請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江宏仁 | zh_TW |
| dc.contributor.advisor | Hong-Ren Jiang | en |
| dc.contributor.author | 楊于凡 | zh_TW |
| dc.contributor.author | Yu-Fan Yang | en |
| dc.date.accessioned | 2023-03-19T22:35:12Z | - |
| dc.date.available | 2023-12-29 | - |
| dc.date.copyright | 2022-09-29 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] R. S. Rawat, Plasma Science and Technology for Emerging Economies: An AAAPT Experience. Springer, 2017.
[2] X. Lu, M. Laroussi, and V. Puech, "On atmospheric-pressure non-equilibrium plasma jets and plasma bullets," Plasma Sources Science and Technology, vol. 21, no. 3, p. 034005, 2012, doi: 10.1088/0963-0252/21/3/034005. [3] N. Tompkins, "Miniature Tesla Coil Teaching Lab," The Physics Teacher, vol. 57, no. 6, pp. 390-392, 2019. [4] N. K. Kaushik et al., "Plasma and nanomaterials: Fabrication and biomedical applications," Nanomaterials, vol. 9, no. 1, p. 98, 2019, doi: 10.3390/nano9010098. [5] Y. A. Attia, D. Buceta, F. G. Requejo, L. J. Giovanetti, and M. A. López-Quintela, "Photostability of gold nanoparticles with different shapes: the role of Ag clusters," Nanoscale, vol. 7, no. 26, pp. 11273-11279, 2015, doi: 10.1039/C5NR01887K. [6] D. Sun et al., "Atmospheric pressure microplasma for antibacterial silver nanoparticle/chitosan nanocomposites with tailored properties," Composites Science and Technology, vol. 186, p. 107911, 2020, doi: 10.1016/j.compscitech.2019.107911. [7] C. J. Murphy et al., "Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting," Current Opinion in Colloid & Interface Science, vol. 16, no. 2, pp. 128-134, 2011/04/01/ 2011, doi: https://doi.org/10.1016/j.cocis.2011.01.001. [8] V. S. K. Kondeti, U. Gangal, S. Yatom, and P. J. Bruggeman, "Ag+ reduction and silver nanoparticle synthesis at the plasma–liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 35, no. 6, p. 061302, 2017, doi: 10.1116/1.4995374. [9] H. Lee, S. H. Park, S.-C. Jung, J.-J. Yun, S.-J. Kim, and D.-H. Kim, "Preparation of nonaggregated silver nanoparticles by the liquid phase plasma reduction method," Journal of Materials Research, vol. 28, no. 8, pp. 1105-1110, 2013, doi: 10.1557/jmr.2013.59. [10] A. B. Asha and R. Narain, "Nanomaterials properties," in Polymer science and nanotechnology: Elsevier, 2020, pp. 343-359. [11] X. Han, K. Xu, O. Taratula, and K. Farsad, "Applications of nanoparticles in biomedical imaging," (in eng), Nanoscale, vol. 11, no. 3, pp. 799-819, Jan 17 2019, doi: 10.1039/c8nr07769j. [12] J. Yeo et al., "Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application," Journal of Power Sources, vol. 246, pp. 562-568, 2014/01/15/ 2014, doi: https://doi.org/10.1016/j.jpowsour.2013.08.012. [13] J. Singh, A. Mehta, M. Rawat, and S. Basu, "Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-Nitrophenol reduction," Journal of Environmental Chemical Engineering, vol. 6, no. 1, pp. 1468-1474, 2018/02/01/ 2018, doi: https://doi.org/10.1016/j.jece.2018.01.054. [14] T. B. Nguyen, T. K. Thu Vu, Q. D. Nguyen, T. D. Nguyen, T. A. Nguyen, and T. H. Trinh, "Preparation of metal nanoparticles for surface enhanced Raman scattering by laser ablation method," Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 3, no. 2, p. 025016, 2012/05/04 2012, doi: 10.1088/2043-6262/3/2/025016. [15] I. Ban, J. Stergar, M. Drofenik, G. Ferk, and D. Makovec, "Synthesis of copper–nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia," Journal of Magnetism and Magnetic Materials, vol. 323, no. 17, pp. 2254-2258, 2011/09/01 2011, doi: https://doi.org/10.1016/j.jmmm.2011.04.004. [16] A. Zielińska, E. Skwarek, A. Zaleska, M. Gazda, and J. Hupka, "Preparation of silver nanoparticles with controlled particle size," Procedia Chemistry, vol. 1, no. 2, pp. 1560-1566, 2009/11/01/ 2009, doi: https://doi.org/10.1016/j.proche.2009.11.004. [17] A. K. Mittal, Y. Chisti, and U. C. Banerjee, "Synthesis of metallic nanoparticles using plant extracts," Biotechnology Advances, vol. 31, no. 2, pp. 346-356, 2013/03/01/ 2013, doi: https://doi.org/10.1016/j.biotechadv.2013.01.003. [18] V. Nehra, A. Kumar, and H. Dwivedi, "Atmospheric non-thermal plasma sources," International Journal of Engineering, vol. 2, no. 1, pp. 53-68, 2008. [19] U. R. Kortshagen, R. M. Sankaran, R. N. Pereira, S. L. Girshick, J. J. Wu, and E. S. Aydil, "Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications," Chemical Reviews, vol. 116, no. 18, pp. 11061-11127, 2016/09/28 2016, doi: 10.1021/acs.chemrev.6b00039. [20] N. S. J. Braithwaite, "Introduction to gas discharges," Plasma sources science and technology, vol. 9, no. 4, p. 517, 2000, doi: 10.1088/0963-0252/9/4/307. [21] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006/01/01/ 2006, doi: https://doi.org/10.1016/j.sab.2005.10.003. [22] H.-R. Metelmann, T. Von Woedtke, and K.-D. Weltmann, Comprehensive clinical plasma medicine: cold physical plasma for medical application. Springer, 2018. [23] K. Tachibana, "Current status of microplasma research," IEEJ Transactions on Electrical and Electronic Engineering, vol. 1, no. 2, pp. 145-155, 2006, doi: 10.1002/tee.20031. [24] J.-R. Riba, A. Morosini, and F. Capelli, "Comparative study of ac and positive and negative dc visual corona for sphere-plane gaps in atmospheric air," Energies, vol. 11, no. 10, p. 2671, 2018, doi: 10.3390/en11102671. [25] S.-J. Park and J.-S. Jin, "Effect of Corona Discharge Treatment on the Dyeability of Low-Density Polyethylene Film," Journal of Colloid and Interface Science, vol. 236, no. 1, pp. 155-160, 2001/04/01/ 2001, doi: https://doi.org/10.1006/jcis.2000.7380. [26] H. Wang, J. Li, and X. Quan, "Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water," Journal of Electrostatics, vol. 64, no. 6, pp. 416-421, 2006/06/01/ 2006, doi: https://doi.org/10.1016/j.elstat.2005.11.004. [27] H. Ait Said, H. Nouri, and Y. Zebboudj, "Effect of air flow on corona discharge in wire-to-plate electrostatic precipitator," Journal of Electrostatics, vol. 73, pp. 19-25, 2015/02/01/ 2015, doi: https://doi.org/10.1016/j.elstat.2014.10.004. [28] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998, doi: 10.1109/27.747887. [29] U. Kogelschatz, "Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications," Plasma Chemistry and Plasma Processing, vol. 23, no. 1, pp. 1-46, 2003/03/01 2003, doi: 10.1023/A:1022470901385. [30] 張家豪 et al., "電漿源原理與應用之介紹," 物理雙月刊, vol. 28, no. 2, pp. 440-451, 2006/04 2006. [31] X. Wu, Y. Luo, F. Zhao, S. M. M, and G. Mu, "Influence of dielectric barrier discharge cold plasma on physicochemical property of milk for sterilization," Plasma Processes and Polymers, vol. 18, no. 1, p. 1900219, 2021/01/01 2021, doi: https://doi.org/10.1002/ppap.201900219. [32] K. Wang, W. Wang, D. Yang, Y. Huo, and D. Wang, "Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma," Applied Surface Science, vol. 256, no. 22, pp. 6859-6864, 2010/09/01/ 2010, doi: https://doi.org/10.1016/j.apsusc.2010.04.101. [33] Y.-M. Sung and T. Sakoda, "Optimum conditions for ozone formation in a micro dielectric barrier discharge," Surface and Coatings Technology, vol. 197, no. 2, pp. 148-153, 2005/07/22/ 2005, doi: https://doi.org/10.1016/j.surfcoat.2004.09.031. [34] V. Armenise, A. Milella, F. Fracassi, P. Bosso, and F. Fanelli, "Deposition of thin films containing carboxylic acid groups on polyurethane foams by atmospheric pressure non-equilibrium plasma jet," Surface and Coatings Technology, vol. 379, p. 125017, 2019/12/15/ 2019, doi: https://doi.org/10.1016/j.surfcoat.2019.125017. [35] F. Duriyasart, M. Ohtani, J.-S. Oh, A. Hatta, and K. Kobiro, "A new approach to surface activation of porous nanomaterials using non-thermal helium atmospheric pressure plasma jet treatment," Chemical Communications, vol. 53, no. 50, pp. 6704-6707, 2017, doi: 10.1039/C7CC02927F. [36] R. R. Elfa, M. K. Ahmad, S. C. Fhong, M. Z. Sahdan, and N. Nayan, "Comparative study between chemical and atmospheric pressure plasma jet cleaning on glass substrate," AIP Conference Proceedings, vol. 1788, no. 1, p. 030113, 2017/01/03 2017, doi: 10.1063/1.4968366. [37] E. Gomez, D. A. Rani, C. Cheeseman, D. Deegan, M. Wise, and A. Boccaccini, "Thermal plasma technology for the treatment of wastes: A critical review," Journal of hazardous materials, vol. 161, no. 2-3, pp. 614-626, 2009, doi: 10.1016/j.jhazmat.2008.04.017. [38] J. Li, K. Liu, S. Yan, Y. Li, and D. Han, "Application of thermal plasma technology for the treatment of solid wastes in China: An overview," Waste Management, vol. 58, pp. 260-269, 2016, doi: 10.1016/j.wasman.2016.06.011. [39] R. T. Lermen and I. G. Machado, "Development of a new hybrid plasma torch for materials processing," Journal of Materials Processing Technology, vol. 212, no. 11, pp. 2371-2379, 2012, doi: 10.1016/j.jmatprotec.2012.06.009. [40] N. Venkatramani, "Industrial plasma torches and applications," Current Science, pp. 254-262, 2002. [41] J. E. Brittain, "Electrical engineering hall of fame: Nikola Tesla," Proceedings of the IEEE, vol. 93, no. 5, pp. 1057-1059, 2005, doi: 10.1109/JPROC.2005.846330. [42] D. B. Graves, "Lessons from tesla for plasma medicine," IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 2, no. 6, pp. 594-607, 2018, doi: 10.1109/TRPMS.2018.2866373. [43] L. Bardos and H. Barankova, "Plasma processes at atmospheric and low pressures," Vacuum, vol. 83, no. 3, pp. 522-527, 2008, doi: 10.1016/j.vacuum.2008.04.063. [44] L. R. Bornhoeft et al., "Teslaphoresis of carbon nanotubes," ACS nano, vol. 10, no. 4, pp. 4873-4881, 2016, doi: 10.1021/acsnano.6b02313. [45] H. Suomalainen, "Tesla coil theory and applications," New York: Haba, 1993. [46] K. D. Skeldon, A. I. Grant, G. MacLellan, and C. McArthur, "Development of a portable Tesla coil apparatus," European Journal of Physics, vol. 21, no. 2, p. 125, 2000, doi: 10.1088/0143-0807/21/2/302. [47] N. Barsoum and G. I. Stanley, "Design of high voltage low power supply device," Universal Journal of Electrical and Electronic Engineering, vol. 3, no. 1, pp. 6-12, 2015, doi: 10.13189/ujeee.2015.030102. [48] I. Khan, K. Saeed, and I. Khan, "Nanoparticles: Properties, applications and toxicities," Arabian Journal of Chemistry, vol. 12, no. 7, pp. 908-931, 2019/11/01/ 2019, doi: https://doi.org/10.1016/j.arabjc.2017.05.011. [49] V. Arole and S. Munde, "Fabrication of nanomaterials by top-down and bottom-up approaches-an overview," J. Mater. Sci, vol. 1, pp. 89-93, 2014. [50] N. Abid et al., "Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review," Advances in Colloid and Interface Science, p. 102597, 2021, doi: 10.1016/j.cis.2021.102597. [51] Y. Hatakeyama, K. Onishi, and K. Nishikawa, "Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique," RSC Advances, vol. 1, no. 9, pp. 1815-1821, 2011, doi: 10.1039/C1RA00688F. [52] V. Amendola, S. Polizzi, and M. Meneghetti, "Free Silver Nanoparticles Synthesized by Laser Ablation in Organic Solvents and Their Easy Functionalization," Langmuir, vol. 23, no. 12, pp. 6766-6770, 2007/06/01 2007, doi: 10.1021/la0637061. [53] M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma, and M. Haruta, "Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2," Catalysis Letters, vol. 51, no. 1, pp. 53-58, 1998/04/01 1998, doi: 10.1023/A:1019020614336. [54] N. Bayal and P. Jeevanandam, "Synthesis of metal aluminate nanoparticles by sol–gel method and studies on their reactivity," Journal of Alloys and Compounds, vol. 516, pp. 27-32, 2012/03/05/ 2012, doi: https://doi.org/10.1016/j.jallcom.2011.11.080. [55] A. Saravanan et al., "A review on biosynthesis of metal nanoparticles and its environmental applications," Chemosphere, vol. 264, p. 128580, 2021/02/01/ 2021, doi: https://doi.org/10.1016/j.chemosphere.2020.128580. [56] S. P. Goutam, G. Saxena, D. Roy, A. K. Yadav, and R. N. Bharagava, "Green synthesis of nanoparticles and their applications in water and wastewater treatment," in Bioremediation of industrial waste for environmental safety: Springer, 2020, pp. 349-379. [57] X. Liang, Z.-j. Wang, and C.-j. Liu, "Size-controlled synthesis of colloidal gold nanoparticles at room temperature under the influence of glow discharge," Nanoscale research letters, vol. 5, no. 1, pp. 124-129, 2010, doi: 10.1007/s11671-009-9453-0. [58] P. Bruggeman et al., "Plasma–liquid interactions: a review and roadmap," Plasma sources science and technology, vol. 25, no. 5, p. 053002, 2016, doi: 10.1088/0963-0252/25/5/053002. [59] J. Patel, L. Němcová, P. Maguire, W. Graham, and D. Mariotti, "Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry," Nanotechnology, vol. 24, no. 24, p. 245604, 2013, doi: 10.1088/0957-4484/24/24/245604. [60] X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers in Medical Science, vol. 23, no. 3, pp. 217-228, 2008/07/01 2008, doi: 10.1007/s10103-007-0470-x. [61] W. Niu, L. Zhang, and G. Xu, "Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control," Nanoscale, vol. 5, no. 8, pp. 3172-3181, 2013, doi: 10.1039/C3NR00219E. [62] Z. Huo, C.-k. Tsung, W. Huang, X. Zhang, and P. Yang, "Sub-Two Nanometer Single Crystal Au Nanowires," Nano Letters, vol. 8, no. 7, pp. 2041-2044, 2008/07/01 2008, doi: 10.1021/nl8013549. [63] Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, "Gold Nanorods: Electrochemical Synthesis and Optical Properties," The Journal of Physical Chemistry B, vol. 101, no. 34, pp. 6661-6664, 1997/08/01 1997, doi: 10.1021/jp971656q. [64] B. Wiley, Y. Sun, and Y. Xia, "Synthesis of Silver Nanostructures with Controlled Shapes and Properties," Accounts of Chemical Research, vol. 40, no. 10, pp. 1067-1076, 2007/10/01 2007, doi: 10.1021/ar7000974. [65] N. D. Burrows et al., "Anisotropic Nanoparticles and Anisotropic Surface Chemistry," The Journal of Physical Chemistry Letters, vol. 7, no. 4, pp. 632-641, 2016/02/18 2016, doi: 10.1021/acs.jpclett.5b02205. [66] N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods," The Journal of Physical Chemistry B, vol. 105, no. 19, pp. 4065-4067, 2001/05/01 2001, doi: 10.1021/jp0107964. [67] X. L. Deng, A. Y. Nikiforov, P. Vanraes, and C. Leys, "Direct current plasma jet at atmospheric pressure operating in nitrogen and air," Journal of Applied Physics, vol. 113, no. 2, p. 023305, 2013, doi: 10.1063/1.4774328. [68] F. I. El-Dossoki, E. A. Gomaa, and O. K. Hamza, "Solvation thermodynamic parameters for sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES) surfactants in aqueous and alcoholic-aqueous solvents," SN Applied Sciences, vol. 1, no. 8, p. 933, 2019/07/29 2019, doi: 10.1007/s42452-019-0974-6. [69] L. Kvítek et al., "Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs)," The Journal of Physical Chemistry C, vol. 112, no. 15, pp. 5825-5834, 2008/04/01 2008, doi: 10.1021/jp711616v. [70] J. E. Ortiz-Castillo, R. C. Gallo-Villanueva, M. J. Madou, and V. H. Perez-Gonzalez, "Anisotropic gold nanoparticles: A survey of recent synthetic methodologies," Coordination Chemistry Reviews, vol. 425, p. 213489, 2020, doi: 10.1016/j.ccr.2020.213489. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84963 | - |
| dc.description.abstract | 由於金屬奈米顆粒具有獨特的光學特性,已被廣泛應用在各領域。在過去有文獻指出大氣電漿產生的電子與活性物質可作為還原劑來合成金屬奈米顆粒,其中常被使用的大氣電漿種類為直流微電漿,但雙電極構造限制顆粒在表面圖案化的應用。由於特斯拉線圈可產生高電壓,故能作為驅動電漿形成的裝置,且具有單電極優勢,但至今尚未被應用在合成金屬奈米顆粒。因此在本研究中,提出以特斯拉線圈驅動大氣微電漿的方法在溶液中合成金與銀奈米顆粒,討論陰、陽、非離子界面活性劑與製程參數對顆粒形態的影響,並提出一種在表面原位合成金屬奈米顆粒的技術。
實驗結果顯示溶液未添加界面活性劑時,金與銀奈米顆粒傾向聚集在氣-液界面形成薄膜,有添加界面活性劑則可促進顆粒在溶液內部形成。在氯金酸溶液含有陰離子型界面活性劑(SDS)與非離子型界面活性劑(Triton X-100)的金奈米顆粒形貌為圓形;含有陽離子型界面活性劑(CTAC)的金奈米顆粒形貌則為圓形、三角形、棒狀,此非等向性的生長可應用於設計形狀多樣化的顆粒。 相較於奈米顆粒在溶液中合成,由於紙上可提供的成核點數目較多,加上電漿造成的局部高溫,使顆粒能在表面快速生成。此種直接書寫的方法未來可應用於奈米顆粒在固體表面圖案化的製備。 | zh_TW |
| dc.description.abstract | Metal nanoparticles have been widely utilized in various fields due to their unique optical property. In the past, many studies reported that electrons and reactive species generated by atmospheric plasma could be used as reducing agents to synthesize metal nanoparticles. The most commonly used type of atmospheric plasma for synthesizing metal nanoparticles is DC microplasma, but the dual-electrode structure limits the application of particles patterning on the surface. Since Tesla coil can generate high voltages, it could be used as a power source for driving plasma generation and has the advantage of single electrodes. However, Tesla coil has not yet been used in the synthesis of metal nanoparticles to date. Therefore, in this study, a method of driving atmospheric microplasma by Tesla coil is proposed to synthesize gold and silver nanoparticles in the solution. The effects of anionic, cationic, nonionic surfactants and process parameters on the particle morphology are also discussed.
The results show that without surfactant, gold and silver nanoparticles tend to aggregate at the gas-liquid interface to form a thin film. The addition of surfactant can promote the formation of particles in the solution. The morphology of gold nanoparticles in anionic surfactant (SDS) and nonionic surfactant (Triton X-100) solution is spherical; the morphology of gold nanoparticles in cationic surfactant (CTAC) solution includes spherical, triangular, and rod-like shape. This anisotropic growth could be applied to design diverse shapes of nanoparticles. In addition, we develop a technique for in-situ synthesis of metal nanoparticles on the solid surface. Compared with nanoparticles synthesizing in the solution, fabrication of nanoparticles on the paper surface is faster due to large amounts of nucleation site on the solid surface and local high temperature caused by the plasma. This direct-writing method could be used for patterning nanoparticles on the solid surface. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:35:12Z (GMT). No. of bitstreams: 1 U0001-2409202211420900.pdf: 5523133 bytes, checksum: 3d2bcfdf200fc776ce13fc197d70251a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 1 1.3 論文總覽 2 第二章 文獻回顧與理論基礎 3 2.1 電漿簡介 3 2.1.1 電漿形成機制 3 2.1.2 熱平衡與非熱平衡電漿 5 2.1.1 大氣電漿分類與應用 6 2.2 特斯拉線圈 9 2.2.1 工作原理 9 2.2.2 固態特斯拉線圈 10 2.3 金屬奈米顆粒合成方法 12 2.3.1 常見的合成方法 12 2.3.2 電漿合成方法 14 2.4 非等向性金屬奈米顆粒合成 16 第三章 實驗方法 17 3.1 實驗藥品 17 3.2 大氣電漿系統之架設 17 3.3 直流電漿系統之架設 20 3.4 系統表徵之量測 21 3.4.1 電漿放光光譜 21 3.4.2 電漿溫度 21 3.4.3 特斯拉線圈頻率 22 3.5 金屬奈米顆粒製備與表徵分析之流程 22 3.6 奈米金屬顆粒表徵與鑑定儀器 23 3.7 紙基材上合成奈米金屬之步驟 24 第四章 實驗結果與討論 25 4.1 電漿系統表徵量測 25 4.1.1 電漿放光光譜 25 4.1.2 特斯拉線圈頻率及電漿溫度 26 4.1.3 輸入電壓與電漿長度之關係 27 4.2 電漿合成金屬奈米顆粒 29 4.2.1 硝酸銀溶液經電漿處理還原之銀奈米顆粒 29 4.2.2 硝酸銀溶液添界面活性劑經電漿處理還原之銀奈米顆粒 31 4.2.3 氯金酸溶液經電漿處理還原之金奈米顆粒 33 4.2.4 氯金酸溶液添加界面活性劑經電漿處理還原之金奈米顆粒 35 4.2.5 小結 37 4.3 添加不同種類界面活性劑對金奈米顆粒之影響 38 4.3.1 溶液添加陰離子型界面活性劑 (SDS) 38 4.3.2 溶液添加非離子型界面活性劑 (Triton X-100) 40 4.3.3 溶液添加陽離子型界面活性劑(CTAC) 42 4.3.4 小結 44 4.4 製程參數對金奈米顆粒合成之影響 45 4.4.1 前驅物濃度 45 4.4.2 攪拌速度 47 4.4.3 輸入電壓 49 4.4.4 針尖與液面之距離 50 4.4.5 氣體流量 54 4.5 比較本系統電漿與直流電漿合成的金奈米顆粒 57 4.6 紙基材上合成奈米金屬顆粒 59 第五章 結論與未來展望 63 參考文獻 64 附錄 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 奈米顆粒圖案化 | zh_TW |
| dc.subject | 大氣微電漿 | zh_TW |
| dc.subject | 金屬奈米顆粒 | zh_TW |
| dc.subject | 界面活性劑 | zh_TW |
| dc.subject | 特斯拉線圈 | zh_TW |
| dc.subject | nanoparticle patterning | en |
| dc.subject | Tesla coil | en |
| dc.subject | atmospheric pressure microplasma | en |
| dc.subject | metal nanoparticle | en |
| dc.subject | surfactant | en |
| dc.title | 利用特斯拉線圈驅動大氣微電漿之金屬奈米顆粒合成 | zh_TW |
| dc.title | Synthesis of metal nanoparticles using atmospheric pressure microplasma powered by Tesla Coil | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建彰;林耿慧 | zh_TW |
| dc.contributor.oralexamcommittee | Jian-Zhang Chen;Keng-Hui Lin | en |
| dc.subject.keyword | 特斯拉線圈,大氣微電漿,金屬奈米顆粒,界面活性劑,奈米顆粒圖案化, | zh_TW |
| dc.subject.keyword | Tesla coil,atmospheric pressure microplasma,metal nanoparticle,surfactant,nanoparticle patterning, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202203963 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-28 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2025-09-30 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
