Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84976
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor龔源成(Yuancheng Gung)
dc.contributor.authorTing-Chun Linen
dc.contributor.author林亭君zh_TW
dc.date.accessioned2023-03-19T22:35:58Z-
dc.date.copyright2022-08-29
dc.date.issued2022
dc.date.submitted2022-08-22
dc.identifier.citationAleksandrov, K. S., & Ryzhova, T. V. (1961). The elastic properties of rock forming minerals, pyroxenes and amphiboles. Bull. Acad. Sci. USSR Geophys. Ser, 871(875), 1339-1344. Almqvist, B. S., & Mainprice, D. (2017). Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Reviews of Geophysics, 55(2), 367-433. Arai, R., Kodaira, S., Yuka, K., Takahashi, T., Miura, S., & Kaneda, Y. (2017). Crustal structure of the southern Okinawa Trough: Symmetrical rifting, submarine volcano, and potential mantle accretion in the continental back‐arc basin. Journal of Geophysical Research: Solid Earth, 122(1), 622-641. Arai, R., Kodaira, S., Takahashi, T., Miura, S., & Kaneda, Y. (2018). Seismic evidence for arc segmentation, active magmatic intrusions and syn-rift fault system in the northern Ryukyu volcanic arc. Earth, Planets and Space, 70(1), 1-15. Argus, D. F., Gordon, R. G., & DeMets, C. (2011). Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11). Bell, S. W., Forsyth, D. W., & Ruan, Y. (2015). Removing noise from the vertical component records of ocean‐bottom seismometers: Results from year one of the Cascadia Initiative. Bulletin of the Seismological Society of America, 105(1), 300-313. Bendat, J. S., & Piersol, A. G. (1986). Decomposition of wave forces into linear and non-linear components. Journal of Sound and Vibration, 106(3), 391-408. Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M. and Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical journal international, 169(3), 1239-1260. Bensen, G. D., Ritzwoller, M. H., & Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research: Solid Earth, 113(B5). Boneh, Y., & Skemer, P. (2014). The effect of deformation history on the evolution of olivine CPO. Earth and Planetary Science Letters, 406, 213-222. Brown, J. M., & Abramson, E. H. (2016). Elasticity of calcium and calcium-sodium amphiboles. Physics of the Earth and Planetary Interiors, 261, 161-171. Chen, K. X., Gung, Y., Kuo, B. Y., & Huang, T. Y. (2018). Crustal magmatism and deformation fabrics in northeast Japan revealed by ambient noise tomography. Journal of Geophysical Research: Solid Earth, 123(10), 8891-8906. Chiao, L. Y., & Kuo, B. Y. (2001). Multiscale seismic tomography. Geophysical Journal International, 145(2), 517-527. Chiao, L. Y., & Liang, W. T. (2003). Multiresolution parameterization for geophysical inverse problems. Geophysics, 68(1), 199-209. Dahlen, F., & Tromp, J. (2021). Theoretical global seismology. In Theoretical Global Seismology. Princeton university press. Hao, M., Li, Y., & Zhuang, W. (2019). Crustal movement and strain distribution in East Asia revealed by GPS observations. Scientific reports, 9(1), 1-11. Iwasaki, T., Hirata, N., Kanazawa, T., Melles, J., Suyehiro, K., Urabe, T., Möller, L., Makris, J. and Shimamura, H. (1990). Crustal and upper mantle structure in the Ryukyu Island Arc deduced from deep seismic sounding. Geophysical journal international, 102(3), 631-651. Kasahara, J., Nagumo, S., Koresawa, S., Ouchi, T., & Kinosita, H. (1985). Seismic features in the central Okinawa Trough-an active incipient rifting. Abstract for the 23rd General Assembly of IASPEI, Tokyo, 1, 279. Ko, B., & Jung, H. (2015). Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature communications, 6(1), 1-10. Kubo, A., & Fukuyama, E. (2003). Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth and Planetary Science Letters, 210(1-2), 305-316. Lloyd, G. E., Butler, R. W., Casey, M., & Mainprice, D. (2009). Mica, deformation fabrics and the seismic properties of the continental crust. Earth and Planetary Science Letters, 288(1-2), 320-328. Long, M. D., & van der Hilst, R. D. (2006). Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. Physics of the Earth and Planetary Interiors, 155(3-4), 300-312. Long, M. D., & Wirth, E. A. (2013). Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes. Journal of Geophysical Research: Solid Earth, 118(2), 583-606. Ludwig, W.J., Murauchi, S., Den, N., Buhl, P., Hotta, H., Ewing, M., Asanuma, T., Yoshii, T. and Sakajiri, N. (1973). Structure of East China Sea‐West Philippine Sea Margin off southern Kyushu, Japan. Journal of Geophysical Research, 78(14), 2526-2536. Montagner, J. P., & Nataf, H. C. (1986). A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research: Solid Earth, 91(B1), 511-520. Moschetti, M. P., Ritzwoller, M. H., & Shapiro, N. M. (2007). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8(8). Nakamura, M. (2004). Crustal deformation in the central and southern Ryukyu Arc estimated from GPS data. Earth and Planetary Science Letters, 217(3-4), 389-398. Nishizawa, A., Kaneda, K., Oikawa, M., Horiuchi, D., Fujioka, Y., & Okada, C. (2019). Seismic structure of rifting in the Okinawa Trough, an active backarc basin of the Ryukyu (Nansei-Shoto) island arc–trench system. Earth, Planets and Space, 71(1), 1-26. Rawlinson, N., & Sambridge, M. (2005). The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Exploration Geophysics, 36(4), 341-350. Ritzwoller, M. H., Lin, F. C., & Shen, W. (2011). Ambient noise tomography with a large seismic array. Comptes Rendus Geoscience, 343(8-9), 558-570. Ronov, A. B. (1967). Chemical structure of the Earth's crust. Geochem. Intl., 13, 1041-1066. Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., & Fehler, M. C. (2005). Surface wave tomography from microseisms in Southern California. Geophysical Research Letters, 32(14). Schippkus, S., Zigone, D., Bokelmann, G., & AlpArray Working Group. (2018). Ambient-noise tomography of the wider Vienna Basin region. Geophysical Journal International, 215(1), 102-117. Seats, K. J., Lawrence, J. F., & Prieto, G. A. (2012). Improved ambient noise correlation functions using Welch′ s method. Geophysical Journal International, 188(2), 513-523. Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7). Shirzad, T., & Hossein Shomali, Z. (2014). Shallow crustal structures of the Tehran basin in Iran resolved by ambient noise tomography. Geophysical Journal International, 196(2), 1162-1176. Snieder, R., & Wapenaar, K. (2010). Imaging with ambient noise. Physics Today, 63(9), 44-49. Stehly, L., Campillo, M., & Shapiro, N. M. (2006). A study of the seismic noise from its long‐range correlation properties. Journal of Geophysical Research: Solid Earth, 111(B10). Tatham, D. J., Lloyd, G. E., Butler, R. W. H., & Casey, M. (2008). Amphibole and lower crustal seismic properties. Earth and Planetary Science Letters, 267(1-2), 118-128. Vaughan, M. T., & Guggenheim, S. (1986). Elasticity of muscovite and its relationship to crystal structure. Journal of Geophysical Research: Solid Earth, 91(B5), 4657-4664. Wang, Y., Lin, F. C., Schmandt, B., & Farrell, J. (2017). Ambient noise tomography across Mount St. Helens using a dense seismic array. Journal of Geophysical Research: Solid Earth, 122(6), 4492-4508. Weaver, R. L. (2005). Information from seismic noise. Science, 307(5715), 1568-1569. Weaver, R. L., & Lobkis, O. I. (2001). Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies. Physical Review Letters, 87(13), 134301. Yao, H., Xu, G., Zhu, L., & Xiao, X. (2005). Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions. Physics of the Earth and Planetary Interiors, 148(1), 39-54. 陳映年 (2008)。台灣北部短週期噪訊研究1. 周遭噪訊層析成像2. 噪訊來源研究。國立臺灣大學地質科學研究所碩士論文,臺北市。取自https://hdl.handle.net/11296/x79r78 簡志傑 (2017)。利用周遭噪訊層析成像探討臺灣淺部地殼構造。國立臺灣大學地質科學研究所碩士論文,臺北市。取自https://hdl.handle.net/11296/h83dze 蘇祐鼎 (2020)。利用噪聲成像解析馬達加斯加區域的速度構造。國立臺灣大學地質科學研究所碩士論文,臺北市。取自https://hdl.handle.net/11296/4742t2
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84976-
dc.description.abstract本研究使用2018年9月至2019年6月布放於北沖繩海槽的海底地震儀陣列資料,以噪訊成像技術建構該區的三維震波速度模型。首先,透過垂直分量連續紀錄的互交相關函數擷取雷利波的經驗格林函數,並量測其的相速度頻散;接著, 用4—30秒的頻散資料進行以小波為基底函數的多重尺度反演,藉此得出北沖繩海槽第一個地殼尺度的Vs和其方位非均向性的三維模型。 Vs模型的速度分布與該區域二維震測剖面和有限頻寬三維震波成像之初步結果大致吻合,在弧後區域展現較快的Vs,弧前和琉球島弧則為較慢的Vs。方位非均向性的快方向在淺層弧前區平行於海溝,有可能為弧前沉積物受當地應力而變形所致。在模型的較深區,中地殼的快方向大致平行於海溝,下地殼區的快方向則轉向至垂直於海溝走向。快方向平行於海溝的非均向性可能為地殼內的非均向性礦物受到琉球島弧向南移動形成的右移剪切力影響,導致其排列方向平行於海溝走向。下部地殼靠近上部地函,其非均向性的快方向轉向垂直於海溝,則可能導因於地函楔角流(corner flow)運動。zh_TW
dc.description.abstractFrom September 2018 to June 2019, an array of broadband OBSs was deployed in the north Okinawa trough (NOT) and its neighboring sea as part of the Taiwan-Japan collaborative project led by Institute of Earth Sciences, Academia Sinica (IES), Taiwan Ocean Research Institute (TORI), and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). Continuous vertical component data from OBSs, F-net stations, and six temporary stations were used to extract the empirical Green’s functions of Rayleigh waves. With the measured dispersion (4-30 s) data from the noise-derived Rayleigh waves, we implemented a one-step, wavelet-based multi-scale tomographic technique to invert for 3-D models of both Vs and its azimuthal anisotropy of the crust and the shallow mantle. Major features in our model are generally consistent with multi-channel seismic 2-D and finite-frequency 3-D models, showing higher Vs associated with the OT and lower Vs in the forearc region. Trench-parallel fast direction of azimuthal anisotropy appears in the forearc shallow crust, most likely caused by the deformation fabrics due to rifting. The mid- to lower crust of the NOT was dominated by trench-parallel anisotropy, probably reflecting a prevalence of sub-vertical shear plane (foliation) resulting from the rifting-shearing processes associated with Okinawa trough opening and southward propagating. In the shallow mantle, the anisotropy fast direction normal to the trench correlate well with the corner flow dynamics in the mantle wedge. As a result, both shape preferred orientation (SPO) and lattice preferred orientation (LPO) were involved to create the overall pattern of anisotropy in the study region.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:35:58Z (GMT). No. of bitstreams: 1
U0001-1808202217395200.pdf: 7041634 bytes, checksum: 89c5e206bddaf9c65c97a626f2cb6166 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 I 誌謝 II 摘要 III Abstract IV 第一章、緒論 1 1.1. 前言 1 1.2. 周遭噪訊層析成像 1 1.3. 震波非均向性 2 第二章、地體架構與區域地質 5 第三章、資料簡介 9 第四章 理論背景與資料處理 12 4.1. 理論背景 12 4.2. 資料前處理 13 4.3. CCF計算與疊加 15 4.4. 表面波頻散分析—相速度量測 16 4.5. 多重尺度小波逆推 18 4.6. 三維速度模型建立 19 4.7. 方位非均向性 20 4.8. 模型解析度測試 20 第五章 結果與討論 42 第六章 結論 49 參考文獻 50
dc.language.isozh-TW
dc.subject周遭噪訊成像法zh_TW
dc.subject方位非均向性zh_TW
dc.subject海底地震儀zh_TW
dc.subject琉球隱沒帶zh_TW
dc.subject北沖繩海槽zh_TW
dc.subjectOBSen
dc.subjectnorthern Okinawa troughen
dc.subjectambient noise tomographyen
dc.subjectRyukyu subduction zoneen
dc.subjectazimuthal anisotropyen
dc.title利用噪訊成像法探討北沖繩海槽地殼速度構造zh_TW
dc.titleAmbient noise tomography for the crust of the northern Okinawa Troughen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor郭本垣(Ban-Yuan Kuo)
dc.contributor.oralexamcommittee洪淑惠(Shu-Huei Hung),陳映年(Ying-Nien Chen)
dc.subject.keyword北沖繩海槽,周遭噪訊成像法,琉球隱沒帶,方位非均向性,海底地震儀,zh_TW
dc.subject.keywordnorthern Okinawa trough,ambient noise tomography,Ryukyu subduction zone,azimuthal anisotropy,OBS,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202202557
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2022-08-29-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-1808202217395200.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved