim, N.-G., C. Xu, and B.M. Gumbiner, Identification of targets of the Wnt pathway destruction complex in addition to β-catenin. Proceedings of the National Academy of Sciences, 2009. 106(13): p. 5165-5170. 148. Carew, R.M., B. Wang, and P. Kantharidis, The role of EMT in renal fibrosis. Cell and Tissue Research, 2012. 347(1): p. 103-116. 149. Allison, S.J., Targeting EMT to reverse renal fibrosis. Nature Reviews Nephrology, 2015. 11(10): p. 565-565. 150. Lebleu, V.S., et al., Origin and function of myofibroblasts in kidney fibrosis. Nature Medicine, 2013. 19(8): p. 1047-1053. 151. Kao, S.-H., et al., Analysis of Protein Stability by the Cycloheximide Chase Assay. BIO-PROTOCOL, 2015. 5(1). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85034 | - |
| dc.description.abstract | 急性腎臟損傷(Acute Kidney Injury, AKI)在過去一被認為是一種自限性、可逆的疾病,但隨著醫療科技的進步,急性腎損傷的死亡率並未有顯著的改善,且長期追蹤這些患者在未來罹患慢性腎臟病(chronic kidney disease, CKD)的風險增加了8.8倍、進展到末期腎臟疾病(end stage renal disease, ESRD)的風險也增加了3.3倍,不僅增加患者的死亡率,也造成醫療照護成本的增加。因此,有越來越多的研究針對急性腎損傷進展到慢性腎臟病(AKI-to-CKD Transition)過程中的調控機制進行探討,企圖找出可能的治療方式。本實驗室先前的研究發現miR-30a-3p能抑制近端腎小管細胞中FN1、COL4A1等細胞外基質相關基因的表達,因此我們認為miR-30a-3p在上皮間質轉化及細胞外基質中可能扮演非常重要的角色。進一步以TargetScan分析發現CNPY2的3’UTR為其標的。CNPY2為內質網壓力PERK-CHOP pathway的啟動子,可促進癌細胞上皮間質轉化的發生並增加侵襲能力。因此,本次研究將探討CNPY2在急性腎損傷到慢性腎臟病的過程中是否扮演調控上皮間質轉化的角色。首先,我們建立小鼠單側腎臟缺血再灌流的動物模型模擬AKI-to-CKD的發展,並證實miR-30a-3p的表現下調且近端腎小管的CNPY2表現在手術後有顯著上升的情況;在細胞實驗中以TGF-β1誘發近端腎小管上皮間質轉化,發現miR-30a-3p及CNPY2的表現也與動物實驗的結果一致。除此之外,qPCR的結果中也證實miR-30a-3p確實能調控CNPY2的表現。在進一步的細胞實驗中,我們發現CNPY2會增加細胞膜中TGF-β第一型受體的表現、促進AKT的磷酸化、並增加上皮間質轉化相關蛋白的表現。為了進一步確認CNPY2是否為纖維化發展中所必須的蛋白,我們使用CNPY2 RNAi(RNA interference)抑制CNPY2的表現後讓細胞暴露於TGF-β1。然而,結果發現CNPY2表現被抑制之後並不能消除由TGF-β1誘發的上皮間質轉化。儘管如此,TGF-β1也無法顯著地讓CNPY2缺乏的近端腎小管細胞表現上皮間質轉化相關的蛋白。總而言之,在病人發展慢性腎臟疾病的過程當中miR-30a-3p的表現下降使得CNPY2無法被抑制,促使snail的增加並導致纖聯蛋白及膠原蛋白表現上升。 | zh_TW |
| dc.description.abstract | During the past few years, an increasing number of studies aim to investigate the regulatory mechanism during AKI-to-CKD transition. Recently, our lab investigated that miR-30a-3p, which was downregulated in fibrotic renal disease, post-transcriptionally regulated the fibrosis-associated genes in HK2 cells. Further analysis by using TargetScan revealed that miR-30a-3p might regulate CNPY2 via interacting with the mRNA 3’- untranslated region (3’UTR). CNPY2 is an ER luminal protein and a key initiator of the PERK pathway during ER stress response. In addition, researchers have demonstrated that CNPY2 enhances the progression of epithelial-mesenchymal transition (EMT) resulting in a higher invasion ability in cancer cells. Therefore, we hypothesized that CNPY2 might participate in the EMT process during the AKI-to-CKD transition. We revealed that CNPY2 was significantly increased in the kidneys of CKD patients and the fibrotic kidneys in the unilateral ischemia-reperfusion injury (UIRI) mice model and unilateral ureteral obstruction (UUO) mice model. Moreover, CNPY2 had a negative correlation with miR-30a-3p, suggesting the potential role of CNPY2 in renal fibrogenesis. According to the immunohistochemistry (IHC) staining showing that upregulated-CNPY2 was located in the proximal tubular epithelial cells, we then used the HK2 cells for the further mechanistic in vitro study. Consistent with in vivo study, CNPY2 was increased in transforming growth factor β1 (TGF-β1) treated HK2 cells. Furthermore, the real-time polymerase chain reaction (qPCR) and the western blotting analysis showed that CNPY2 overexpression activated the PERK-CHOP pathway and promoted the protein expression level of EMT-associated markers. In addition, the expression of TGFβR1 membrane protein and the phosphorylation of AKT were significantly upregulated after transfecting CNPY2 plasmid in HK2 cells. However, in in vitro study, CNPY2 knockdown via transfecting siRNA could not eliminate TGF-β1-mediated EMT and ECM progression. Despite this condition, TGF-β1 was unable to upregulate the EMT-associated proteins in CNPY2-knockdown HK2 cells as well. In conclusion, our investigations revealed a novel molecule during AKI-to-CKD transition. Further studies are required to confirm the underlying mechanisms involved in the CNPY2-mediated renal fibrosis in order to find out the potential treatment strategy. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:39:26Z (GMT). No. of bitstreams: 1 U0001-0908202212041700.pdf: 5686749 bytes, checksum: 9f6751192000f8a8801dd3b55e35d52b (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 中文摘要 iv ABSTRACT v List of Abbreviation vii CONTENTS 1 Chapter 1 Introduction 5 1.1 Acute kidney injury (AKI) 5 1.2 Criteria for diagnosis of AKI 6 1.2.1 The RIFLE criteria 7 1.2.2 The Acute Kidney Injury Network (AKIN) criteria 7 1.2.3 The Kidney Disease: Improving Global Outcomes (KDIGO) criteria 7 1.3 Etiology of AKI 8 1.3.1 Pre-renal causes 8 1.3.2 Intrinsic renal causes 8 1.3.3 Post-renal causes 9 1.4 Repair mechanisms after AKI 9 1.4.1 Adaptive repair 9 1.4.2 Maladaptive repair 11 1.5 Chronic kidney disease 12 1.6 Molecular mechanisms of AKI-to-CKD transition 13 1.6.1 Unfolded protein response (UPR) pathway in renal disease 13 1.6.2 TGF-β1 mediated EMT in tubular epithelial cells (TECs) 16 1.6.3 The regulation of microRNAs (miRNA) in kidney diseases 18 1.7 Canopy FGF Signaling Regulator 2 (CNPY2) 21 1.7.1 The function of CNPY2 21 1.7.2 The role of CNPY2 in several diseases 22 Chapter 2 Aims 24 Chapter 3 Materials and Methods 25 3.1 Animal model 25 3.1.1 Renal Unilateral Ischemia-Reperfusion Injury (UIRI) Model 25 3.1.2 Unilateral Ureteral Obstruction model 26 3.2 Histology 27 3.3 Immunohistochemical Stain 27 3.4 Cell culture 28 3.5 Transfection assay 28 3.5.1 In vitro CNPY2 knockdown 29 3.5.2 In vitro CNPY2 overexpression 29 3.5.3 In vitro miR-30a-3p overexpression 29 3.6 TGF-β1 stimulation 30 3.6.1 TGF-β1 treatment in CNPY2 knockdown HK2 cells 30 3.7 Messenger RNA (mRNA) extraction and quantitative real-time polymerase chain reaction (qPCR) analysis 30 3.8 MicroRNA extraction and qPCR analysis 33 3.9 Protein extraction and western blot analysis 34 3.10 Statistical analysis 36 Chapter 4 Results 37 4.1 miR-30a-3p was significantly decreased in the mouse fibrotic kidney 37 4.2 CNPY2 was significantly increased in the mouse and human fibrotic renal tissues. 38 4.3 TGF-β1 regulated CNPY2 and miR-30a-3p expression in HK2 cells. 40 4.4 CNPY2 could induce the CHOP pathway and activate the EMT and ECM progression in TECs. 41 4.5 CNPY2 overexpression upregulated the expression of TGFβR1 and promoted AKT phosphorylation 42 4.6 TGF-β1 could not improve the TGFβR1, ECM, or ECM-associated markers in CNPY2-suppressed HK2 cells. 43 Chapter 5 Discussion 45 Chapter 6 Conclusion and Future Prospects 50 Chapter 7 References 52 Chapter 8 Figures 68 Figure 1. 68 Figure 2. 71 Figure 3. 75 Figure 4. 77 Figure 5. 81 Figure 6. 85 Figure 7. 87 Figure 8. 88 Figure 9. 89 Figure 10. 90 Figure 11. 93 Figure 12. 96 Figure 13. 100 | |
| dc.language.iso | en | |
| dc.subject | 慢性腎臟疾病 | zh_TW |
| dc.subject | 上皮間質轉化 | zh_TW |
| dc.subject | miR-30a-3p | zh_TW |
| dc.subject | CNPY2 | zh_TW |
| dc.subject | ECM | en |
| dc.subject | CNPY2 | en |
| dc.subject | miR-30a-3p | en |
| dc.subject | EMT | en |
| dc.subject | AKI-to-CKD transition | en |
| dc.title | CNPY2介導急性腎損傷至慢性腎病連續體的上皮間質轉化 | zh_TW |
| dc.title | CNPY2 mediates the epithelial-mesenchymal transition in the acute kidney injury to chronic kidney disease continuum | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉興華(Shing-Hwa Liu),吳鎮天(Cheng-Tien Wu),趙家德(Chia-Ter Chao) | |
| dc.subject.keyword | 慢性腎臟疾病,上皮間質轉化,miR-30a-3p,CNPY2, | zh_TW |
| dc.subject.keyword | AKI-to-CKD transition,EMT,ECM,miR-30a-3p,CNPY2, | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU202202194 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-10-05 | - |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202212041700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
