請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84956完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊雯如(Wen-Ju Yang) | |
| dc.contributor.author | Tzu-Fang Chang | en |
| dc.contributor.author | 張慈芳 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:34:48Z | - |
| dc.date.copyright | 2022-08-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-23 | |
| dc.identifier.citation | 王啟正、林學詩. 2007. 花蓮亞蔬五號番茄農桿菌基因轉殖系統之建立. 花蓮區農業改良場研究彙報. 25: 37-52. 行政院農委會. 2020. 農業生產統計年報. 行政院農委會. 2022. 農業生產統計. 農業統計資料查詢. < https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx> 行政院農委會. 2022. 農產品批發市場交易行情站. <https://amis.afa.gov.tw/veg/VegProdTransInfoCP.aspx> 余祁暐、楊玉婷. 2013. 產業調查研究與策略分析:全球蔬菜種子產業發展現況. 台灣經濟研究院. 林煜恒、吳靜霞. 2018. 番茄中不同Ty基因組合對於番茄黃化捲葉泰國病毒種之抗病力研究. 臺中區農業改良場研究彙報. 139: 13-26. 洪進維. 1989. 本省番茄雜交一代種子生產技術(下). 嘉義農專推廣簡訊. 1: 13-14. 洪瑛穗、黃俊杉、郭宏遠. 2016. 番椒之雄不稔性介紹及應用. 種苗科技專訊:2-4. 陳正次. 2003. 番茄育種趨勢與策略分析. 種苗科技專訓. 43: 2-5. 郭育妏. 2017. 番茄種子出口產值調查統計. 臺灣栽培重要作物種子需求與產值彙整. < https://www.tss.gov.tw/ws.php?id=6430> 劉芳怡. 2017. 番茄雜交一代種子生產簡介. 100:14-17. Arora, L. and A. Narula. 2017. Gene editing and crop improvement using CRISPR-Cas9 system. Front. Plant Sci. 8. Atanassova, B. 1999. Functional male sterility (ps-2) in tomato (Lycopesicon esculentum Mill.) and its application in breeding and hybrid seed production. Euphytica. 107:13-21. Atanassova, B. 2007. Genic male sterility and its application in tomato (lycopersicon esculentum Mill.) hybrid breeding and hybrid seed production. Acta. Hortic. 729:45-51. Baldet, P., C. Devaux, C. Chevalier, R. Brouquisse, D. Just, and P. Raymond. 2002. Contrasted responses to carbohydrate limitation in tomato fruit at two stages of development. Plant Cell Environ. 25:1639-1649. Bandopadhyay, R., I. Haque, D. Singh, and K. Mukhopadhyay. 2010. Levels and stability of expression of transgenes, p145-186. In: Transgenic Crop Plants. Springer, Berlin, Heidelberg. Begcy, K., T. Nosenko, L.-Z. Zhou, L. Fragner, W. Weckwerth, and T. Dresselhaus. 2019. Male Sterility in Maize after transient heat stress during the tetrad stage of pollen development. Plant Physiol. 18:683-700. Beyhan, N. and U. Serdar. 2008. Assessment of pollen viability and germinability in some European chestnut genotypes (Castanea sativa L.). Hort. Sci. 35:171-178. Bezrutczyk, M., T. Hartwig, M. Horschman, S.N. Char, J. Yang, B. Yang, W.B. Frommer, and D. Sosso. 2018. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol. 218:594-603. Borghi, M. and A.R. Fernie. 2017. Floral metabolism of sugars and amino acids: implications for pollinators' preferences and seed and fruit set. Plant Physiol. 175:1510-1524. Breia, R., A. Conde, H. Badim, A.M. Fortes, H. Gerós, and A. Granell. 2021. Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiol. 186:836-852. Brukhin, V., M. Hernould, N. Gonzalez, C. Chevalier, and A. Mouras. 2003. Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sex. Plant Reprod. 15:311-320. Cheema, D. and M. Dhaliwal. 2005. Hybrid tomato breeding. J. New Seeds. 6:1-14. Chen, H.Y., J.H. Huh, Y.C. Yu, L.H. Ho, L.Q. Chen, D. Tholl, W.B. Frommer, and W.J. Guo. 2015. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J. 83:1046-1058. Chen, K., Y. Wang, R. Zhang, H. Zhang, and C. Gao. 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70:667-697. Chen, L. and Y.G. Liu. 2014. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65:579-606. Chen, L.Q., X.Q. Qu, B.H. Hou, D. Sosso, S. Osorio, A.R. Fernie, and W.B. Frommer. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 335:207-211. Cheng, J., Z. Wang, F. Yao, L. Gao, S. Ma, X. Sui, and Z. Zhang. 2015. Down-regulating CsHT1, a cucumber pollen-specific hexose transporter, inhibits pollen germination, tube growth, and seed development. Plant Physiol. 168:635-647. Chetty, V.J., N. Ceballos, D. Garcia, J. Narváez-Vásquez, W. Lopez, and M.L. Orozco-Cárdenas. 2013. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep. 32:239-247. Chu, Z., M. Yuan, J. Yao, X. Ge, B. Yuan, C. Xu, X. Li, B. Fu, Z. Li, J.L. Bennetzen, Q. Zhang, and S. Wang. 2006. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 20:1250-1255. Colombo, N. and C.R. Galmarini. 2017. The use of genetic, manual and chemical methods to control pollination in vegetable hybrid seed production: a review. Plant Breed. 136:287-299. Crane, M.B. 1915. Heredity of types of inflorescence and fruits in tomato. J. Genet. 5:1-11. De Storme, N. and D. Geelen. 2014. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ. 37:1-18. Devaux, C., P. Baldet, J. Joubès, M. Dieuaide Noubhani, D. Just, C. Chevalier, and P. Raymond. 2003. Physiological, biochemical and molecular analysis of sugar-starvation responses in tomato roots. J. Exp. Bot. 54:1143-1151. Dhall, R.K. 2010. Status of male sterility in vegetables for hybrid development. A Review. Adv. Hortic. Sci. 24:263-279. Du, M., K. Zhou, Y. Liu, L. Deng, X. Zhang, L. Lin, M. Zhou, W. Zhao, C. Wen, J. Xing, C.-B. Li, and C. Li. 2020. A biotechnology-based male-sterility system for hybrid seed production in tomato. Plant J. 102:1090-1100. El-Siddig, M.A., A.A. El-Hussein, and M.M. Saker. 2011. Agrobacterium-mediated transformation of tomato plants expressing defensin gene. Int. J. Agric. Res. 4:323-334. Fan, X.-X., Z.-G. Xu, X.-Y. Liu, C.-M. Tang, L.-W. Wang, and X.-l. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 153:50-55. FAO. 2021. World Food and Agriculture – Statistical Yearbook 2021, Rome. Firon, N., R. Shaked, M.M. Peet, D.M. Pharr, E. Zamski, K. Rosenfeld, L. Althan, and E. Pressman. 2006. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hortic. 109:212-217. Gautam, T., M. Dutta, V. Jaiswal, G. Zinta, V. Gahlaut, and S. Kumar. 2022. Emerging roles of sweet sugar transporters in plant development and abiotic stress responses. Cells. 11:1303. Gomez, L., D. Bancel, E. Rubio, and G. Vercambre. 2007. The microplate reader: An efficient tool for the separate enzymatic analysis of sugars in plant tissues - Validation of a micro-method. J. Sci. Food Agric. 87:1893-1905. Goren, S., N. Lugassi, O. Stein, Y. Yeselson, A.A. Schaffer, R. David-Schwartz, and D. Granot. 2017. Suppression of sucrose synthase affects auxin signaling and leaf morphology in tomato. PLoS One 12:e0182334. Guan, Y.F., X.Y. Huang, J. Zhu, J.F. Gao, H.X. Zhang, and Z.N. Yang. 2008. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol. 147:852-863. Gubiš, J., Z. Lajchova, J. Farago, and Z. Jurekova. 2003. Effect of genotype and explant type on shoot regeneration in tomato (Lycopersicon esculentum Mill.) in vitro. Czech J. Genet. Plant Breed. 39:9. Guo, W.J., R. Nagy, H.Y. Chen, S. Pfrunder, Y.C. Yu, D. Santelia, W.B. Frommer, and E. Martinoia. 2014. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol. 164:777-789. Ho, L.-H., P.A.W. Klemens, H.E. Neuhaus, H.-Y. Ko, S.-Y. Hsieh, and W.-J. Guo. 2019. SlSWEET1a is involved in glucose import to young leaves in tomato plants. J. Exp. Bot. 70:3241-3254. Jeong, H.-J., J.-H. Kang, M. Zhao, J.-K. Kwon, H.-S. Choi, J.H. Bae, H.-a. Lee, Y.-H. Joung, D. Choi, and B.-C. Kang. 2014. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. J. Exp. Bot. 65:6693-6709. Jian, H., K. Lu, B. Yang, T. Wang, ssL. Zhang, A. Zhang, J. Wang, L. Liu, C. Qu, and J. Li. 2016. Genome-wide analysis and expression profiling of the suc and sweet gene families of sucrose transporters in oilseed rape (brassica napus L.). Front. Plant Sci. 7. Jiang, Y., R. Lahlali, C. Karunakaran, T.D. Warkentin, A.R. Davis, and R.A. Bueckert. 2019. Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. Plant Cell Environ. 42:354-372. Julius, B.T., K.A. Leach, T.M. Tran, R.A. Mertz, and D.M. Braun. 2017. Sugar transporters in plants: New insights and discoveries. Plant Cell Physiol. 58:1442-1460. Kim, Y.J. and D. Zhang. 2018. Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci. 23:53-65. Ko, H.-Y., L.-H. Ho, H.E. Neuhaus, and W.-J. Guo. 2021. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiol. 187:2230-2245. Ko, H.-Y., H.-W. Tseng, L.-H. Ho, L. Wang, T.-F. Chang, A. Lin, Y.-L. Ruan, H.E. Neuhaus, and W.-J. Guo. 2022. Hexose translocation mediated by SlSWEET5b is required for pollen maturation in Solanum lycopersicum. Plant Physiol. doi: 10.1093/plphys/kiac057. Lazo, G.R., P.A. Stein, and R.A. Ludwig. 1991. A DNA transformation–Competent Arabidopsis genomic library in Agrobacterium. Bio/Technology. 9:963-967. Li, C., D. Meng, M.A. Piñeros, Y. Mao, A.M. Dandekar, and L. Cheng. 2020. A sugar transporter takes up both hexose and sucrose for sorbitol-modulated in vitro pollen tube growth in apple. Plant Cell. 32:449-469. Li, J., H. Zhang, X. Si, Y. Tian, K. Chen, J. Liu, H. Chen, and C. Gao. 2017. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genet Genomics. 44:465-468. Lin, S.-W., H.-c. Shieh, Y.-W. Wang, C.-W. Tan, R. Schafleitner, W.-J. Yang, and S. Kumar. 2015. Restorer breeding in sweet pepper: Introgressing Rf allele from hot pepper through marker-assisted backcrossing. Sci. Hortic. 197:170-175. Lin, W., D. Sosso, L.-Q. Chen, K. Gase, S.-G. Kim, D. Kessler, P. Klinkenberg, M. Gorder, B.-H. Hou, X.-Q. Qu, C. Carter, I. Baldwin, and W. Frommer. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature. 508:546-549. Liu, J., S. Wang, H. Wang, B. Luo, Y. Cai, X. Li, Y. Zhang, and X. Wang. 2021. Rapid generation of tomato male-sterile lines with a marker use for hybrid seed production by CRISPR/Cas9 system. Mol. Breed. 41:25. Liu, S., Z. Li, S. Wu, and X. Wan. 2021. The essential roles of sugar metabolism for pollen development and male fertility in plants. The Crop J. 9:1223-1236. Løvdal, T. and C. Lillo. 2009. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal. Biochem. 387:238-242. Lu, T., Z. Meng, G. Zhang, M. Qi, Z. Sun, Y. Liu, and T. Li. 2017. Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front. Plant Sci. 8:365. Lu, Y., L. Wei, and T. Wang. 2015. Methods to isolate a large amount of generative cells, sperm cells and vegetative nuclei from tomato pollen for “omics” analysis. Front. Plant Sci. 6:391. Ma, J., T. Liu, and D. Qiu. 2015. Optimization of Agrobacterium-mediated transformation conditions for tomato (Solanum lycopersicum L.). Plant Omics. 8:529-536. Miyazaki, M., M. Araki, K. Okamura, Y. Ishibashi, T. Yuasa, and M. Iwaya-Inoue. 2013. Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi. J. Plant Physiol. 170:1579-1584. Mosquera, D.J.C., D.G.C. Salinas, and G.A.L. Moreno. 2021. Pollen viability and germination in Elaeis oleifera, Elaeis guineensis and their interspecific hybrid. Pesqui. Agropecu. Trop. 51. Mutschler, M., S. Tanksley, and C. Rick. 1987. Linkage maps of the tomato (Lycopersicon esculentum). Report of the Tomato Genetics Cooperative. 37:5-34. Naeem, M., S. Majeed, M.Z. Hoque, and I. Ahmad. 2020. Latest developed strategies to minimize the off-target effects in crispr-cas-mediated genome editing. Cells. 9(7):1608. Oliver, S.N., E.S. Dennis, and R. Dolferus. 2007. ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol. 48:1319-1330. Ortega, F.A., D.W. Barchenger, B. Wei, and P.W. Bosland. 2020. Development of a genotype-specific molecular marker associated with restoration-of-fertility (Rf) in chile pepper (Capsicum annuum). Euphytica. 216:43. Ottaviani, M.-P., T. Smits, and C.H. Hänisch ten Cate. 1993. Differential methylation and expression of the β-glucuronidase and neomycin phosphotransferase genes in transgenic plants of potato cv. Bintje. Plant Sci. 88:73-81. Pacini, E., M. Guarnieri, and M. Nepi. 2006. Pollen carbohydrates and water content during development, presentation, and dispersal: a short review. Protoplasma. 228:73-77. Pan, C., D. Yang, X. Zhao, C. Jiao, Y. Yan, A.T. Lamin-Samu, Q. Wang, X. Xu, Z. Fei, and G. Lu. 2019. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant Cell Environ. 42:1205-1221. Pressman, E., M.M. Peet, and D.M. Pharr. 2002. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 90:631-636. Pressman, E., R. Shaked, S. Shen, L. Altahan, and N. Firon. 2012. Variations in carbohydrate content and sucrose-metabolizing enzymes in tomato (Solanum lycopersicum L.) stamen parts during pollen maturation. Am. J. Plant Sci. 3:252-260 Pucci, A. 2015. Characterization of tomato (Solanum lycopersicum L.) male sterile mutants putatively affected in class B MADS-box transcription factors. Univ., Tuscia. Viterbo, Italy. PhD diss. Sager, R. and J.Y. Lee. 2014. Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses. J. Exp. Bot. 65:6337-6358. Sandhya, D., P. Jogam, A.K. Venkatapuram, P. Savitikadi, V. Peddaboina, V.R. Allini, and S. Abbagani. 2022. Highly efficient Agrobacterium-mediated transformation and plant regeneration system for genome engineering in tomato. Saudi. J. Biol. Sci. 29:103292. Shammai, A., M. Petreikov, Y. Yeselson, A. Faigenboim, M. Moy-Komemi, S. Cohen, D. Cohen, E. Besaulov, A. Efrati, N. Houminer, M. Bar, T. Ast, M. Schuldiner, P.A.W. Klemens, E. Neuhaus, C.J. Baxter, D. Rickett, J. Bonnet, R. White, J.J. Giovannoni, I. Levin, and A. Schaffer. 2018. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit. Plant J. 96:343-357. Santillán Martínez, M.I., V. Bracuto, E. Koseoglou, M. Appiano, E. Jacobsen, R.G.F. Visser, A.-M.A. Wolters, and Y. Bai. 2020. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Bio. 20:284. Sato, S., M. Kamiyama, T. Iwata, N. Makita, H. Furukawa, and H. Ikeda. 2006. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot. 97:731-738. Sawhney, V.K. 2004. Photoperiod-sensitive male-sterile mutant in tomato and its potential use in hybrid seed production. J. Hortic. Sci. Biotechnol. 79:138-141. Shi, J., M. Cui, L. Yang, Y.-J. Kim, and D. Zhang. 2015. Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci. 20:741-753. Stein, O. and D. Granot. 2019. An overview of sucrose synthases in plants. Front. Plant Sci. 10:95. Sun, L., X. Sui, W.J. Lucas, Y. Li, S. Feng, S. Ma, J. Fan, L. Gao, and Z. Zhang. 2019. Down-regulation of the sucrose transporter cssut1 causes male sterility by altering carbohydrate supply. Plant Physiol. 180:986-997. Sun, M.-X., X.-Y. Huang, J. Yang, Y.-F. Guan, and Z.-N. Yang. 2013. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod. 26:83-91. Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2015. Plant physiology and development. 6th. Sinauer Associates, Sunderland, U.S.A. Thuy, T.L., C.-K. Lee, J.-H. Jeong, H.-S. Lee, S.-Y. Yang, Y.-H. Im, and W.-H. Hwang. 2020. Impact of heat stress on pollen fertility rate at the flowering stage in korean rice (Oryza sativa L.) cultivars. Korean J. Crop Sci. 65(1):22-29 Timofejeva, L., D.S. Skibbe, S. Lee, I. Golubovskaya, R. Wang, L. Harper, V. Walbot, and W.Z. Cande. 2013. Cytological characterization and allelism testing of anther developmental mutants identified in a screen of maize male sterile lines. G3 (Bethesda). 3:231-249. Van Eck, J., P. Keen, and M. Tjahjadi. 2019. Agrobacterium tumefaciens-mediated transformation of tomato. Methods mol. biol. 1864:225-234. Velcheva, M., Z. Faltin, M. Flaishman, Y. Eshdat, and A. Perl. 2005. A liquid culture system for Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. Mill.). Plant Sci. 168:121-130. Wan, X., S. Wu, Z. Li, Z. Dong, X. An, B. Ma, Y. Tian, and J. Li. 2019. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol. Plant 12:321-342. Xalxo, R., Yadu, B., Chandra, J., Chandrakar, V., andKeshavkant. S., 2020. Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives, p77-115. In: Alteration in carbohydrate metabolism modulates thermotolerance of plant under heat stress. Wiley, N.J. Xu, J., M. Wolters-Arts, C. Mariani, H. Huber, and I. Rieu. 2017. Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica. 213:156. Xu, Q., S. Chen, R. Yunjuan, S. Chen, and J. Liesche. 2018. Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol. 176:930. Yin, Y.-G., Y. Kobayashi, A. Sanuki, S. Kondo, N. Fukuda, H. Ezura, S. Sugaya, and C. Matsukura. 2009. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. J. Exp. Bot. 61:563-574. Yuan, M. and S. Wang. 2013. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol. Plant. 6:665-674. Zanor, M.a.I.s., S. Osorio, A. Nunes-Nesi, F. Carrari, M. Lohse, B.r. Usadel, C. Kühn, W. Bleiss, P. Giavalisco, L. Willmitzer, R. Sulpice, Y.-H. Zhou, and A.R. Fernie. 2009. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol. 150:1204-1218. Zhang, H., W. Liang, X. Yang, X. Luo, N. Jiang, H. Ma, and D. Zhang. 2010. Carbon starved anther encodes a myb domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell. 22:672-689. Zhang, L., Z. Huang, X. Wang, J. Gao, Y. Guo, Y. Du, and H. Hu. 2016. Fine mapping and molecular marker development of anthocyanin absent, a seedling morphological marker for the selection of male sterile 10 in tomato. Mol. Breed. 36:107. Zhou, H., M. He, J. Li, L. Chen, Z. Huang, S. Zheng, L. Zhu, E. Ni, D. Jiang, B. Zhao, and C. Zhuang. 2016. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci. Rep. 6:37395. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84956 | - |
| dc.description.abstract | 番茄產業面臨兩大瓶頸,F1種子生產的高勞力成本與高溫導致果實減產。第一瓶頸以應用雄不稔親本為重要策略,然而鮮少應用於番茄。SlSWEET5b (Sugar Will Eventually Exported Transporter 5b) 為番茄花粉糖供給的重要糖轉運蛋白,其靜默會導致花粉不稔。因此,本論文第一目的為利用CRISPR-Cas9基因編輯系統,突變番茄SlSWEET5b功能,建立可應用的番茄雄不稔親本。在番茄品系TM01~06,不管環控或田間種植,TM01及TM03中SlSWEET5b皆高表現於花苞發育後期,特別是雄蕊,與先前研究一致。因此針對TM01及TM03進行基因編輯。建構GUS標誌基因質體進行農桿菌轉殖條件測試,發現TM01及TM03之子葉與下胚軸培殖體皆可轉入GUS,在轉殖後6周表現。TM01子葉培殖體的再生率可達7成,然而TM03相較TM01培殖體皆褐化。後續建構CRISPR-Cas9質體以進行TM01轉殖,至目前已成功建立46株T0轉殖株,其中36.4%有Cas9基因轉入表現,並得到2株具片段缺失的slsweet5b突變株。後續將篩選無外源基因之T1¬子代,並分析性狀。而轉殖株獲得率偏低,未來需改善突變效率。 在第二瓶頸方面,則以建立耐高溫品種為主要策略。若能找到花粉中抗高溫的機制,將能利用分子育種加快品種培育。研究顯示花粉耐熱性與糖含量呈正相關,推測花粉專一SlSWEET5b糖轉運蛋白可能參與熱逆境下的糖累積。因此本論文第二目的為,探究SlSWEET5b在花粉耐熱性的角色。當番茄模式品種Micro-tom歷經2天35℃熱逆境後,花粉活力與萌發率顯著降低50及75%,証實番茄花粉對熱逆境的高敏感。熱逆境下,相較其它Clade II SlSWEET基因,SlSWEET5b仍高度表達於後期花苞的雄蕊中,而熱逆境顯著抑制其在花粉的表現。此與全花中糖含量,尤其是單糖,熱逆境下降低相呼應。此外,主要糖代謝基因中,Susy2在雄蕊中表現也顯著下降。綜合以上結果可推論,熱逆境會抑制花粉中SlSWEET5b轉運活性,進而降低花中的糖運移及儲存能力,造成花粉有碳缺乏的現象,而抑制其成熟。這些成果也顯示提高熱逆境下SlSWEET5b的表達可能協助花粉的耐熱性。 | zh_TW |
| dc.description.abstract | The tomato industry is facing two obstcales- high labour cost in F1 seed production and low yield due to high temperature. To overcome the first problem, ulitlization of male-sterile parents is the main strategy. However, the application in tomato is still limited. SlSWEET5b (Sugar Will Eventually Exported Transporter 5b) is an important sugar transporter to provide sugars for tomato pollen. Silencing of SLSWEET5b would lead to pollen sterility. So, the first purpose of this study is to establish applicable tomato male sterile parent via mutation of SlSWEET5b function through CRISPR-Cas9 gene editing system. Among TM01~TM06 6 inbred lines, under both environmental control or field grown, SlSWEET5b in TM01 and TM03 lines was highly expressed in late stage of flower bud, especially in stamen. The trend is consistent with previous study. Therefore, TM01 and TM03 were choosen for gene editing. Constructing GUS reporter gene plasmid was proceeded to examine conditions for Agrobacterium transformation. Results demonstrated that the GUS gene could be successfully transfered into cotelydon and hypocotyl explants from two lines and expressed after 6 weeks of transformation. The TM01 cotelydon explants exhibited 70% of regeneration rate, while all TM03 explants became browning. Then, the CRISPR-Cas9 plasmid was constructed and transferred into TM01. Till today, 46 T0 transgenic plants were generated and 36.4% of them contained Cas9 gene expression. Two slsweet5b deletion mutant lines were obtained. Subsequently, the selection of transgene free plants will be conducted and analyze the traits from T1 progeny. The mutant line generation rate is low, however; the mutant efficiency would be improved in the future. Regarding the second obstacle, the main strategy is to establish heat tolerance cultivar. Discovering the mechanism for of high temperature resistance in pollen can be found, molecular breeding can speed up the breeding process. Previous study shows that pollen heat tolerance is positively correlated with sugar contents, suggesting that the pollen-specific SlSWEET5b sugar transporter may be involved in sugar accumulation under heat stress. Therefore, the second purpose of this study is to explore the role of SlSWEET5b in pollen heat tolerance. When tomato modle Micro-tom was treated with 35℃ for 2 days, the pollen viability and germination rate were significantly reduced by 50 and 75%, indicating that high sensitivity of pollens to heat stress. Compared with other CladeII SlSWEET genes, SlSWEET5b was still highly expressed in the stamen of late flower bud under heat stress, which significantly inhibited SlSWEET5b expression in pollen grains. The trend was nicely corresponding to reduced sugar contents, especially monosaccharides, in whole flowers under heat stress. Moreover, among the major sugar metabolism genes, expression of Susy2 was significantly reduced in stamens as well. Combining all these results, we propose that heat stress would inhibit the transport activity of SlSWEET5b in pollen, thereby reduce the sugar transport and storage capacity in flowers. That would result in carbon deficiency and retarded maturation in pollen. These results also reveal the possibility that increasing SlSWEET5b expression under heat stress may contribute the heat tolerance of pollen. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:34:48Z (GMT). No. of bitstreams: 1 U0001-2208202222575100.pdf: 6259866 bytes, checksum: 34adcdcdc98e74d99f5313fc71930bd3 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 摘 要 iii Abstract iv 表目錄 x 圖目錄 xi 附表目錄 xiii 附圖目錄 xiv 前 言 1 第一章、 前人研究 3 1.1 雄不稔遺傳類型 3 1.2 番茄雄不稔應用 5 1.3 CRISPR-Cas9基因編輯技術的優勢 5 1.4 糖類對花粉發育的重要性 6 1.5 糖轉運蛋白與雄不稔的關係 7 1.6 SlSWEET5b為番茄花粉成熟的重要機制 9 1.7 熱逆境對番茄花粉稔性及糖分配之影響 10 1.8 研究目的 11 第二章、 材料與方法 12 2.1 植物材料與栽種 12 2.1.1 植物材料 12 2.1.2 土壤播種方法 12 2.1.3 組織培養播種方法 12 2.2 篩選番茄品系 13 2.2.1 樣本採集 13 2.3 番茄熱逆境處理 13 2.3.1 熱逆境條件 13 2.3.2 樣本採集 13 2.4 番茄花粉生理分析 14 2.4.1 花粉活力分析 14 2.4.2 花粉萌發率分析 14 2.5 基因表現量分析方法 15 2.5.1 RNA萃取 15 2.5.2 反轉錄聚合酶連鎖反應 15 2.5.3 即時定量聚合酶連鎖反應 16 2.5.4 相對基因表現量分析 16 2.6 糖與澱粉含量分析 16 2.6.1 糖類與澱粉萃取 16 2.6.2 糖與澱粉含量測定 17 2.7 番茄農桿菌轉殖系統 18 2.7.1 GUS融合蛋白質體構築 18 2.7.2 質體轉入農桿菌 18 2.7.3 農桿菌轉殖植物細胞法 19 2.7.4 子葉與下胚軸培殖體再生率分析 19 2.7.5 子葉與下胚軸培殖體轉殖率分析- GUS染色 20 2.7.6 轉殖株GUS蛋白表現PCR分析 20 2.8 CRISPR-CAS9基因編輯番茄突變株建立 20 2.8.1 CRISPR-CAS9基因編輯質體構築 20 2.8.2 農桿菌轉殖法以獲得CRISPR-CAS9基因編輯番茄 21 2.8.3 轉殖株genomic DNA 萃取 21 2.8.4 確認轉殖株突變基因型 21 2.9 質體構築方法 22 2.9.1 TA cloning 22 2.9.2 酵素剪切與T4連接酶黏合方法 22 2.9.3 熱休克轉型法 23 2.10 DNA及PCR產物純化 23 2.11 聚合酶連鎖反應 24 2.12 DNA膠體電泳 24 第三章、 結果 25 3.1 Clade II SlSWEET基因在商業番茄品系的表現 25 3.2 建立TM01與TM03農桿菌轉殖條件 26 3.2.1 建構GUS標誌基因質體 26 3.2.2 培殖體再生與感染情形 26 3.2.3 轉殖株GUS表現分析 28 3.3 建立TM01 SlSWEET5b基因編輯植株 28 3.3.1 建構CRISPR基因編輯質體 28 3.3.2 建立SlSWEET5b基因編輯轉殖株 28 3.3.3 篩選基因編輯突變株 29 3.4 熱逆境下SlSWEET5b對Micro-Tom花粉稔性的表現 31 3.4.1 熱逆境下對花粉活力及萌發率影響 31 3.4.2 熱逆境對發育花苞中Clade II SlSWEET基因表現的影響 32 3.4.3 熱逆境對盛開中花Clade II SlSWEET基因表現的影響 33 3.4.4 熱逆境對糖缺乏相關基因表現影響 33 3.4.5 熱逆境下花苞中之糖與澱粉含量分析 34 3.4.6 熱逆境下之花粉糖與澱粉含量分析 35 第四章、 討論 37 4.1 SlSWEET5b在商業品系番茄花粉中扮演重要角色 37 4.2 農桿菌基因轉殖條件於不同品系與培殖體中存在明顯差異 38 4.3 TM01品系SlSWEET5b轉殖株偽真性問題探討 39 4.4 探討TM01中SlSWEET5b突變株獲得率不穩定之原因 40 4.5 slsweet5b突變株後代篩選之文獻參考 41 4.6 花粉萌發率更能代表熱逆境對花粉發育的影響 42 4.7 熱逆境下可能已誘發碳源缺乏 42 4.8 探討熱逆境下花朵糖代謝無明顯變化之原因 43 4.9 結論 44 參考文獻 46 | |
| dc.language.iso | zh-TW | |
| dc.subject | F1種子 | zh_TW |
| dc.subject | 糖轉運蛋白 | zh_TW |
| dc.subject | 雄不稔 | zh_TW |
| dc.subject | 熱逆境 | zh_TW |
| dc.subject | CRISPR-Cas9 | zh_TW |
| dc.subject | SlSWEET5b | zh_TW |
| dc.subject | CRISPR-Cas9 | en |
| dc.subject | male sterility | en |
| dc.subject | F1 seed | en |
| dc.subject | sugar transporter | en |
| dc.subject | SlSWEET5b | en |
| dc.subject | heat stress | en |
| dc.title | 探討SlSWEET5b於番茄雄不稔品系建立的應用與熱逆境下之表現 | zh_TW |
| dc.title | Explore the application of SlSWEET5b in establishment of tomato male sterile line and its expression under heat stress | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王淑珍(Shu-Jen Wang),郭瑋君 (Woei-Jiun Guo) | |
| dc.subject.keyword | 雄不稔,F1種子,糖轉運蛋白,SlSWEET5b,熱逆境,CRISPR-Cas9, | zh_TW |
| dc.subject.keyword | male sterility,F1 seed,sugar transporter,SlSWEET5b,heat stress,CRISPR-Cas9, | en |
| dc.relation.page | 117 | |
| dc.identifier.doi | 10.6342/NTU202202676 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| dc.date.embargo-lift | 2025-08-23 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2208202222575100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
