請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84982完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡進發(Jing-Fa Tsai) | |
| dc.contributor.author | Yu-Han Chen | en |
| dc.contributor.author | 陳語涵 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:36:19Z | - |
| dc.date.copyright | 2022-08-31 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-21 | |
| dc.identifier.citation | [1] S. Allianz, 'Shipping Review 2018. An annual review of trends and developments in shipping losses and safety, ' Allianz Global Corporate & Specialty. https://www.agcs.allianz.com/content/dam/onemarketing/agcs/agcs/reports/AGCS-Safety-Shipping-Review-2018.pdf . [2] 臺灣交通部航港局, '新船營運之標準作業程序及查核點評估案.' https://www.motcmpb.gov.tw/Information/Detail/418fde90-df12-4b0e-991b-b746efcf65af?SiteId=1&NodeId=391 . [3] S. Sutulo and C. Guedes Soares, 'Review on Ship Manoeuvrability Criteria and Standards,' Journal of Marine Science and Engineering, vol. 9, no. 8, p. 904, 2021. [4] K. S. Davidson and L. I. Schiff, 'Turning and course keeping qualities,' Stevens Institute of Technology, Experimental Towing Tank, Hoboken, New Yersey, Presented at The Society of Naval Architects and Marine Engineers, SNAME Transactions, 1946. [5] M. A. Abkowitz, 'Lectures on ship hydrodynamics--Steering and manoeuvrability,' 1964. [6] A. Ogawa, T. Koyama, and K. Kijima, 'MMG report-I, on the mathematical model of ship manoeuvring,' Bull Soc Naval Archit Jpn, vol. 575, no. 22-28, 1977. [7] C. G. Soares, 'Full-scale measurements of the manoeuvring capabilities of a catamaran,' in The Royal Institution of Naval Architects, RINA, Proceedings of the International Conference Hydrodynamics of High Speed Craft, London, UK, 1999, ISBN: 0 903055 5 46, Paper: P1999-4 Proceedings., 1999. [8] S. Sutulo and C. G. Soares, 'Development of a multifactor regression model of ship maneuvering forces based on optimized captive-model tests,' Journal of ship research, vol. 50, no. 04, pp. 311-333, 2006. [9] A. Goodman and M. Gertler, 'Planar motion mechanism system,' 1962. [10] A. S. Hochbaum, F.; Agdrup, K.; Broglia, R.; Kim, S.; Perdon, P.; Quadvlieg, F.; Yasukawa, H.; Zou, Z. 'The manoeuvring committee-final report and recommendations to the 25th ITTC,' International Towing Tank Conference. https://www.ittc.info/media/3461/volume1_6manoeuvringcommittee.pdf. [11] J. Du, C. Guo, S. Yu, and Y. Zhao, 'Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient,' IEEE Journal of Oceanic Engineering, vol. 32, no. 2, pp. 346-352, 2007. [12] N. Witt and K. Miller, 'A neural network autopilot for ship control,' 1993. [13] 蔡進發,謝文記, '船舶節能自動操船系統之研究,' 中國造船暨輪機工程學刊, vol. 37, no. 1, pp. 11-20, 2018. [14] ITTC. 'ITTC Quality System Manual Recommended Procedures and Guidelines.' https://www.ittc.info/media/8179/75-04-02-01.pdf . [15] C. L. Ladson, Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section. National Aeronautics and Space Administration, Scientific and Technical …, 1988. [16] J. Van Amerongen, H. van Nauta Lemke, and J. Van der Veen, 'An autopilot for ships designed with fuzzy sets,' IFAC Proceedings Volumes, vol. 10, no. 16, pp. 479-487, 1977. [17] E. H. Mamdani, 'Applications of fuzzy algorithms for control of simple dynamic plant,' Proc. Iee, vol. 121, pp. 1585-1588, 1974. [18] K. Nomoto and K. Taguchi, 'On steering qualities of ships (2),' Journal of Zosen Kiokai, vol. 1957, no. 101, pp. 57-66, 1957. [19] L. Zwisler, 'The Story of Electromagnetism,' in Hans Christian Ørsted-the Unity of Spirit and Nature: Selskabet for Naturlærens Udbredelse, 2020, pp. 19-31. [20] IMO, 'EXPLANATORY NOTES TO THE STANDARDS FOR SHIP MANOEUVRABILITY.' https://www.register-iri.com/wp-content/uploads/MSC.1-Circ.1053.pdf . [21] ABS, 'GUIDE FOR VESSEL MANEUVERABILITY.' https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/conventional_ocean_service/145_vesselmaneuverability/Vessel_Maneuverability_Guide_e-Feb17.pdf . [22] 陳明棟,羅家麟, '小比尺船模在水工, 河工模型中的應用,' 長江科學院院報, vol. 3, no. 2, p. 53, 1986. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84982 | - |
| dc.description.abstract | 本研究目的為利用自航船模試驗系統來進行船舶操縱性能試驗,對量測到的數據進行分析,並將台船某相似船型的實船數據透過福勞德數相似縮尺與本試驗結果做比較、探討。本實驗透過程式的撰寫,讓無人自航船模內部以電腦進行模糊邏輯的運算與條件式判別,進行自動航行與操縱,自動完成多種船舶操縱性試驗。 本實驗以一艘3.5米之劍艏貨櫃船模進行了定航向自航試驗、迴旋圈試驗、Z形試驗、慣性試驗與威廉森試驗,依據實驗內容與船舶水動力性能來配置實驗所需設備。所有試驗的步驟皆遵從國際船模試驗水槽會議對船舶操性能試驗的規範來進行,當船模透達到設計船速後才開始執行不同軌跡的船舶操縱性能試驗。 定航向自航試驗透過船模上電腦進行模糊邏輯控制讓船模實現無人操縱的定航向直線自航,可以展示自由航行姿態。其它四種試驗皆透過模糊控制邏輯結合運動軌跡程式的程式進行,迴旋圈試驗觀察船舶整體的轉向能力;Z形試驗測試船舶在設定舵角頻繁轉向的能力;慣性試驗可觀測在無螺旋槳作用下的船舶慣性;威廉森試驗配合模擬人員落水系統能看出是否有回到人員落水位置。 實驗結果顯示,透過使用本研究改良的模糊邏輯控制器,定航向自航試驗航向控制的效果很好且穩定。迴旋圈試驗、Z形試驗、慣性試驗則受尺度效應、慣性及壓載的影響,導致船模的螺槳與舵效比實船大,使船模在轉彎、飄移的速度會比較快,迴旋直徑則會比較小。威廉森試驗則是先透過實驗測試找到合適的打舵時機,便能使船模成功返回人員落水處附近。 | zh_TW |
| dc.description.abstract | The purpose of this study is to use the free running model tests to carry out the ship manoeuvring tests. The tested results were scaled by the Froude similarity law to estimate the maneuverability of a similar full scale ship of CSBC. The comparisons between the test results of free running model and the sea trial of the similar ship were discussed. In this study, the fuzzy logic control algorithm was used to operate the motion of the free running ship model. The courses of different tests were programmed and stored in the control computer of the free running model. Then, the ship model can automatically conduct the various ship maneuverability tests. A 3.5 meter sword-bow container ship model was used to conduct the steady course test, turning circle test, zig-zag test, stopping inertia test and williamson turning test. The equipments required for the different experiment were configured according to the different test. All the test steps were followed the ITTC manoeuvring test procedure and guideline. All the ship model manoeuvring tests were conducted after the ship model reached its design model speed. The steady course test was controlled by fuzzy logic and the free running attitude was recorded. The other four tests were carried out through fuzzy control logic combined with the programmed course procedures. The turning circle test can show the turning ability of the ship. The zig-zag test is to test the ship's turning ability at specific rudder angles. The stopping inertia test shows the inertia of the ship without the propeller thrust. The williamson turning test was conducted with a man overboard simulation system to see whether it will return to the location of a man overboard. The experimental results show that by using the improved fuzzy logic controller in this study, the heading control of the steady course test is pretty good and stable. The turning circle test, the zig-zag test and the stopping inertia test were affected by the scale effect, inertia, and ballast. The propeller and rudder effects of the ship model are greater than that of the full scale ship, so that the speed of the ship model in turning and drifting will be faster, and the turning diameter will be smaller. The williamson turning test is needed to find the right timing for turning the rudder through the experimental test, and then the ship model can be successfully returned to the near location of the man overboard. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:36:19Z (GMT). No. of bitstreams: 1 U0001-1608202215332900.pdf: 3114140 bytes, checksum: a52fc23191353934765e504def51dcd8 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 摘要 I ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 IX 符號說明 X 1 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-4 研究方法與目的 3 1-5 論文結構 4 2 第二章 自航船模設備和實驗環境的介紹 5 2-1 自航船模介紹 5 2-2 設備介紹及校正流程 5 2-2-1 螺旋槳馬達與舵機馬達 6 2-2-2 雷射測距儀 6 2-2-3 電子羅盤 7 2-2-4 全球衛星定位系統 7 2-3 實驗環境介紹 8 3 第三章 船舶操縱性能試驗的理論與程序 9 3-1 定航向自航試驗 9 3-1-1 定航向自航試驗的介紹 9 3-1-2 模糊邏輯控制 9 3-1-3 模糊邏輯控制器之實際運作流程 10 3-2 迴旋圈試驗(Turning Circle Test) 11 3-2-1 迴旋圈試驗介紹 11 3-2-2 迴旋圈試驗程序 12 3-3 Z形試驗(Zig-Zag Manoeuvring Test) 12 3-3-1 Z形試驗介紹 12 3-3-2 Z形式驗程序 13 3-4 慣性試驗(Stopping Inertia Test) 13 3-4-1 慣性試驗介紹 13 3-4-2 慣性試驗程序 14 3-5 威廉森試驗(Williamson Turning Test) 14 3-5-1 威廉森試驗介紹 14 3-5-2 模擬人員落水系統之設計與應用 14 3-5-3 威廉森試驗程序 16 4 第四章 試驗結果與討論 17 4-1 船模與實船數據的比較方法 17 4-2 定航向自航試驗 17 4-2-1 定航向自航控制器的改良與室內實測 17 4-2-2 定航向自航控制器的室外實測結果 19 4-3 迴旋圈試驗 20 4-3-1 右迴旋圈試驗結果 20 4-3-2 左迴旋圈試驗結果 20 4-3-3 實船資料 20 4-3-4 左右迴旋圈與實船資料的比較分析 21 4-4 Z形試驗 22 4-4-1 Z形試驗結果與實船資料 22 4-4-2 Z形試驗結果與實船的比較分析 22 4-5 慣性試驗 23 4-5-1 慣性試驗結果與實船資料 23 4-5-2 慣性試驗的比較分析 23 4-6 威廉森試驗 23 5 第五章 結論與建議 25 5-1 結論 25 5-2 建議 25 參考文獻 27 圖目錄 圖 1:船模系統與設備實體圖 29 圖 2:程式控制介面 29 圖 3:第一台雷射測距儀校正結果 30 圖 4:第二台雷射測距儀校正結果 30 圖 5:電子羅盤校正結果 31 圖 6:即時動態定位技術參考站的配置 31 圖 7:即時動態定位技術移動站的配置 32 圖 8:GPS校正結果 32 圖 9:實驗水域衛星圖 33 圖 10:定航向模糊邏輯控制結構圖 33 圖 11:航向誤差變量之歸屬函數 34 圖 12:航向誤差變化變量之歸屬函數 34 圖 13:輸出變量之歸屬函數 35 圖 14:模糊規則庫 35 圖 15:航向誤差變量為7時之歸屬函數 36 圖 16:航向角誤差變化變量為5時之歸屬函數 36 圖 17:航向角誤差變量為7航向角誤差變化變量為5時所觸發之模糊規則 37 圖 18: 輸入輸出對應之歸屬函數 38 圖 19:疊合出的面積 39 圖 20:迴旋圈試驗圖 39 圖 21:迴旋圈試驗程式自動控制流程圖 40 圖 22:Z形試驗操縱參數時序圖 40 圖 23: Z形試驗程式自動控制流程圖 41 圖 24:慣性試驗程式自動控制流程圖 42 圖 25:模擬人員落水系統 43 圖 26:模擬人員落水系統裝在船上的樣貌 44 圖 27:RS-232繼電器模組的接線方法 44 圖 28:模擬人員落水控制系統的接線方法圖 45 圖 29:威廉森試驗程式自動控制流程圖 46 圖 30:控制器調整前的航向角與舵角時序圖 47 圖 31:調整後的控制器之航向角與舵角時序圖 47 圖 32定航向自航控制器之室外實測航向角與舵角時序圖 48 圖 33:右迴旋試驗之GPS軌跡圖 48 圖 34:右迴旋試驗之舵角時序圖 49 圖 35:右迴旋試驗之船速時序圖 49 圖 36:左迴旋試驗之GPS軌跡圖 50 圖 37:左迴旋試驗之舵角時序圖 50 圖 38:左迴旋試驗之船速時序圖 51 圖 39:船模之10度Z形試驗的航向角與舵角時序圖 51 圖 40:實船之10度Z形試驗的航向角與舵角時序圖 52 圖 41:慣性試驗之軌跡圖 52 圖 42:慣性試驗之螺旋槳轉速時序圖 53 圖 43:慣性試驗之船速時序圖 53 圖 44:威廉森試驗軌跡圖 54 表目錄 表 1:劍艏貨櫃輪船船型主要尺寸 55 表 2:船模迴旋試驗結果 55 表 3:實船迴旋試驗結果 55 表 4:ABS對迴旋圈試驗迴旋性的分級準則 55 表 5:本船模依ABS對迴旋圈試驗迴旋性的分級準則 56 表 6:Z形試驗之船模與實船數據比較 56 表 7:IMO對10度Z形試驗之第一次超越角規範 56 表 8:IMO對10度Z形試驗之第二次超越角規範 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 船舶操縱性 | zh_TW |
| dc.subject | 威廉森試驗 | zh_TW |
| dc.subject | 慣性試驗 | zh_TW |
| dc.subject | Z形試驗 | zh_TW |
| dc.subject | 迴旋圈試驗 | zh_TW |
| dc.subject | 定航向自航試驗 | zh_TW |
| dc.subject | 自航船模試驗 | zh_TW |
| dc.subject | 尺度效應 | zh_TW |
| dc.subject | Ship Maneuverability | en |
| dc.subject | Scale Effect | en |
| dc.subject | Williamson Turning Test | en |
| dc.subject | Stopping Inertia Test | en |
| dc.subject | Zig-Zag Test | en |
| dc.subject | Steady Course Test | en |
| dc.subject | Free Running Model Test | en |
| dc.title | 自航船模之船舶操縱運動實驗研究 | zh_TW |
| dc.title | Experimental Study on the Ship Maneuvering Tests by a Free Running Ship Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林宗岳,林恆山,邵揮洲 | |
| dc.subject.keyword | 船舶操縱性,自航船模試驗,定航向自航試驗,迴旋圈試驗,Z形試驗,慣性試驗,威廉森試驗,尺度效應, | zh_TW |
| dc.subject.keyword | Ship Maneuverability,Free Running Model Test,Steady Course Test,Zig-Zag Test,Stopping Inertia Test,Williamson Turning Test,Scale Effect, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU202202453 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-18 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202215332900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
