Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏秀(Po-Hsiu Kuo)
dc.contributor.authorChen-Jung Changen
dc.contributor.author張珵容zh_TW
dc.date.accessioned2023-03-19T22:35:16Z-
dc.date.copyright2022-10-05
dc.date.issued2022
dc.date.submitted2022-08-23
dc.identifier.citationBromet, E., et al., Cross-national epidemiology of DSM-IV major depressive episode. BMC medicine, 2011. 9(1): p. 1-16. 2. Organization, W.H., The global burden of disease: 2004 update. 2008: World Health Organization. 3. Diagnostic and statistical manual of mental disorders : DSM-5, ed. A. American Psychiatric and D.S.M.T.F. American Psychiatric Association. 2013, Arlington, VA: American Psychiatric Association. 4. Schmaal, L., et al., Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular psychiatry, 2017. 22(6): p. 900-909. 5. Hamilton, J.P., et al., Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. American Journal of Psychiatry, 2012. 169(7): p. 693-703. 6. Malhi, G.S. and J.J. Mann, Depression. The Lancet, 2018. 392(10161): p. 2299-2312. 7. Csukly, G., et al., Facial expression recognition in depressed subjects: the impact of intensity level and arousal dimension. The Journal of nervous and mental disease, 2009. 197(2): p. 98-103. 8. Demenescu, L.R., et al., Impaired attribution of emotion to facial expressions in anxiety and major depression. PloS one, 2010. 5(12): p. e15058. 9. Weightman, M.J., T.M. Air, and B.T. Baune, A review of the role of social cognition in major depressive disorder. Frontiers in psychiatry, 2014. 5: p. 179. 10. Leppänen, J.M., et al., Depression biases the recognition of emotionally neutral faces. Psychiatry research, 2004. 128(2): p. 123-133. 11. Kohler, C.G., et al., Facial emotion perception in depression and bipolar disorder: a quantitative review. Psychiatry research, 2011. 188(3): p. 303-309. 12. Manstead, A.S., et al., The influence of dysphoria and depression on mental state decoding. Journal of Social and Clinical Psychology, 2013. 32(1): p. 116-133. 13. Mennen, A.C., K.A. Norman, and N.B. Turk-Browne, Attentional bias in depression: understanding mechanisms to improve training and treatment. Current opinion in psychology, 2019. 29: p. 266-273. 14. Gotlib, I.H., et al., Attentional biases for negative interpersonal stimuli in clinical depression. Journal of abnormal psychology, 2004. 113(1): p. 127. 15. Duque, A. and C. Vázquez, Double attention bias for positive and negative emotional faces in clinical depression: Evidence from an eye-tracking study. Journal of behavior therapy and experimental psychiatry, 2015. 46: p. 107-114. 16. Gong, Q. and Y. He, Depression, neuroimaging and connectomics: a selective overview. Biological psychiatry, 2015. 77(3): p. 223-235. 17. Lv, H., et al., Resting-state functional MRI: everything that nonexperts have always wanted to know. American Journal of Neuroradiology, 2018. 39(8): p. 1390-1399. 18. Smitha, K., et al., Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. The neuroradiology journal, 2017. 30(4): p. 305-317. 19. Sha, Z., et al., Meta-connectomic analysis reveals commonly disrupted functional architectures in network modules and connectors across brain disorders. Cerebral Cortex, 2018. 28(12): p. 4179-4194. 20. Gong, J., et al., Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis. Translational psychiatry, 2020. 10(1): p. 1-13. 21. Zhou, M., et al., Intrinsic cerebral activity at resting state in adults with major depressive disorder: a meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017. 75: p. 157-164. 22. Hao, H., et al., Aberrant brain regional homogeneity in first-episode drug-naive patients with major depressive disorder: a voxel-wise meta-analysis. Journal of affective disorders, 2019. 245: p. 63-71. 23. Sindermann, L., et al., Systematic transdiagnostic review of magnetic-resonance imaging results: depression, anxiety disorders and their co-occurrence. Journal of psychiatric research, 2021. 142: p. 226-239. 24. He, Y., et al., Reconfiguration of cortical networks in MDD uncovered by multiscale community detection with fMRI. Cerebral Cortex, 2018. 28(4): p. 1383-1395. 25. Kaiser, R.H., et al., Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA psychiatry, 2015. 72(6): p. 603-611. 26. Peluso, M.A., et al., Amygdala hyperactivation in untreated depressed individuals. Psychiatry Research: Neuroimaging, 2009. 173(2): p. 158-161. 27. MacNamara, A., et al., Transdiagnostic neural correlates of affective face processing in anxiety and depression. Depression and anxiety, 2017. 34(7): p. 621-631. 28. Mareckova, K., et al., Novel polygenic risk score as a translational tool linking depression-related changes in the corticolimbic transcriptome with neural face processing and anhedonic symptoms. Translational psychiatry, 2020. 10(1): p. 1-10. 29. Fossati, P., Is major depression a cognitive disorder? Revue Neurologique, 2018. 174(4): p. 212-215. 30. Roiser, J.P., R. Elliott, and B.J. Sahakian, Cognitive mechanisms of treatment in depression. Neuropsychopharmacology, 2012. 37(1): p. 117-136. 31. Tao, R., et al., Brain activity in adolescent major depressive disorder before and after fluoxetine treatment. American Journal of Psychiatry, 2012. 169(4): p. 381-388. 32. Chechko, N., et al., Brain circuitries involved in emotional interference task in major depression disorder. Journal of affective disorders, 2013. 149(1-3): p. 136-145. 33. Li, X. and J. Wang, Abnormal neural activities in adults and youths with major depressive disorder during emotional processing: a meta-analysis. Brain Imaging and Behavior, 2021. 15(2): p. 1134-1154. 34. Miller, C.H., et al., Meta-analysis of functional neuroimaging of major depressive disorder in youth. JAMA psychiatry, 2015. 72(10): p. 1045-1053. 35. Fitzgerald, P.B., et al., A meta‐analytic study of changes in brain activation in depression. Human brain mapping, 2008. 29(6): p. 683-695. 36. Groenewold, N.A., et al., Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 2013. 37(2): p. 152-163. 37. Müller, V.I., et al., Altered brain activity in unipolar depression revisited: meta-analyses of neuroimaging studies. JAMA psychiatry, 2017. 74(1): p. 47-55. 38. Hariri, A.R., et al., The amygdala response to emotional stimuli: a comparison of faces and scenes. Neuroimage, 2002. 17(1): p. 317-323. 39. Klimes-Dougan, B., et al., Multilevel assessment of the neurobiological threat system in depressed adolescents: Interplay between the limbic system and hypothalamic–pituitary–adrenal axis. Development and psychopathology, 2014. 26(4pt2): p. 1321-1335. 40. Musgrove, D.R., et al., Impaired bottom-up effective connectivity between amygdala and subgenual anterior cingulate cortex in unmedicated adolescents with major depression: results from a dynamic causal modeling analysis. Brain connectivity, 2015. 5(10): p. 608-619. 41. Yang, T.T., et al., Adolescents with major depression demonstrate increased amygdala activation. Journal of the American Academy of Child & Adolescent Psychiatry, 2010. 49(1): p. 42-51. 42. Wackerhagen, C., et al., Amygdala functional connectivity in major depression–disentangling markers of pathology, risk and resilience. Psychological Medicine, 2020. 50(16): p. 2740-2750. 43. Poldrack, R.A., et al., Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature reviews neuroscience, 2017. 18(2): p. 115-126. 44. Li, Y.P., S.R. Cooper, and T.S. Braver, The role of neural load effects in predicting individual differences in working memory function. NeuroImage, 2021. 245: p. 118656. 45. Fu, C.H., Y. Fan, and C. Davatzikos, Widespread morphometric abnormalities in major depression: neuroplasticity and potential for biomarker development. Neuroimaging Clinics, 2020. 30(1): p. 85-95. 46. Hahn, T., et al., Integrating neurobiological markers of depression. Archives of general psychiatry, 2011. 68(4): p. 361-368. 47. Bürger, C., et al., Differential abnormal pattern of anterior cingulate gyrus activation in unipolar and bipolar depression: an fMRI and pattern classification approach. Neuropsychopharmacology, 2017. 42(7): p. 1399-1408. 48. Schaefer, A., et al., Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral cortex, 2018. 28(9): p. 3095-3114. 49. Thomas Yeo, B., et al., The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of neurophysiology, 2011. 106(3): p. 1125-1165. 50. Bassett, D.S. and O. Sporns, Network neuroscience. Nature neuroscience, 2017. 20(3): p. 353-364. 51. Lai, C.-H., Promising neuroimaging biomarkers in depression. Psychiatry investigation, 2019. 16(9): p. 662. 52. Sudlow, C., et al., UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS medicine, 2015. 12(3): p. e1001779. 53. Miller, K.L., et al., Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature neuroscience, 2016. 19(11): p. 1523-1536. 54. Alfaro-Almagro, F., et al., Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage, 2018. 166: p. 400-424. 55. Hennessy, S., et al., Factors influencing the optimal control-to-case ratio in matched case-control studies. American journal of epidemiology, 1999. 149(2): p. 195-197. 56. Manuck, S.B., et al., Temporal stability of individual differences in amygdala reactivity. American Journal of Psychiatry, 2007. 164(10): p. 1613-1614. 57. Smith, S.M., et al., Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 2004. 23: p. S208-S219. 58. Smith, D.J., et al., Prevalence and characteristics of probable major depression and bipolar disorder within UK biobank: cross-sectional study of 172,751 participants. PloS one, 2013. 8(11): p. e75362. 59. Davis, K. and M. Hotopf, Mental health phenotyping in UK Biobank. Progress in Neurology and Psychiatry, 2019. 23(1): p. 4-7. 60. Dutt, R.K., et al., Mental health in the UK Biobank: A roadmap to self-report measures and neuroimaging correlates. Human Brain Mapping, 2022. 43(2): p. 816-832. 61. Wray, N.R., et al., Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature genetics, 2018. 50(5): p. 668-681. 62. Choi, S.W., T.S.-H. Mak, and P.F. O’Reilly, Tutorial: a guide to performing polygenic risk score analyses. Nature protocols, 2020. 15(9): p. 2759-2772. 63. Pornpattananangkul, N., et al., An Omics-Inspired Elastic Net Approach Drastically Improves Out-of-Sample Prediction and Regional Inference of Task-Based fMRI. bioRxiv, 2020. 64. Holm, S., A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, 1979: p. 65-70. 65. Computing, R., R: A language and environment for statistical computing. Vienna: R Core Team, 2013. 66. Etzel, J.A. and T.S. Braver. MVPA permutation schemes: Permutation testing in the land of cross-validation. in 2013 International Workshop on Pattern Recognition in Neuroimaging. 2013. IEEE. 67. LeDoux, J., The amygdala. Current biology, 2007. 17(20): p. R868-R874. 68. Diano, M., et al., Amygdala response to emotional stimuli without awareness: facts and interpretations. Frontiers in psychology, 2017. 7: p. 2029. 69. Santos, A., et al., Evidence for a general face salience signal in human amygdala. Neuroimage, 2011. 54(4): p. 3111-3116. 70. García-García, I., et al., Neural processing of negative emotional stimuli and the influence of age, sex and task-related characteristics. Neuroscience & Biobehavioral Reviews, 2016. 68: p. 773-793. 71. Dunsmoor, J.E. and R. Paz, Fear generalization and anxiety: behavioral and neural mechanisms. Biological psychiatry, 2015. 78(5): p. 336-343. 72. Ramasubbu, R., et al., Accuracy of automated classification of major depressive disorder as a function of symptom severity. NeuroImage: Clinical, 2016. 12: p. 320-331. 73. Fanselow, M.S. and H.-W. Dong, Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 2010. 65(1): p. 7-19. 74. Corbetta, M. and G.L. Shulman, Control of goal-directed and stimulus-driven attention in the brain. Nature reviews neuroscience, 2002. 3(3): p. 201-215. 75. Dixon, M.L., et al., Emotion and the prefrontal cortex: An integrative review. Psychological bulletin, 2017. 143(10): p. 1033. 76. Portugal, L.C.L., et al., Interactions between emotion and action in the brain. Neuroimage, 2020. 214: p. 116728. 77. Pourtois, G. and P. Vuilleumier, Dynamics of emotional effects on spatial attention in the human visual cortex. Progress in brain research, 2006. 156: p. 67-91. 78. Su, J., et al., The effect of negative emotion on multiple object tracking task: An ERP study. Neuroscience Letters, 2017. 641: p. 15-20. 79. Underwood, R., et al., Networks underpinning emotion: A systematic review and synthesis of functional and effective connectivity. NeuroImage, 2021. 243: p. 118486. 80. Floresco, S.B., The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol, 2015. 66(1): p. 25-52. 81. Vossel, S., J.J. Geng, and G.R. Fink, Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. The Neuroscientist, 2014. 20(2): p. 150-159. 82. Peters, S.K., K. Dunlop, and J. Downar, Cortico-striatal-thalamic loop circuits of the salience network: a central pathway in psychiatric disease and treatment. Frontiers in systems neuroscience, 2016. 10: p. 104. 83. Liu, J., et al., Ventral attention-network effective connectivity predicts individual differences in adolescent depression. Journal of Affective Disorders, 2019. 252: p. 55-59. 84. Sylvester, C.M., et al., Resting state functional connectivity of the ventral attention network in children with a history of depression or anxiety. Journal of the American Academy of Child & Adolescent Psychiatry, 2013. 52(12): p. 1326-1336. e5. 85. Kerestes, R., et al., Specific functional connectivity alterations of the dorsal striatum in young people with depression. NeuroImage: Clinical, 2015. 7: p. 266-272. 86. Chenji, S., et al., Investigating default mode and sensorimotor network connectivity in amyotrophic lateral sclerosis. PLoS One, 2016. 11(6): p. e0157443. 87. Riemann, D., et al., Sleep, insomnia, and depression. Neuropsychopharmacology, 2020. 45(1): p. 74-89. 88. Lee, J.-J., et al., A neuroimaging biomarker for sustained experimental and clinical pain. Nature medicine, 2021. 27(1): p. 174-182. 89. Seminowicz, D.A. and M. Moayedi, The dorsolateral prefrontal cortex in acute and chronic pain. The Journal of Pain, 2017. 18(9): p. 1027-1035. 90. Bair, M.J., et al., Depression and pain comorbidity: a literature review. Archives of internal medicine, 2003. 163(20): p. 2433-2445. 91. Li, Z., et al., Disrupted brain network topology in chronic insomnia disorder: a resting-state fMRI study. Neuroimage: Clinical, 2018. 18: p. 178-185. 92. Li, C., et al., Abnormal whole-brain functional connectivity in patients with primary insomnia. Neuropsychiatric Disease and Treatment, 2017. 13: p. 427. 93. Wang, L., et al., A systematic review of resting-state functional-MRI studies in major depression. Journal of affective disorders, 2012. 142(1-3): p. 6-12. 94. Raichle, M.E., The brain's default mode network. Annual review of neuroscience, 2015. 38: p. 433-447. 95. Whitfield-Gabrieli, S. and J.M. Ford, Default mode network activity and connectivity in psychopathology. Annual review of clinical psychology, 2012. 8: p. 49-76. 96. Yan, M., et al., Abnormal Default-Mode Network Homogeneity in Melancholic and Nonmelancholic Major Depressive Disorder at Rest. Neural plasticity, 2021. 2021. 97. Guo, W., et al., Abnormal default-mode network homogeneity in first-episode, drug-naive major depressive disorder. PloS one, 2014. 9(3): p. e91102. 98. Li, B.J., et al., A brain network model for depression: From symptom understanding to disease intervention. CNS neuroscience & therapeutics, 2018. 24(11): p. 1004-1019. 99. Majerus, S., et al., The dorsal attention network reflects both encoding load and top–down control during working memory. Journal of Cognitive Neuroscience, 2018. 30(2): p. 144-159. 100. Yang, H., et al., Disrupted intrinsic functional brain topology in patients with major depressive disorder. Molecular psychiatry, 2021. 26(12): p. 7363-7371. 101. Krolak-Salmon, P., et al., Early amygdala reaction to fear spreading in occipital, temporal, and frontal cortex: a depth electrode ERP study in human. Neuron, 2004. 42(4): p. 665-676. 102. Ren, Z., et al., Brain functional basis of subjective well-being during negative facial emotion processing task-based fMRI. Neuroscience, 2019. 423: p. 177-191. 103. Zhang, B., et al., Discriminating subclinical depression from major depression using multi-scale brain functional features: a radiomics analysis. Journal of Affective Disorders, 2022. 297: p. 542-552. 104. Delaveau, P., et al., Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. Journal of affective disorders, 2011. 130(1-2): p. 66-74. 105. Tamm, S., et al., No association between amygdala responses to negative faces and depressive symptoms: cross-sectional data from 28,638 individuals in the UK Biobank cohort. American Journal of Psychiatry, 2022. 179(7): p. 509-513.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84964-
dc.description.abstract近年許多研究運用靜息態與作業相關功能性磁振造影(tfMRI)揭露腦部影像與憂鬱症的關聯。儘管如此,腦部活動與憂鬱症之間的關係,至今仍未有一致的結論。這些分歧的研究證據,可能來自於過往研究中有限的樣本數,或是使用單變項分析。本研究嘗試在憂鬱症患者與無相關病史的健康受試者身上,探討其腦部活動與憂鬱程度的關聯。我們從英國生物樣本庫(UK Biobank)納入了417位憂鬱症患者與860位健康受試者。每位受試者都在功能性磁振造影掃描時進行了Hariri 等人(2002)設計的情緒性作業。我們也進一步套用了Schaefer等人(2018)提出的大腦區域-全域分割法執行腦影像的分析。我們觀察到,只有在被情緒性作業激起反應的腦區中,可以觀察到憂鬱程度與腦部活動顯著相關 (在PHQ-9與RDS-4的結果均為 rs = -0.183; p = 0.020)。在單變項模型中,我們透過Wilcoxon等級檢定發現功能性磁振造影訊號對憂鬱症患者與健康受試者,在其憂鬱程度的預測力存在顯著差異。在對PHQ-9的預測上,腹側注意力與感覺運動聯合皮質區網路對憂鬱症患者預測度較好(p < 0.001)、邊緣與預設模式網路則對健康受試者較佳(p < 0.001)。在對RDS-4的預測上,除了額葉頂葉注意力網路外,所有網路都對憂鬱症患者有著較好的預測能力。在對PRS的預測上,則是腹側注意力網路對健康受試者有著較好的預測能力(p = 0.043)。最後,在多變項模型中,我們的結果顯示了效果量與預測度彼此相關(PHQ-9:r = 0.085,p = 0.004;RDS-4:r = 0.062,p < 0.001)。總結來說,本研究的結果為腦部活動與憂鬱程度的預測提供了進一步的證據以及不同的觀點。zh_TW
dc.description.abstractIn recent years, findings of neural basis for depression have been discovered in both resting-state and task-based functional magnetic resonance imaging (tfMRI). However, the results were largely inconclusive. The disparity may be derived from the limited sample size and the insufficient predictive power using univariate analysis. In the present study, we explored the relationship between brain activity and depressive levels (e.g. current depressive scores, the genetic liability of depression using polygenic risk score), among severe depressive patients (MDD) and healthy controls (HC). We used the tfMRI database from the UK Biobank. Participants (N=417 for MDD; N=860 for HC) performed an emotional task using the Hariri et al., (2002) paradigm in which they viewed faces with negative emotions and shapes. We conducted a parcel-based analysis by employing a local-global parcellation scheme in Schaefer et al., (2018). The correlations between depressive level and brain activity in the task-activated parcels demonstrated heterogeneous responses to emotionally negative stimuli in the cortical network (rs = -0.183; p = 0.020 for the Patient Health Questionnaire 9-question version (PHQ-9) and the recent depressive symptoms (RDS-4) scores in the task-activated parcels). The MDD and the HC groups had different predictive power for depressive levels based on the results of the univariate model. For the PHQ-9, predictive power was significantly larger in MDD than HC groups (p < 0.001) in the ventral attention and motor networks, and smaller in MDD than HC groups (p < 0.001) in limbic and default mode networks. For the RDS-4, predictive power was significantly larger in MDD than HC groups in all seven but frontoparietal control networks. For the polygenic risk score of depression, predictive power in the ventral attention network was larger in the HC than MDD group (p = 0.043). In general, the multivariate model demonstrated better predictive power to depressive level than the univariate model the association between effect size and predictive power . These findings provided evidence for the prediction ability using tfMRI data for depressive levels.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:35:16Z (GMT). No. of bitstreams: 1
U0001-1808202219122400.pdf: 3958422 bytes, checksum: c04af57e51391d7f647af73da55e6a76 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審會定書 I 謝辭 II 中文摘要 III Abstract V Contents VII Chapter 1 Introduction 1 Chapter 2 Methods 6 2.1 Participants 6 2.2 Data collection and preprocessing 7 2.3 Face-Shape contrast of parameter estimators and parcellation 8 2.4 Phenotypic depressive measurements 9 2.5 Genetic depressive measurement 10 2.6 Whole-brain and amygdala analyses 11 2.7 Effect size and task-sensitive regions at the network level 12 2.8 Correlation between brain activity and depressive level at the network level 13 2.9 Univariate predictive models for depressive levels 14 2.10 Multivariate predictive models for depressive levels 15 Chapter 3 Result 17 3.1 Demographics comparisons between probable severe depression patients and healthy controls 17 3.2 Whole-brain and ROI analyses 17 3.3 Network analyses – effect size and task-sensitive regions 18 3.4 Correlation between COPE and depressive level 19 3.5 Univariate predictive power of parcel to depressive levels 21 3.6 Multivariate predictive power of parcel to depressive levels 22 Chapter 4 Discussion 23 4.1 Replicability of amygdala activation in Hariri emotional task 23 4.2 No correlation between COPE in the Hariri task and depression 24 4.3 Univariate predictive power in several networks reveal group differences 25 4.4 Multivariate predictive power implies parcels within a certain range of effect size help predict depressive levels 28 4.5 Strength and Limitations 29 Chapter 5 Conclusion 31 Reference 32 Tables 38 Figures 52
dc.language.isoen
dc.title使用大腦區域-全域分割法探討臉部負面表情引起之腦部活動預測憂鬱症個體差異zh_TW
dc.titleThe emotional effects of negative faces in predicting individual differences in depression using local-global brain parcellationsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor郭柏呈(Bo-Cheng Kuo)
dc.contributor.oralexamcommittee林慶波(Ching-Po Lin),蕭朱杏(Chuhsing Hsiao),陳為堅(Wei-J Chen)
dc.subject.keyword負面情緒性刺激,憂鬱症,作業相關功能性磁振造影,大腦區域-全域分割法,預測模型,zh_TW
dc.subject.keywordemotionally negative stimuli,depression,tfMRI,local-global parcellation,prediction model,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202202558
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-23
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
dc.date.embargo-lift2027-08-22-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202219122400.pdf
  目前未授權公開取用
3.87 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved