請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84999完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹瀅潔(Ying-Chieh Chan) | |
| dc.contributor.author | Yi-Ting Lin | en |
| dc.contributor.author | 林沂葶 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:37:19Z | - |
| dc.date.copyright | 2022-08-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-18 | |
| dc.identifier.citation | 中文文獻 中華民國國家標準CNS(1987年9月17日),照度標準:總號12112、類號:Z1044,上網日期:111年7月21日,檢自:https://www.doed.gov.taipei/News_Content.aspx?n=26F0255297F96A92&sms=4B75574D6720F41F&s=7B193BEA66CA122F。 內政部(2021),建築技術規則建築設計施工編 - 第二章第八節,上網日期:111年7月21日,檢自:https://law.moj.gov.tw/LawClass/LawParaDeatil.aspx?pcode=D0070115&bp=10。 內政部建築管理組解釋函(內授營建管字1090812109號函)(2020),有關建築物高度檢討,得否依建築技術規則建築設計施工編第160條規定,以都市計畫等已訂有相關規定,免再依同法第164條檢討疑義1案。 內政部營建署(2021),市區道路及附屬工程設計標準,內政部台內營字第1100813059號令,上網日期:111年7月21日,檢自:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=D0070156。 方暮晨(2020年6月18日),「新法規!日照權保障規範,7月1日如期上路」,MyGoNews,上網日期:111年7月21日,檢自:https://www.mygonews.com/news/detail/news_id/200391。 朱政德(2011),都市型集合住宅之住戶平面計畫的供給特性:以台北市集合住宅爲例,建築學報,77,19-43。 朱政德和林昭邑(2007),集合住宅類型對鄰里關係與居住意識的影響-以臺北市集合住宅為例,設計學研究,10卷,1期。 朱政德和黃品誠(2010),都市型大坪數集合住宅之供給指標與發展脈絡:以臺北市民間集合住宅為例,設計學研究,13(2),87-110。 朱語蕎(2020年05月11日),臺北市40年老宅最多 這區每兩間就一間老屋,自由時報,上網日期:111年7月21日,檢自:https://estate.ltn.com.tw/article/9596。 何佩齡(2015),都市計畫及建築相關法令對住宅類型變遷之影響-以臺北市私人開發之集合住宅為例,未出版之碩士論文,臺北科技大學建築與都市設計研究所。 初福威(2012),室內低照度照度計之應用與分析,未出版之碩士論文,國立虎尾科技大學光電與材料科技研究所。 林鳳琪(2021年12月24日),臺北房市新案72%危老改建!獵地都更搶老屋藏「菜蟲甜蜜陷阱」,城市學,上網日期:111年7月21日,檢自:https://city.gvm.com.tw/article/85673。 長沙市人民政府(2010),长沙市居住建筑间距和日照管理规定,長政發【2010】15號,上網日期:111年7月21日,檢自:http://www.jianbiaoku.com/webarbs/book/5894/167906.shtml。 柯秀鳳(2007),高層集合住宅日照陰影對綠覆率之影響評估--以台南市集合住宅為例,未出版之碩士論文,國立成功大學建築及都市規劃學門。 香港勞工處職業安全及健康部(2008),工作間的照明評估,2008,上網日期:111年7月21日,檢自:https://www.labour.gov.hk/tc/public/pdf/oh/Lighting.pdf。 徐易軒(2010),以新都市主義應用於都市空間規劃之探討–以臺北縣永和市為例,未出版之碩士論文,中國文化大學市政暨環境規劃學系。 康堃皇(2021年10月20日),「信義房屋觀察 危老逾半改建在巷弄內」,經濟日報,上網日期:111年7月21日,檢自:https://money.udn.com/money/story/12276/5829353。 張雪珍(2002),液晶投影顯示器中照明系統的照度量測與分析,未出版之碩士論文,國立中央大學光電科學研究所。 張赭紅(2021年8月27日),臺北市的建築老化與都更失能,風傳媒,上網日期:111年7月21日,檢自:https://www.storm.mg/lifestyle/3901579?page=2。 陳聰亨(2004),從使用者觀點探討集合住宅之規劃設計原則以臺北縣麗池樂章.綠如意.昇陽立都三社區為例,未出版之碩士論文,臺北科技大學建築與都市設計研究所。 黃明輝(2014),臺灣日照量高低的爭議,科技報導,396。 黃書禮(2020),都市空間發展對都市型態之具含能量與建築二氧化碳排放的影響 - 以臺北市為例,博士論文,臺北大學都市計畫研究所。 黃麗玲(2003),一九九○年代臺北市都市規劃中的社區參與全球過程、地方政治以及鄰里回應,地理學報,三十四,61-78。 新北市政府城市發展局(2022),土地使用分區是什麼? 上網日期:111年7月24日,檢自:https://www.planning.ntpc.gov.tw/userfiles/1090800/files/%E9%83%BD%E5%B8%82%E8%A8%88%E7%95%AB%E7%AF%87-%E5%9C%9F%E5%9C%B0%E4%BD%BF%E7%94%A8%E5%88%86%E5%8D%80%E6%98%AF%E4%BB%80%E9%BA%BC%EF%BC%9F.pdf。 臺北市建築管理工程處(2020),臺北市建築物有效日照檢討辦法,北市都建照字第1093117867號,上網日期:111年7月21日,檢自:https://www.arch.org.tw/Laws/laws_more?id=969dc7fff8b64ffa9540a36a0d303910。 臺北市建築管理工程處(2021),危老重建摺頁文宣,上網日期:111年7月24日,檢自:https://dba.gov.taipei/cp.aspx?n=F5C940616282C4BD。 臺北市建築管理工程處(2021年10月20日),危老核准重建計畫-北市案例,上網日期:111年7月21日,檢自:https://dba.gov.taipei/cp.aspx?n=56283449CC905BB4,。 臺北市政府主計處(2022),臺北市道路長度面積,政府資料開放平台,上網日期:111年7月21日,檢自:https://data.gov.tw/dataset/132587。 臺灣省政府令(1997),臺灣省市區道路工程設計標準,臺灣省政府八七府法四字第142928號令,上網日期:111年7月21日,檢自:https://www.rootlaw.com.tw/LawContent.aspx?LawID=B240180020000200-0871030。 鄧仲豪(2019),採光系統的文獻綜述:原型採光系統的挑戰、評論與新穎光學設計,未出版之碩士論文,國立台灣科技大學電子工程學系。 蕭淯尹(2011),日本日照權保護相關法律問題之研究—兼論我國日照權法制應有之方向,未出版之碩士論文,國立政治大學地政研究所。 韓莉雯(2007),容積獎勵與建築高度限制對都市更新之影響,未出版之碩士論文,國立交通大學工學院碩士在職專班營建技術與管理組。 外文文獻 A., A., Ahadi, M., R., Saghafi, M., Tahbaz, (2017). “The study of effective factors in daylight performance of light-wells with dynamic daylight metrics in residential buildings”, Solar Energy, Vol.155, pp.679-697. A., Castillo-Martínez, & A., Peña-García. (2021). “Influence of Groves on Daylight Conditions and Visual Performance of Users of Urban Civil Infrastructures”, Sustainability, Vol.13, Issue 22. A., L., Schmid, & L., K., S., Uehara, (2017). “Lighting performance of multifunctional PV windows A numeric simulation to explain illuminance distribution and glare control in offices”, Energy and Buildings, Vol.154, pp.590-605. A., Nabil, J., Mardaljevic, (2006) “Useful daylight illuminances: A replacement for daylight factors”, Energy and Buildings, Volume 38, Issue 7, pp.905-913. A., Sheikhmohammadi, M., Sardar, M., Almasian, (2016). “A survey of sick building syndrome prevalence among the inhabitants of ekbatan in theran”, Environmental Engineering and Management Journal, Vol. 15, Issue 4, pp.755-76. A., Tabadkani, A., Roetzel, H., X., Li, A., Tsangrassoulis, (2021). “Daylight in Buildings and Visual Comfort Evaluation: the Advantages and Limitations”, Journal of Daylighting, Vol.8, Issue 2, pp.181-203. Advanced Building. (2021). Daylighting Pattern Guide. Time,22,7,2022. Retrieved from https://patternguide.advancedbuildings.net/using-this-guide/analysis-methods/daylight-autonomy. Bolig-og Planstyrelsen. (2022). Bygningsreglementets vejledning om lys og udsyn - Tekniske bestemmelser - Dagslys, §379-381, Time,22,7,2022. Retrieved from https://bygningsreglementet-dk.translate.goog/Tekniske-bestemmelser/18/Krav?_x_tr_sl=da&_x_tr_tl=zh-TW&_x_tr_hl=zh-TW&_x_tr_pto=op,wapp. BRE Global Limited a. (2016). BREEAM Refurbishment Domestic Buildings Technical Manual: Health and Wellbeing. Hertfordshire, Time,22,7,2022. Retrieved from https://www.breeam.com/domrefurbmanual/content/05hea/hea_01_daylighting.htm. BRE Global Limited b. (2016). BREEAM Refurbishment Domestic Buildings Technical Manual: Compliance notes 4: Impacts on Neighbouring Properties. Hertfordshire. Time,22,7,2022. Retrieved from https://www.breeam.com/domrefurbmanual/content/05hea/hea_01_daylighting.htm#CN1 BRE Global Limited c. (2016). BREEAM Refurbishment Domestic Buildings Technical Manual: Compliance notes 1: Minimum daylighting levels. Hertfordshire, Time,22,7,2022. Retrieved from https://www.breeam.com/domrefurbmanual/content/05hea/hea_01_daylighting.htm#CN1 BREEAM a. (2022). Explore BREEAM. Time,22,7,2022. Retrieved from https://tools.breeam.com/projects/explore/index.jsp. BREEAM b. (2022) How BREEAM Certification Works. Time,22,7,2022. Retrieved from https://www.breeam.com/discover/how-breeam-certification-works/. British Standards Institution. (2008). BS 8206-2:2008 Lighting for buildings. Code of practice for daylighting (No longer current but cited in Building Regulations guidance). London, Time,22,7,2022. Retrieved from https://www.thenbs.com/PublicationIndex/documents/details?Pub=BSI&DocID=287361. Building Research Establishment (BRE). (1983). Lighting control and daylight use. BRE digest 272,IHS BRE Press, Bracknell. C., F., Reinhart & S., Selkowitz. (2006). “Daylighting—Light, form, and people”, Energy and Buildings, Vol.38, Issue 7, pp.715-717. C., F., Reinhart, (2014). Daylighting Handbook I. Fundamentals. Designing with the Sun. Cambridge, MA, USA: The MIT Press. C., F., Reinhart, J., Mardalijevic, Z., Rogers (2006). “Dynamic Daylight Performance Metrics for Sustainable Building”, LEUKOS, The Journal of the Illuminating Engineering Society, Vol. 3, Issue 1. C., F., Reinhart. (2002). “Effects of interior design on the daylight availability in open plan offices”, Conference Proceedings of the ACEEE Summer Study on Energy Efficient Buildings, Pacific Grove, CA., U.S.A., pp. 1-12. CESKA TECHNICKA NORMA CSN 73 4301, Obytné budovy (Residential buildings). In Czech, 1987. Chartered Association of Building Engineers, CIBS. (2008). CIBSE Concise Handbook, The Chartered Institution of Building Services Engineers London. CIBSE. (2002) Code for Lighting, Oxford: Chartered Institution of Building Services Engineers, DEIC Basic Bool: Daylight calculations and measurements. Time,22,7,2022. Retrieved from https://www.velux.com/what-we-do/research-and-knowledge/deic-basic-book/daylight/daylight-calculations-and-measurements. CIBSE/SLL. (2002). Code for Lighting, Oxford: Butterworth-Heinemann. City of Ashland (2011). Solar Access. Land Use Ordinance 18.70. Community Development Department, Ashland (OR), USA. City of Boulder (1981). Solar Access Guide. Section 9-9-17, BRC 1981. City of Boulder Planning and Development Services Center. Time,22,7,2022. Retrieved from https://bouldercolorado.gov/services/solar-access-guide. City of Boulder. (2022) Municipal Code: Land use code:9-9-170 Solar access”, City of Boulder, Colorado Charter and Revised Code Codified through Ordinance No. 8514. Time,22,7,2022. Retrieved from https://library.municode.com/co/boulder/codes/municipal_code?nodeId=18020. D., H., W., Li, BSc, PhD, CEng, MCIBSE, MHKIE, MIEAust & J., C., Lam, BSc., PhD, CEng, FHKIE, MCIBSE, MIMechE, RPE., “Daylighting in residential districts undergoing urban renewal”, International Journal of Ambient Energy, Volume 22, Issue 3, pp.115-122, 2011. D., H., W., Li, N., T., C., Chau, K., K., W., Wan, (2013). “Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies” Energy, Vol.53, pp.252-258. D., H., W., Li, S., L., Wong, C., L., Tsang, G., H., W., Cheung. (2006). “A study of the daylighting performance and energy use in heavily obstructed residential buildings via computer simulation techniques”, Energy Build, Volume 38, Issue 11, pp. 1343-1348. D., H., W., Li, S., L., Wong. (2007). “Daylighting and energy implications due to shading effects from nearby buildings”, Applied Energy, Volume 84, Issue 12, pp.1199-1209. D., L., Loe (2009)., “Energy efficiency in lighting — considerations and possibilities”, Lighting Research & Technology, Vol.41, Issue 3, pp.209-218. D., Robinson. (2006). “Urban morphology and indicators of radiation availability”, Solar Energy, Vol.80, Issue 12, pp.1643-1648. DETR (Department of the Environment, Transport and the Regions). (1998). Desktop Guide to Daylighting – For Architects , London: The Stationery Office. DIN-Normenausschuss Lichttechnik (FNL). (2021) DIN 5034-1 Tageslicht in Innenräumen - Teil 1: Begriffe und Mindestanforderungen. Berlin: DIN. Time,22,7,2022. Retrieved from https://www.din.de/de/wdc-beuth:din21:337708525. DIN-Normenausschuss Lichttechnik (FNL). (2021) DIN 5034-2 Tageslicht in Innenräumen - Teil 2: Grundlagen. Berlin: DIN. Time,22,7,2022. Retrieved from https://www.din.de/de/mitwirken/normenausschuesse/fnl/veroeffentlichungen/wdc-beuth:din21:337708802. E., Nault, G., Peronato, E., Rey, M., Andersen. (2015). “Review and critical analysis of early-design phase evaluation metrics for the solar potential of neighborhood designs”, Building and Environment, Vol.92, pp.679-691. E., Saratsis, T., Dogan, C., F., Reinhart. (2016). “Simulation-based daylighting analysis procedure for developing urban zoning rules”, Building Research and Information, Vol.45, Issue 5. Estonian Centre for Standardization, EVS. (2010). Daylight in Dwellings and Offices, EVS 894:2008+A1:2010. Time,22,7,2022. Retrieved from https://www.evs.ee/en/evs-894-2008-a1-2010. F., Cantin, M., C., Dubois, (2011). “Daylighting metrics based on illuminance, distribution, glare and directivity”, Lighting Research & Technology, Volume 43, Issue 3, pp.291-307. F., De Luaca, & T., Dogan, (2019). “A novel solar envelope method based on solar ordinances for urban planning”, Building Simulation, Vol.12, Issue 5, pp.817-834. F., Fathy, Y., Mansour, H., Sabry, R., Mostafa, A., Wagdy, (2020). “Conceptual framework for daylighting and facade design in museums and exhibition spaces”, Solar Energy, Vol.204, pp.673-682. F., S., De Oliveira, M., C., Guedes, (2006). Daylighting museums–a case study in Lisbon. In: PLEA 2006 - The 23rd Conference on Passive and Low Energy Architecture. Geneva, Switzerland. G., Nixon, (2021/6/27) “IES Supports Call for Clarity on Ireland’s Daylighting Standards”, Integrated Environmental Solutions. Time,22,7,2022. Retrieved from https://www.iesve.com/discoveries/news/18149/daylight-standards-ireland. Global Solar Atlas. (2022). Derict normal irradiation. Time,22,7,2022. Retrieved from https://globalsolaratlas.info/map?c=37.909534,-98.986816,5&m=site&s=-70.259452,-36.210938. Green Building Council South Africa, GBCSA. (2017). Green Star Certification. Time,22,7,2022. Retrieved from https://gbcsa.org.za/certify/green-star-sa/. H., Shen, A., Tzempelikos, (2012). “Daylighting and energy analysis of private offices with automated interior roller shades”, Solar Energy, Vol.86, Issue 2, pp.681-704. I., A., Mashaly, V., Garcia-Hansen, M., E., Cholette, G., Isoardi, (2021). “A daylight-oriented multi-objective optimisation of complex fenestration systems”, Building and Environment, Vol. 197. I., Acosta, J., Navarro, J., J., Sendra. (2013). “Daylighting design with lightscoop skylights: Towards an optimization of shape under overcast sky conditions”, Energy and Building, Vol.60, pp.232-238. I., Acosta, M., Á., Campano, S., Domínguez, J., Fernández-Agüera. (2019). “Minimum Daylight Autonomy: A New Concept to Link Daylight Dynamic Metrics with Daylight Factors”, LEUKOS, The Journal of the Illuminating Engineering Society, Vol.15, Issue 4. I., L., Wong, (2017). 'A review of daylighting design and implementation in buildings”, Renewable & Sustainable Energy Reviews, Volume 74, pp.959-968. IES Approved Method: Spatial Daylight Autonomy and Annual Sunlight Exposure (2012) IES LM-83–12, USA. International WELL Building Institute, IWBI. (2022) WELL v2™ pilot, Time,22,7,2022. Retrieved from https://v2.wellcertified.com/en/v/overview. J., J., Sarralde, D., J., Quinn, D., Wiesmann, K., Steemers. (2015). “Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London”, Renewable Energy, Vol.73, pp.10-17. J., S., Carlos (2016). “A Simple Method to Determine The Daylight Factor From The Vertical Daylight Factor in Different Street”, Journal of Green Building, Volume 11, Issue 2, pp.75-92. J., Stromann-Andersen, & P., A., Sattrup, (2011). “The urban canyon and building energy use: Urban density versus daylight and passive solar gains”, Energy and Buildings, Vol.43, Issue 8, pp.2011-2020. K., A., Al-Sallal, M., M., B., Dalmouk, A., Ragab, Abouelhamed. (2019). “Investigation of Daylighting Performance in UAE Heritage Museums”, Conservation of Architectural Heritage, pp.145-157. K., Johnsen & R., Watkins, (2010). Daylighting in Buildings. Energy Conservation in Buildings & Community Systems & Solar Heating and Cooling Programmes, ECBCS Annex 29/SHC Task 21, Birmingham: AECOM. K., Konis. (2013). “Evaluating daylighting effectiveness and occupant visual comfort in a side-lit open-plan office building in San Francisco, California”, Building and Environment, Vol.59, pp.662-667. L., T., Doulos, A., Tsangrassoulis, E., N., Madias, S., Niavis, A., Kontadakis, P., A. Kontaxis, V., T. Kontargyri, K., Skalkou, F., Topalis, E., Manolis, M., Sinou, S., Zerefos. (2020). “Examining the Impact of Daylighting and the Corresponding Lighting Controls to the Users of Office Buildings”, Energies, Volume 13, Issue 15. M. Schuler. (1995). “Building simulation in application: developing concepts for low energy buildings through a co-operation between architect and engineer”, Proceedings of the Solar World Congress, the International Solar Energy Society (ISES), Harare, Zimbabwe. M., Marzouk, M., Elsharkawy, A. Mahmoud, (2022). “Optimizing daylight utilization of flat skylights in heritage buildings”, Journal of Advanced Research, Vol.37, pp.133-145, 2022. NH., Vu, & S., Shin, (2017) “Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting”, Energies, Vol.10, Issue 10. Outline of a Standard Procedure for Computing Visual Comfort Ratings for Interior Lighting lm-42-72 Illuminating Engineering Society (IES) of North America (1991). R., Nahon, B., Beckers, O. Blanpain, (2019). “Evaluation of the daylight conditions at early stages of an urban project”, European Journal of Environmental and Civil Engineering, Vol.23, Issue 6, pp.728-742. R., Ünver, L., Öztürk, Ş., Adıgüzel, Ö., Çelik. (2003). “Effect of the facade alternatives on the daylight illuminance in offices”, Energy and Buildings, Volume 35, Issue 8, pp.737-746. R., Lindup. (2014). Green Star Design & As Built Summary of Credit Changes, Green Building Council of Australia. Time,22,7,2022. S., Darula, J., Christoffersen, M., Malikova. (2015). “Sunlight and Insolation of Building Interiors”, Energy Procedia, Vol.78, pp.1245-1250. S., Sarider and H., Elkadi (2002). “The impact of applying recent façade technology on daylighting performance in buildings in eastern Mediterranean”, Building and Environment, Volume 37, Issue 11, pp.1205-1212. S., Simm & D., Coley. (2011). “The relationship between wall reflectance and daylight factor in real rooms”, Architectural Science Review,Volume 54, Issue 4, pp.329-334. S., Vaisi, F., Kharvari. (2019). “Evaluation of Daylight regulations in buildings using daylight factor analysis method by radiance”, Energy for Sustainable Development, Volume 49, pp.100-108. Senior Associate. (2019). Setting a new European Standard for Daylighting (EN17037), rapleys. Time,22,7,2022. Retrieved from https://rapleys.com/news/setting-a-new-european-standard-for-daylighting-en17037/. T., Dogan, C., P., Ye, (2017). “A New Framework for Residential Daylight Performance Evaluation”, the 15th IBPSA Conference, San Francisco, CA, USA, Aug. 7-9. T., J., Dabe. (2019). “Assessment of Daylight into the Residential Building According to the Floor Levels for Hot and Dry Climatic Zone”, Journal of Architectural Environment & Structural Engineering Research, Vol.2, Issue 2, pp.18-29. T., Kazanasmaz, L., O., Grobe, C., Bauer, M., Krehel, S., Wittkopf, (2016). “Three approaches to optimize optical properties and size of a South-facing window for spatial Daylight Autonomy”, Building and Environment, Vol.12, pp.243-256. T., Kazanasmaz, L., O., Grobe, C., Bauer, M., Krehel, S., Wittkopf. (2016). “Three approaches to optimize optical properties and size of a South-facing window for spatial Daylight Autonomy”, Building and Environment, Vol.102, pp.243-256. The Norwegian Byggteknisk forskrift.(2019). Using Daylight Ratio for Norwegian TEK17 standard. Time,22,7,2022. Retrieved from https://help.symetri.com/display/HELPNAVANA/Daylight_TEK17_standard. The Swedish Boverkets byggregler. (2019). SS 914201. Time,22,7,2022. Retrieved from https://help.symetri.com/display/HELPNAVANA/Daylight_SS914201_standard. U.S. Green Building Council a. (2022). USGBC. LEED rating system. Time,22,7,2022. Retrieved from https://www.usgbc.org/leed. U.S. Green Building Council b. (2022). USGBC. LEED v4.1. Time,22,7,2022. Retrieved from https://www.usgbc.org/leed/v41#residential. U.S. Green Building Council c. (2022). USGBC. LEED v4.1 Building Design and Construction, 2021. U.S. Green Building Council, LEED v4.1 Building Design and Construction, 2020. V., Cheng, K., Steemers, M., Montavon, R.. Compagnon, (2006). “Urban Form, Density and Solar Potential”, PLEA2006-the 23rd conference on passive and low energy architecture, Geneva, Switzerland. WELL Building. (2022) About us. Time,22,7,2022. Retrieved from https://www.wellcertified.com/about-iwbi/. WELL Building. (2022) Explore concepts. Time,22,7,2022. Retrieved from https://www.wellcertified.com/certification/v2-pilot/. Y., Bian, Y., Ma, (2017). “Analysis of daylight metrics of side-lit room in Canton, south China: A comparison between daylight autonomy and daylight factor”, Energy and Building, Vol.138, pp.347-354 Y., Sun, R., Liang, Y., P., Wu, R., Wilson, P., Rutherford. (2017). “Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)”, Applied Energy, Vol.205, pp.951-963. 五十嵐敬喜(1980 ),照権の理論と裁判,三省堂。 和田周,日影規制とはなにかわかりやすくまとめた ,イクラ不動産,Time,22,7,2022. Retrieved from https://iqrafudosan.com/channel/。 武井正昭(1974), 日照問題と住民の意識。ジュリスト増刊特集日照権(68-74頁)。 建築基準法(2001),第56-2條日影による中高層の建築物の高さの制限,Time,22,7,2022. Retrieved from https://elaws.e-gov.go.jp/document?lawid=325AC0000000201. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84999 | - |
| dc.description.abstract | 日照雖非生存的必要條件,但對於生活環境品質有絕對的影響。日照對都市建築群、建築物與建築物使用者都有正向的回饋,日照產生的熱能與光能對都市建築群、建築的室內環境衛生與節能效果、對建築物使用者舒適居住環境與身心理的正面影響都是無可取代。當科技與經濟的高速發展,民眾在居住環境的要求除滿足居住正義,也需滿足居住環境的生活品質。對居住環境的追求從利用機械優勢打造優質的室內照明與通風品質轉為從建築設計方式以自然環境強化室內環境,但在都市環境裡建築相互造成的日照阻礙是必然且無可避免。臺灣在建築物的管控上以建蔽率、容積率以及建築技術規則等法規進行管制,自2017年起制定建築物相關的日照法規,規範建築之間造成的日照阻礙。臺北市都市人口增長速度快,對住宅需求使各類的住宅與集合住宅邁入高樓層建築,現今臺北市住宅高齡化,政府正積極推動危老重建案與都市更新案的申請與實施,因危老重建案對基地的要求小,危老重建案有55 %的基地位於狹小巷弄內,有機會對臺北住宅造成日照阻礙問題。 本研究以Rhino做為模擬平台利用外掛軟體Grasshopper中的插件Ladybug與HoneyBee計算日照時數與立面陰影。模型對象分為一設計假設街廓以及二依臺北區域特色以及法規提出的基地類型,分別為周圍有高樓的基地、周圍有公園的基地、位於角地與位於道路盡頭的基地共4種案例。前述基地以CADMAPPER所取得的都市建築模型為基底並調整建築細部設計。另外,新建建築的建築類型則以目前臺北市常見的建築類型以連棟、雙連棟與ㄇ字型建築在模型中呈現。以立面日照時數、立面被陰影遮蓋比例以及室內平均日照時數等方面檢視新建建築對周圍建築群造成的日照阻礙。本研究依五種案例在結果單元分別展現新建物不同、季節不同與目標建築朝向不同的日照阻礙影響。最後,在各案例中發現不同基地環境的新建建築的日照阻礙問題。 本研究分析發現,新建建築的日照阻礙範圍與法規所訂定的建築高度與基地規範以及日照法規規範的建築群體之間是相互衝突,從模擬結果顯示日照法規管控的範圍為日照阻礙小甚至無日照阻礙的區域,恐無法有效維護都市建築群體的室內日照環境。日照阻礙的問題須同時考量受影響的平面距離與高度,目前日照法規以基地作為日照阻礙受影響的區域單位,缺乏高度考量,但臺北住宅以集合住宅為主要住宅類型之一,如在日照阻礙問題如不考量高度的問題,同一棟集合住宅中高樓層與低樓層的日照權益則會有所差異。 | zh_TW |
| dc.description.abstract | Daylight is not a necessary condition for survival, but it has an absolute impact on the quality of living environment. Daylight has positive feedback to urban buildings, buildings and buildingowner. The heat and light energy generated by daylight has an irreplaceable positive impact on urban buildings, indoor environmental health and energy saving effect of buildings, and comfortable living environment and psychological status of building users. The requirements of the people in the living environment not only meet the living justice, but also meet the quality of life of the living environment.The pursuit of living environment from the use of mechanical advantages to create high-quality indoor lighting and ventilation quality to strengthen the indoor environment from the way of architectural design with natural environment. The mutual obstruction of sunlight caused by buildings is inevitable in the urban. Regarding building control, regulations such as building coverage ratio, floor area ratio, and Building Technical Regulations are used to control buildings in Taiwan. Since 2017, building-related sunshine regulations have been formulated to regulate the sunlight obstruction between buildings in Taiwan. Due to the rapid growth of Taipei's urban population, the demand for housing has led to the high-rise development of all kinds of residential and congregated housing.The government is actively promoting the implementation of reconstruction of urban unsafe and old buildings and urban redevelopment. Because of the smaller requirements on the base of reconstruction of urban unsafe and old buildings, 55% of the reconstruction of urban unsafe and old buildings are in narrow alleys, which has become the main base source of future projects in Taipei. However, the construction of new buildings in narrow alleys is more likely to cause sunshine obstruction to surrounding residential buildings. Rhino is used as the simulation platform to calculate the sunshine hours and facade shadows by using the plug-ins Ladybug and HoneyBee in the plug-in software Grasshopper. The model objects are divided into design assumptions of street profiles and base types proposed in accordance with the regional characteristics and regulations of Taipei. There are four cases, namely, the base with high-rise buildings around, the base with parks around, and the base located at the corner and the end of the road. The design assumes the street profile and the type of site proposed in accordance with Taipei’s regional characteristics and regulations. There are five cases, namely, the hypothetical site, the site with high-rise buildings around the site, the site with parks around the site, and the site at the corner and the end of the road. The base is based on the urban architectural model obtained by CADMAPPER and adjusts the architectural details. In addition, the building types of the new buildings are presented in the model in the form of townhouses, double-storey buildings and ㄇ-shaped buildings, which are common building types in Taipei. The sunlight obstruction caused by the new buildings is examined in terms of the facade sunshine hours, the percentage of facades covered by shadows, and the average indoor sunshine hours. According to five cases, this study shows the impact of sunlight obstruction in different new buildings, different seasons and different orientations of target buildings in the result unit. Finally, in each case, the problem of sunlight obstruction of new buildings in different base environments is found. The analysis of this study found that the scope of sunlight obstruction of new buildings, the building height stipulated by the regulations and the base specifications and the building groups regulated by the sunshine regulations conflict with each other. The scope of sunshine regulation and control is the area with little or no sunshine obstruction, which may not be able to effectively maintain the indoor sunshine environment of urban building groups. The problem of sunlight obstruction must consider the affected plane distance and height at the same time. The sunshine law currently uses the base as the area unit affected by sunshine obstruction, which lacks a high degree of consideration. Taipei's residential housing is one of the main types of housing. If the height is not considered in the problem of sunlight obstruction, the sunshine rights of the upper and lower floors of a condominium will be different. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:37:19Z (GMT). No. of bitstreams: 1 U0001-0308202219290500.pdf: 11452811 bytes, checksum: b8b6b6e8add979978a7a2ac0f5b6b63e (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i 謝辭 ii 中文摘要 iii 英文摘要 v 目錄 viii 圖目錄 xi 表目錄 xvii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 研究限制 4 1.4 研究流程 5 第二章 文獻回顧 6 2.1 日照對於都市發展與居住者的影響 6 2.2 日照之相關建築法規與標章 7 2.2.1 日照之相關建築法規 7 2.2.2 日照之相關標章 13 2.3 建築日照的影響因子 17 2.4 日照數值與日光指標 19 第三章 臺北市建築物類型與都市型態分析 27 3.1 臺北市住宅發展歷程 27 3.2 臺北市集合住宅統計 28 第四章 研究方法 32 4.1 日照模擬軟體 32 4.2 日照模擬係數 33 4.3 臺北市集合住宅建築模型 35 4.4 日照模擬規劃 37 4.4.1 假設基地 37 4.4.2 設計 37 4.4.3 真實案例基地篩選 39 4.4.4 建築立面日照時數模擬 48 4.4.5 建築立面被陰影遮蓋比例 48 4.4.6 建築內部平均日照時數 49 第五章 研究討論與分析 50 5.1 假設基地模型 50 5.1.1 建築立面日照時數 50 5.1.2 建築物立面被陰影遮蓋比例 58 5.1.3 建築室內平均日照時數 77 5.1.4 小節 89 5.2 基地周圍有高樓的危老案例 91 5.2.1 建築立面日照分析 91 5.2.2 建築立面被陰影遮蓋比例 94 5.2.3 建築室內平均日照時數 100 5.2.4 小節 105 5.3 基地周圍有公園的危老案例 106 5.3.1 建築立面日照分析 106 5.3.2 建築立面被陰影遮蓋比例 112 5.3.3 建築室內平均日照時數 122 5.3.4 小節 126 5.4 基地位於角地的危老案例 127 5.4.1 建築立面日照分析 127 5.4.2 建築立面被陰影遮蓋比例 132 5.4.3 建築室內平均日照時數 140 5.4.4 小節 145 5.5 基地位於道路盡頭的危老案例 146 5.5.1 建築立面日照時數 146 5.5.2 建築物立面被陰影遮蓋比例 151 5.5.3 建築物室內平均日照時數 154 5.5.4 小節 157 5.6 小節 159 第六章 結論與建議 161 6.1 結論 161 6.2 未來研究與建議 162 參考文獻 163 中文文獻 163 外文文獻 165 附錄一 日照時數模擬程式 177 | |
| dc.language.iso | zh-TW | |
| dc.subject | 日照法規 | zh_TW |
| dc.subject | 室內日照 | zh_TW |
| dc.subject | 日照阻礙 | zh_TW |
| dc.subject | 建築阻擋 | zh_TW |
| dc.subject | 日照時數 | zh_TW |
| dc.subject | Daylight Obstruction | en |
| dc.subject | Indoor Daylight | en |
| dc.subject | Daylight Hours | en |
| dc.subject | Daylight Regulations | en |
| dc.subject | Building Obstruction | en |
| dc.title | 新建建築對周圍建築的室內日照影響分析 | zh_TW |
| dc.title | The Impacts of New Construction on the Indoor Daylight of Nearby Buildings. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林之謙(Jacob Je-Chian LIN),黃麗玲(Li-Ling Huang),周建成(Chien-Cheng Chou) | |
| dc.subject.keyword | 室內日照,日照時數,日照法規,建築阻擋,日照阻礙, | zh_TW |
| dc.subject.keyword | Indoor Daylight,Daylight Hours,Daylight Regulations,Building Obstruction,Daylight Obstruction, | en |
| dc.relation.page | 177 | |
| dc.identifier.doi | 10.6342/NTU202202025 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-22 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202219290500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
