Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8496
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor薛克民(Keh-Ming Shyue)
dc.contributor.authorFan-Ko Changen
dc.contributor.author張繁可zh_TW
dc.date.accessioned2021-05-20T00:55:55Z-
dc.date.available2020-06-24
dc.date.available2021-05-20T00:55:55Z-
dc.date.copyright2020-06-24
dc.date.issued2020
dc.date.submitted2020-06-18
dc.identifier.citation[1] G. Eckart and G. Young. The approximation of one matrix by another of lower rank.Psychometrika, 1:211–218, 1936.
[2] J. Hadamard. Sur les probl`emes aux d ́eriv ́ees partielles et leur signification physique.Princeton University Bulletin, 13:49–52, 1902.
[3] P. C. Hansen. The truncated svd as a method for regularization.BIT NumericalMathematics, 27:534–553, 1987.
[4] J. Kevorkian.Partial Differential Equations. Springer, New York, 2000.
[5] L. Mirsky. Symmetric gauge functions and unitarily invariant norms.The QuarterlyJournal of Mathematics, 11:50–59, 1960.
[6] J. L. Mueller and S. Siltanen.Linear and Nonlinear Inverse Problems with PracticalApplications. SIAM, Philadelphia, 2012.
[7] S. Y. Shen. A numerical study of inverse heat conduction problems.Computers andMathematics with Applications, 38:173–188, 1999.
[8] B. Geng T. Min and J. Ren. Inverse estimation of the initial condition for the heatequation.International Journal of Pure and Applied Mathematics, 82:581–593, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8496-
dc.description.abstract反問題是從測量的結果反推回起始原因,而熱傳導方程是描述熱量藉由傳導方式傳遞能量的過程,本篇探討的問題分為兩種,從某個特定位置的邊界條件反推回原點位置的邊界條件,以及從某個時間點的溫度分佈反推回初始條件。為了方便研究,先給定起始原因,找到某個時間的結果,主要目標就是從此結果反推回起始原因,得到的解可以和真正的起始原因作比較。
使用數值方法將熱傳導方程的解析解離散化,得到的線性系統是非適定性問題,由截斷奇異值分解方法可將其正規化,進行逆運算之後會得到解,若起始原因的狀態具有足夠的平滑性,則這個解的趨勢和真正的起始原因會很接近。
zh_TW
dc.description.abstractInverse problems recover the causes from the effects. And heat conduction equations describe the process of energy transfer by heat conduction. In this thesis, we focus on calculating the boundary condition at the origin from the other boundary condition and recovering the initial condition from the temperature distribution at a certain time. For the convenience of research, the causes are given at first and the effects are found directly. The goal is to recover the causes from the effects. The results can be compared with the real causes.
The analytical solutions of the heat conduction equations are discretized with some numerical methods. Then, the linear system obtained is an ill-posed problem. It can be regularized by the truncated singular value decomposition. If the state of the causes is smooth enough, the trend of the solution of the regularized problem with inverse operation is approaching to the real causes.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:55:55Z (GMT). No. of bitstreams: 1
U0001-1806202013490900.pdf: 3073970 bytes, checksum: a59b6f44b68f53e868f24f66f2cf63c1 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 (i)
Acknowledgement (ii)
摘要 (iii)
Abstract (iv)
List of Figures (vii)
1 Introduction (1)
1.1 Inverse problems (1)
1.2 Thesis topics (3)
1.3 Outlines (6)
2 Heat conduction problems in semi-infinite domain (7)
2.1 Methods for forward problems (8)
2.2 Numerical methods for inverse problems (8)
2.3 Numerical results (9)
3 Heat conduction problems in finite domain (13)
3.1 Methods for forward problems (14)
3.2 Numerical methods for inverse problems (14)
3.3 Numerical results (15)
4 Conclusion (21)
4.1 Thesis summary (21)
4.2 Future works (21)
A Supplementary materials (23)
A.1 Condition numbers (23)
A.2 Truncated singular value decomposition (24)
A.3 Green’s functions (24)
A.4 Finite difference methods (27)
A.5 Separation of variables (28)
B Sample matlab codes (31)
B.1 Example 2.2 (31)
B.2 Example 3.2 (34)
Bibliography. (37)
dc.language.isozh-TW
dc.title以數值方法估計熱傳導反問題的解zh_TW
dc.titleNumerical Estimation for Inverse Heat Conduction Problemsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee嚴健彰(Chien-Chang Yen),郭志禹(Chih-Yu Kuo)
dc.subject.keyword反/逆問題,熱傳導方程,數值方法,離散化,截斷奇異值分解,正規化,zh_TW
dc.subject.keywordInverse Problems,Heat Conduction Equations,Numerical Methods,Discretization,Truncated Singular Value Decomposition,Regularization,en
dc.relation.page37
dc.identifier.doi10.6342/NTU202001041
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-06-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
Appears in Collections:應用數學科學研究所

Files in This Item:
File SizeFormat 
U0001-1806202013490900.pdf3 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved