請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84968
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江茂雄(Mao-Hsiung Chiang) | |
dc.contributor.author | Kuan-Yu Chen | en |
dc.contributor.author | 陳冠妤 | zh_TW |
dc.date.accessioned | 2023-03-19T22:35:30Z | - |
dc.date.copyright | 2022-08-24 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-08-22 | |
dc.identifier.citation | [1] (2022). GWEC | GLOBAL WIND REPORT 2022. [Online] Available: https://gwec.net/gwecs-global-offshore-wind-report/ [2] J. M. Jonkman and D. Matha, 'Dynamics of offshore floating wind turbines—analysis of three concepts,' Wind Energy, vol. 14, no. 4, pp. 557-569, 2011. [3] L. Zhang, W. Shi, M. Karimirad, C. Michailides, and Z. Jiang, 'Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines,' Ocean Engineering, vol. 207, p. 107371, 2020. [4] Y. Yang, M. Bashir, C. Michailides, C. Li, and J. Wang, 'Development and application of an aero-hydro-servo-elastic coupling framework for analysis of floating offshore wind turbines,' Renewable Energy, vol. 161, pp. 606-625, 2020. [5] E. Gaertner et al., 'IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine,' National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020. [6] C. Allen et al., 'Definition of the UMaine VolturnUS-S reference platform developed for the IEA Wind 15-megawatt offshore reference wind turbine,' National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Maine, Orono, ME (United States), 2020. [7] J. Rinker et al., 'Comparison of loads from HAWC2 and OpenFAST for the IEA Wind 15 MW Reference Wind Turbine,' in Journal of Physics: Conference Series, 2020, vol. 1618, no. 5: IOP Publishing, p. 052052. [8] H. M. Johlas, L. A. Martínez‐Tossas, M. J. Churchfield, M. A. Lackner, and D. P. Schmidt, 'Floating platform effects on power generation in spar and semisubmersible wind turbines,' Wind Energy, vol. 24, no. 8, pp. 901-916, 2021. [9] S. Bashetty and S. Ozcelik, 'Review on Dynamics of Offshore Floating Wind Turbine Platforms,' Energies, vol. 14, no. 19, p. 6026, 2021. [10] Z. Li, B. Wen, X. Dong, X. Long, and Z. Peng, 'Effect of blade pitch control on dynamic characteristics of a floating offshore wind turbine under platform pitching motion,' Ocean Engineering, vol. 232, p. 109109, 2021. [11] F. Golnary and H. Moradi, 'Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed,' Applied Mathematical Modelling, vol. 65, pp. 566-585, 2019. [12] W.-M. Lin, C.-M. Hong, T.-C. Ou, and T.-M. Chiu, 'Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN,' Energy Conversion and Management, vol. 52, no. 2, pp. 1244-1251, 2011. [13] S.-H. Lee, Y.-J. Joo, J.-H. Back, J.-H. Seo, and I. Choy, 'Sliding mode controller for torque and pitch control of PMSG wind power systems,' Journal of Power Electronics, vol. 11, no. 3, pp. 342-349, 2011. [14] J. Wang, N. Tse, and Z. Gao, 'Synthesis on PI-based pitch controller of large wind turbines generator,' Energy conversion and management, vol. 52, no. 2, pp. 1288-1294, 2011. [15] T. L. Van, T. H. Nguyen, and D.-C. Lee, 'Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems,' IEEE Transactions on Energy Conversion, vol. 30, no. 2, pp. 578-587, 2015. [16] A. Macedo and W. Mota, 'Wind turbine pitch angle control using fuzzy logic,' in 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), 2012: IEEE, pp. 1-6. [17] L. Colombo, M. L. Corradini, G. Ippoliti, and G. Orlando, 'Pitch angle control of a wind turbine operating above the rated wind speed: A sliding mode control approach,' ISA transactions, vol. 96, pp. 95-102, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0019057819302915?via%3Dihub. [18] S. A. Frost, M. J. Balas, and A. D. Wright, 'Direct adaptive control of a utility‐scale wind turbine for speed regulation,' International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, vol. 19, no. 1, pp. 59-71, 2009. [19] S. Frost, M. Balas, and A. Wright, 'Adaptive control of a utility-scale wind turbine operating in region 3,' in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009, p. 480. [20] M. Lima, J. Silvino, and P. Resende, 'Robust control for a variable-speed adjustable-pitch wind energy conversion system using H-inf techniques,' 1999. [21] J. Kim, J. Cheon, J. Lee, and M. Jin, 'Design of pitch controller for wind turbines using time-delay estimation,' in 2015 IEEE International Conference on Automation Science and Engineering (CASE), 2015: IEEE, pp. 1131-1136. [22] X. Yao, X. Su, and L. Tian, 'Pitch angle control of variable pitch wind turbines based on neural network PID,' in 2009 4th IEEE Conference on Industrial Electronics and Applications, 2009: IEEE, pp. 3235-3239. [23] 林廷晏, '以 FAST+ SIMPACK+ MATLAB 實現 5MW 浮動半潛式離岸風力發電機動態分析之研究,' 國立台灣大學碩士論文, 2021. [24] 謝昌桂, '5MW 浮動半潛式離岸風力發電機整合直驅式永磁同步發電機與併網之全機組運轉控制研究,' 國立台灣大學碩士論文, 2020. [25] M.-H. Chiang et al., 'Dynamic Simulation and Control of a Semi-submersible Floating Offshore Wind Turbine with a Direct-Driving Permanent Magnetic Synchronized Generator,' in 2022 8th International Conference on Applied System Innovation (ICASI), 2022: IEEE, pp. 119-122. [26] 林靖, '10MW 浮動半潛式離岸直驅式風力發電機於台灣海峽環境之全機組動態分析及控制之研究,' 國立台灣大學碩士論文, 2021. [27] Y.-S. Kim, I.-Y. Chung, and S.-I. Moon, 'An analysis of variable-speed wind turbine power-control methods with fluctuating wind speed,' Energies, vol. 6, no. 7, pp. 3323-3338, 2013. [28] R. M. Imran, D. M. Akbar Hussain, M. Soltani, and R. M. Rafaq, 'Optimal tuning of multivariable disturbance‐observer‐based control for flicker mitigation using individual pitch control of wind turbine,' IET Renewable Power Generation, vol. 11, no. 8, pp. 1121-1128, 2017. [29] N. Horiuchi and T. Kawahito, 'Torque and power limitations of variable speed wind turbines using pitch control and generator power control,' in 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No. 01CH37262), 2001, vol. 1: IEEE, pp. 638-643. [30] B. Boukhezzar, H. Siguerdidjane, and M. M. Hand, 'Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization,' 2006. [31] X. Ma, 'Adaptive extremum control and wind turbine control,' Citeseer, 1997. [32] H. Lee, H. Choi, J. Park, and S. Park, 'Robust control algorithm using time delay estimation for speed mode of twisted string actuator,' Mechanism and Machine Theory, vol. 146, 2020, doi: 10.1016/j.mechmachtheory.2019.103733. [33] K. Youcef-Toumi and O. Ito, 'A Time Delay Controller for Systems With Unknown Dynamics,' Journal of Dynamic Systems, Measurement, and Control, vol. 112, no. 1, pp. 133-142, 1990, doi: 10.1115/1.2894130. [34] B. W. Scale, 'developed in 1805 by Sir Francis Beaufort,' UK Royal Navy.[(accessed on 12 January 2021)], 2017. [35] 苗君易, '海氣象觀測塔監測資料整合應用與環境數據加值運用交互分析研究,' 國立成功大學航空太空工程學系, 2016. [36] 楊淳宇, '台灣地區颱風風況對風機氣動力負荷影響之研究,' 國立台灣大學碩士論文, 2016. [37] 鄧崇任, '台灣離岸風力機支撐結構設計準則研擬對策 ' 國家地震工程研究中心, 2017. [38] C. Offshores. 'Offshore Wind farms in Taiwan.' https://www.4coffshore.com/windfarms/taiwan/ (accessed. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84968 | - |
dc.description.abstract | 本研究針對15MW離岸浮動半潛式風力發電機全系統動態及系統控制的模擬。以IEA Wind TCP Task37 15MW參考風機為基礎來建置模型及UMaine Volturn US-S建置半潛式浮台,繫泊系統部分由三條繫纜所組成並以水深70m設計。全系統動態建模以多個軟體結合空氣動力、波浪力、結構系統動態、控制系統動態的分析。風力發電機組的機構以SIMPACK建置,包括風力發電機之葉片、塔架、輪轂、機艙以及水下基礎的浮台及繫泊系統,由AeroDyn計算葉片之空氣動力學分析,以WAMIT計算出浮台水動力係數,並由HydroDyn進行水動力分析,繫泊系統分析以MAP++進行計算,同時推導直驅式永磁同步發電機、轉速控制系統、液壓葉片變旋角系統及功率控制器之數學模型並建置於MATLAB/SIMULINK。以SIMPACK整合AeroDyn、HydroDyn以及MAP++,並透過SIMPACK內建的SIMAT介面與MATLAB/SIMULINK連結達成即時同步模擬,進行在不同的風況及海況條件下全系統閉迴路控制系統的動態模擬與控制分析。本研究在模擬條件上,先以3m/s到25m/s五階遞增風速模擬全區域風速的全系統動態分析,再以不同平均風速外加百分之三的紊流強度,模擬自然情況下風況的系統動態,並以風速對應之波高為水動力模擬環境參數,以接近真實環境。另外,本論文應用時間延遲控制方法在功率控制器,基於時間延遲估計,可估測並抵銷動力學的非線性項、未知系統參數及時變性的環境干擾,能得到有效的功率控制結果,並與PID控制器的控制結果比較,本文提出的控制理論能有效消除PID控制器所遇到的過衝過大問題。並發展創新壓載控制策略,在浮式載台的穩定性方面,減低浮台角度變化量以增進發電功率穩定度。最後本研究也將模擬結果與在相同條件下以FAST模擬的結果進行比對驗證,驗證本文所提以SIMPACK架構整合模擬結果之正確性。 | zh_TW |
dc.description.abstract | The objective of this study is to investigate the dynamic co-simulation and control of a 15MW semi-submersible floating offshore wind turbine (FOWT), which is based on IEA 15MW Offshore Reference Wind Turbine and UMaine Volturn US-S semi-submersible floater in IEA Wind TCP Task37. The mooring system contains three mooring lines for water depth of 70 m. The overall system modeling and simulation was implemented by combining aerodynamics, hydrodynamics, mechanical dynamics, and control system dynamics. The mechanism system of the FOWT was established in SIMPACK, including blades, tower, hub, nacelle, floater and mooring system. The aerodynamic is analyzed by AeroDyn; the hydrodynamic analysis was conducted by HydroDyn with the hydrodynamic coefficients from WAMIT, and the mooring system was analyzed with MAP++. The mathematical model of direct-drive permanent magnet synchronous generator (PMSG), rotor speed control system, hydraulic blade pitch control system and power controller were achieved in MATLAB/SIMULINK. This study integrates AeroDyn, HydroDyn and MAP++ with SIMPACK, and connect with MATLAB/SIMULINK through SIMPACK's built-in SIMAT interface to achieve co-simulation and realize the dynamic simulation and control analysis of the FOWT under various wind and wave conditions. The overall dynamic co-simulation of FOWT system was firstly conducted under a fifth-order increasing trajectory wind speed from 3m/s to 25m/s to observe the response of FOWT. In addition, the dynamic analysis of FOWT under natural conditions is also simulated by using wind input with 3% turbulence intensity, and the corresponding significant wave height. This study proposed a power controller using Time–Delay Estimation (TDE) method to eliminate system nonlinearity and turbulence for achieving good performance of keeping the rated output power. The simulation results showed that the proposed TDE power controller can effectively eliminate the overshoot problem in comparison with that using PID power controller. Besides, a new ballast strategy was also proposed to improve power generation stability by stabilizing the dynamics of the platform. Finally, in order to verify the correctness of the proposed co-simulation, the simulation results were compared with that of FAST under the same wind and wave conditions. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:35:30Z (GMT). No. of bitstreams: 1 U0001-1908202216565000.pdf: 8735572 bytes, checksum: 160ac4c1115300fed91a062433a4cd38 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機 4 1-4 本文架構 6 第二章 模擬軟體架構介紹 7 2-1 風力發電機模擬軟體 10 2-2 氣動力模擬軟體 11 2-3 波浪力分析軟體 12 2-4 浮式風力發電機動態模擬模型 13 2-5 風力發電機組 16 2-6 水下基礎 22 第三章 風力發電機次系統之數學模型建模 27 3-1 永磁同步發電機 27 3-2 電網側轉換器控制 32 3-3 液壓閥控葉片變旋角系統及傳動系統 34 第四章 風力發電機控制策略及控制器設計 42 4-1 風力發電機原理 42 4-2 風力發電機分區控制策略 44 4-3 風力發電機控制系統架構 46 第五章 全機組動態模擬結果及討論 54 5-1 模擬條件設定 54 5-2 全區域風速測試模擬 58 5-3 全區域風速SIMPACK模擬與FAST模擬比較結果 68 5-4 額定功率區模擬自然環境條件下全機組的動態模擬 74 5-5 功率恆定區不同風速全機組的動態模擬 83 5-5-1 自然環境模擬之環境參數設 83 5-6 創新壓載控制策略 90 第六章 結論與未來展望 98 6-1 結論 98 6-2 未來展望 100 參考文獻 101 | |
dc.language.iso | zh-TW | |
dc.title | 以時間延遲估測控制應用於IEA15MW浮動半潛式離岸直驅式風力發電機之功率控制及全機組動態分析之研究 | zh_TW |
dc.title | Dynamic Simulation and Power Control of IEA 15MW Semi-submersible Floating Direct-Driving Offshore Wind Turbine Using Time–Delay Estimation Control | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊舜涵(Shun-Han Yang),趙修武(Shiu-Wu Chau) | |
dc.subject.keyword | 半潛式浮台,直驅式永磁同步發電機,IEA 15MW風力發電機,功率控制器,時間延遲控制, | zh_TW |
dc.subject.keyword | semi-submersible floating wind turbine,direct-drive permanent magnet synchronous generator,IEA 15MW wind turbine,power controller,time-delay control, | en |
dc.relation.page | 103 | |
dc.identifier.doi | 10.6342/NTU202202596 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-08-22 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
dc.date.embargo-lift | 2027-08-19 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1908202216565000.pdf 目前未授權公開取用 | 8.53 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。