請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84948完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛承輝(Chun-Hway Hsueh) | |
| dc.contributor.author | Wei-Che Chang | en |
| dc.contributor.author | 張瑋哲 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:34:21Z | - |
| dc.date.copyright | 2022-08-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-23 | |
| dc.identifier.citation | [1] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, JOM 67(10) (2015) 2254–2261. [2] B. Cantor, Multicomponent High-Entropy Cantor Alloys, Prog. Mater. Sci. 120 (2021) 100754. [3] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-Entropy Alloy: Challenges and Prospects, Mater. Today 19(6) (2016) 349–362. [4] J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, A Review on Fundamental of High Entropy Alloys with Promising High–Temperature Properties, J. Alloys Compd. 760 (2018) 15–30. [5] Y. Fu, J. Li, H. Luo, C. Du, X. Li, Recent Advances on Environmental Corrosion Behavior and Mechanism of High-Entropy Alloys, J. Mater. Sci. Technol. 80 (2021) 217–233. [6] D.B. Miracle, High-Entropy Alloys: A Current Evaluation of Founding Ideas and Core Effects and Exploring “Nonlinear Alloys”, JOM 69 (11) (2017) 2130–2136. [7] B.R. Anne, S. Shaik, M. Tanaka, A. Basu, A Crucial Review on Recent Updates of Oxidation Behavior in High Entropy Alloys, SN Appl. Sci. 3 (2021) 366. [8] B. Gorr, S. Schellert, F. Müller, H.-J. Christ, A. Kauffmann, M. Heilmaier, Current Status of Research on the Oxidation Behavior of Refractory High Entropy Alloys, Adv. Eng. Mater. 23 (5) (2021) 2001047. [9] Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Directly Cast Bulk Eutectic and Near-Eutectic High Entropy Alloys with Balanced Strength and Ductility in a Wide Temperature Range, Acta Mater. 124 (2017) 143–150. [10] Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, A Promising New Class of Irradiation Tolerant Materials: Ti2ZrHfV0.5Mo0.2 High-Entropy Alloy, J. Mater. Sci. Technol. 35 (3) (2019) 369–373. [11] D.H. Xiao, P.F. Zhou, W.Q. Wu, H.Y. Diao, M.C. Gao, M. Song, P.K. Liaw, Microstructure, Mechanical and Corrosion Behaviors of AlCoCuFeNi-(Cr,Ti) High Entropy Alloys, Mater. Des. 116 (2017) 438–447. [12] M.P. Agustianingrum, U. Lee, N. Park, High-Temperature Oxidation Behaviour of CoCrNi Medium-Entropy Alloy, Corros. Sci. 173 (2020) 108775. [13] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy Crconi Compared to High-Entropy CrMnFeCoNi, Acta Mater. 128 (2017) 292–303. [14] J.P. Liu, J.X. Chen, T.W. Liu, C. Li, Y. Chen, L.H. Dai, Superior Strength-Ductility Cocrni Medium-Entropy Alloy Wire, Scr. Mater. 181 (2020) 19–24. [15] D.M.R. C.H. Cáceres, Solid Solution Strengthening in Concentrated Mg-Al alloys, J. Light Met. 1 (3) (2001) 151–156. [16] W.J.P. X. Wang, S. Esmaeili, D.J. Lloyd, J.D. Embury, Precipitation Strengthening of the Aluminum Alloy AA6111, Metall. Mater. Trans. A 34 (2003) 2913–2924. [17] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Microstructure and Strengthening Mechanism of High Strength Mg–10Gd–2Y–0.5Zr Alloy, J. Alloys Compd. 427 (1–2) (2007) 316–323. [18] R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock, Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys, Metall. Mater. Trans. A 40 (7) (2009) 1588–1603. [19] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with Face-Centered Cubic Crystal Structures, Acta Mater. 81 (2014) 428–441. [20] Z. Zhao, P. Bai, R. Guan, V. Murugadoss, H. Liu, X. Wang, Z. Guo, Microstructural Evolution and Mechanical Strengthening Mechanism of Mg-3Sn-1Mn-1La Alloy after Heat Treatments, Mater. Sci. Eng. A 734 (2018) 200–209. [21] Y. Cui, J. Shen, S.M. Manladan, K. Geng, S. Hu, Strengthening Mechanism in Two-Phase FeCoCrNiMnAl High Entropy Alloy Coating, Appl. Surf. Sci. 530 (2020) 147205. [22] M.P. Agustianingrum, S. Yoshida, N. Tsuji, N. Park, Effect of Aluminum Addition on Solid Solution Strengthening in CoCrNi Medium-Entropy Alloy, J. Alloys Compd. 781 (2019) 866–872. [23] W. Lu, X. Luo, Y. Yang, J. Zhang, B. Huang, Effects of Al Addition on Structural Evolution and Mechanical Properties of the CrCoNi Medium-Entropy Alloy, Mater. Chem. Phys. 238 (2019) 121841. [24] R. Chang, W. Fang, J. Yan, H. Yu, X. Bai, J. Li, S. Wang, S. Zheng, F. Yin, Microstructure and Mechanical Properties of CoCrNi-Mo Medium Entropy Alloys: Experiments and First-Principle Calculations, J. Mater. Sci. Technol. 62 (2021) 25–33. [25] R. Chang, W. Fang, H. Yu, X. Bai, X. Zhang, B. Liu, F. Yin, Heterogeneous Banded Precipitation of (CoCrNi)93Mo7 Medium Entropy Alloys Towards Strength–Ductility Synergy Utilizing Compositional Inhomogeneity, Scr. Mater. 172 (2020) 144–148. [26] N. Li, J. Gu, B. Gan, Q. Qiao, S. Ni, M. Song, Effects of Mo-Doping on the Microstructure and Mechanical Properties of CoCrNi medium Entropy Alloy, J. Mater. Res. 35 (20) (2020) 2726–2736. [27] R. Chang, W. Fang, X. Bai, C. Xia, X. Zhang, H. Yu, B. Liu, F. Yin, Effects of Tungsten Additions on the Microstructureand Mechanical Properties of Cocrni Medium Entropy Alloys, J. Alloys Compd. 790 (2019) 732–743. [28] S.N. Chan, C.H. Hsueh, Effects of La Addition on the Microstructure and Mechanical Properties of Cocrni Medium Entropy Alloy, J. Alloys Compd. 894 (2022) 162401. [29] X. Hong, C.H. Hsueh, Effects of Yttrium Addition on Microstructures and Mechanical Properties of Cocrni Medium Entropy Alloy, Intermetallics 140 (2022) 107405. [30] Y. Li, J. Shen, F. Li, H. Yang, S. Kano, Y. Matsukawa, Y. Satoh, H. Fu, H. Abe, T. Muroga, Effects of Fabrication Processing on the Microstructure and Mechanical Properties of Oxide Dispersion Strengthening Steels, Mater. Sci. Eng. A 654 (2016) 203–212. [31] H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova, J. Matejicek, Oxide Dispersion Strengthened CoCrFeNiMn High-Entropy Alloy, Mater. Sci. Eng. A 689 (2017) 252–256. [32] B. Gwalani, R.M. Pohan, J. Lee, B. Lee, R. Banerjee, H.J. Ryu, S.H. Hong, High-Entropy Alloy Strengthened by In-Situ Formation of Entropy-Stabilized Nano-Dispersoids, Sci. Rep. 8 (1) (2018) 14085. [33] Y. Guo, M. Li, C. Chen, P. Li, W. Li, Q. Ji, Y. Zhang, Y. Chang, Oxide Dispersion Strengthened FeCoNi Concentrated Solid-Solution Alloys Synthesized by Mechanical Alloying, Intermetallics 117 (2019) 106674. [34] B. Gwalani, R.M. Pohan, O.A. Waseem, T. Alam, S.H. Hong, H.J. Ryu, R. Banerjee, Strengthening of Al0.3CoCrFeMnNi-based ODS High Entropy Alloys with Incremental Changes in the Concentration of Y2O3, Scr. Mater. 162 (2019) 477–481. [35] T. Kong, B. Kang, H.J. Ryu, S.H. Hong, Microstructures and Enhanced Mechanical Properties of an Oxide Dispersion-Strengthened Ni-rich High Entropy Superalloy Fabricated by a Powder Metallurgical Process, J. Alloys Compd. 839 (2020) 155724. [36] Z. Cheng, L. Yang, W. Mao, Z. Huang, D. Liang, B. He, F. Ren, Achieving High Strength and High Ductility in a High-Entropy Alloy by a Combination of a Heterogeneous Grain Structure and Oxide-Dispersion Strengthening, Mater. Sci. Eng. A 805 (2021) 140544. [37] A. Fu, B. Liu, S. Xu, Y. Cao, Effect of Oxide Nanoparticles on the Mechanical Properties of Novel Cobalt-Free FeCrNi Medium Entropy Alloys, Mater. Lett. 302 (2021) 130379. [38] M. Li, Y. Guo, W. Li, Y. Zhang, Y. Chang, Property Enhancement of CoCrNi Medium-Entropy Alloy by Introducing Nano-Scale Features, Mater. Sci. Eng. A 817 (2021) 141368. [39] S. Peng, Z. Lu, L. Yu, Effects of Y2O3/Ti/Zr Addition on Microstructure and Hardness of ODS-CoCrFeNi HEAs Produced by Mechanical Alloying and Spark Plasma Sintering, J. Alloys Compd. 861 (2021) 157940. [40] Y. Li, T. Nagasaka, T. Muroga, A. Kimura, S. Ukai, High-temperature Mechanical Properties and Microstructure of 9Cr Oxide Dispersion Strengthened Steel Compared with RAFMs, Fusion Eng. Des. 86 (9–11) (2011) 2495–2499. [41] Y. Li, H. Abe, F. Li, Y. Satoh, Y. Matsukawa, T. Matsunaga, T. Muroga, Grain Structural Characterization of 9Cr–ODS Steel Aged at 973 K up to 10,000 h by Electron Backscatter Diffraction, J. Nucl. Mater. 455 (1–3) (2014) 568–572. [42] G.R. Odette, M.J. Alinger, B.D. Wirth, Recent Developments in Irradiation-Resistant Steels, Annu. Rev. Mater. Res. 38 (1) (2008) 471–503. [43] D. Brimbal, L. Beck, O. Troeber, E. Gaganidze, P. Trocellier, J. Aktaa, R. Lindau, Microstructural Characterization of Eurofer-97 and Eurofer-ODS Steels before and after Multi-Beam Ion Irradiations at JANNUS Saclay Facility, J. Nucl. Mater. 465 (2015) 236–244. [44] X.W. Liu, G. Laplanche, A. Kostka, S.G. Fries, J. Pfetzing-Micklich, G. Liu, E.P. George, Columnar to Equiaxed Transition and Grain Refinement of Cast CrCoNi Medium-Entropy Alloy by Microalloying with Titanium and Carbon, J. Alloys Compd. 775 (2019) 1068–1076. [45] M. Li, Y. Guo, H. Wang, J. Shan, Y. Chang, Microstructures and Mechanical Properties of Oxide Dispersion Strengthened CoCrFeNi High-Entropy Alloy Produced by Mechanical Alloying and Spark Plasma Sintering, Intermetallics 123 (2020) 106819. [46] X. Liu, H. Yin, Y. Xu, Microstructure, Mechanical and Tribological Properties of Oxide Dispersion Strengthened High-Entropy Alloys, Materials 10(11) (2017) 1312. [47] J.S. Benjamin, Dispersion Strengthened Superalloys by Mechanical Alloying, Metall. Mater. Trans. 1 (1970) 2943–2951. [48] J. Wang, S. Wu, X.-K. Suo, H. Liao, The Processes for Fabricating Nanopowders, Advanced Nanomaterials and Coatings by Thermal Spray (2019) 13–25. [49] J. Wang, S. Liu, B. Xu, J. Zhang, M. Sun, D. Li, Research Progress on Preparation Technology of Oxide Dispersion Strengthened Steel for Nuclear Energy, Int. J. Extreme Manuf. 3 (3) (2021) 032001. [50] A.B. Spierings, T. Bauer, K. Dawson, A. Colella, K. Wegener, Processing ODS Modified IN625 Using Selective Laser Melting, Mater. Sci. (2015) 803–812. [51] Q.S. Song, Y. Zhang, Y.F. Wei, X.Y. Zhou, Y.F. Shen, Y.M. Zhou, X.M. Feng, Microstructure and Mechanical Performance of ODS Superalloys Manufactured by Selective Laser Melting, Opt Laser Technol 144 (2021) 107423. [52] J.W. Yeh, Recent Progress in High-Entropy Alloys, Annales de Chimie Science des Matériaux 31 (6) (2006) 633–648. [53] J.W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM 65 (12) (2013) 1759–1771. [54] Q. He, Y. Yang, On Lattice Distortion in High Entropy Alloys, Front. Mater. 5 (2018) 00042. [55] Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu, Effect of Lattice Distortion on Solid Solution Strengthening of BCC High-Entropy Alloys, J. Mater. Sci. Technol. 34 (2) (2018) 349–354. [56] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish Diffusion in Co–Cr–Fe–Mn–Ni High-Entropy Alloys, Acta Mater. 61 (13) (2013) 4887–4897. [57] S.K.C. J.W. Yeh, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements, Metall. Mater. Trans. A 35A (2004) 2533–2536. [58] S. Ranganathan, Alloyed Pleasures: Multimetallic Cocktails, Curr. Sci. 85 (2003) 1404–1406. [59] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics 18 (9) (2010) 1758–1765. [60] Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, T. Egami, Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems, JOM 65 (12) (2013) 1848–1858. [61] S. Praveen, J.W. Bae, P. Asghari-Rad, J.M. Park, H.S. Kim, Ultra-high Tensile Strength Nanocrystalline CoCrNi Equi-Atomic Medium Entropy Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A 735 (2018) 394–397. [62] N. An, Y. Sun, Y. Wu, J. Tian, Z. Li, Q. Li, J. Chen, X. Hui, High Temperature Strengthening via Nanoscale Precipitation in Wrought CoCrNi-based Medium-Entropy Alloys, Mater. Sci. Eng. A 798 (2020) 140213. [63] I. Moravcik, V. Hornik, P. Minárik, L. Li, I. Dlouhy, M. Janovska, D. Raabe, Z. Li, Interstitial Doping Enhances the Strength-Ductility Synergy in a CoCrNi Medium Entropy Alloy, Mater. Sci. Eng. A 781 (2020) 139242. [64] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and Properties of High-entropy Alloys, Prog. Mater. Sci. 61 (2014) 1–93. [65] W.L. Chiou, S. Riegelman, Pharmaceutical Applications of Solid Dispersion Systems, J Pharm Sci 60 (9) (1971) 1281–1302. [66] C.R. LaRosa, M. Shih, C. Varvenne, M. Ghazisaeidi, Solid solution Strengthening Theories of High-Entropy Alloys, Mater. Charact. 151 (2019) 310–317. [67] E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of results, Proc. Phys. Soc. B 64 (1951) 747–752. [68] N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst. 174 (1953) 25–28. [69] N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scr. Mater. 51 (8) (2004) 801–806. [70] G.S. Was (2007), Fundamentals of Radiation Materials Science, Berlin Heidelberg, Springer. [71] L. Tan, J.T. Busby, Formulating the Strength Factor α for Improved Predictability of Radiation Hardening, J. Nucl. Mater. 465 (2015) 724–730. [72] F. Weng, Y. Chew, Z. Zhu, S. Sui, C. Tan, X. Yao, F.L. Ng, W.K. Ong, G. Bi, Influence of Oxides on the Cryogenic Tensile Properties of the Laser Aided Additive Manufactured CoCrNi Medium Entropy Alloy, Compos. B. Eng. 216 (2021) 108837. [73] M.J. Alinger, G.R. Odette, D.T. Hoelzer, On the Role of Alloy Composition and Processing Parameters in Nanocluster Formation and Dispersion Strengthening in Nanostuctured Ferritic Alloys, Acta Mater. 57(2) (2009) 392–406. [74] B. Wu, W. Chen, Z. Jiang, Z. Chen, Z. Fu, Influence of Ti Addition on Microstructure and Mechanical Behavior of a FCC-Based Fe30Ni30Co30Mn10 Alloy, Mater. Sci. Eng. A, 676 (2016), 492–500 [75] H. Shahmir, M. Nili-Ahmadabadi, A. Shafiee, M. Andrzejczuk, M. Lewandowska, T. G. Lagdon, Effect of Ti on Phase Stability and Strengthening Mechanisms of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy, Mater. Sci. Eng. A, 725 (2018), 196–206 [76] Z. Fu, W. Chen, Z. Chen, H. Wen, E. J. Lavernia, Influence of Ti Addition and Sintering Method on Microstructure and Mechanical Behavior of a Medium-entropy Al0.6CoNiFe Alloy, Mater. Sci. Eng. A, 619 (2014) 137–145 [77] T.T. Shun, C.H. Hung, C.F. Lee, The Effects of Secondary Elemental Mo or Ti Addition in Al0.3CoCrFeNi High-entropy Alloy on Age Hardening at 700 C, J. Alloys Compd. 495 (1) (2010) 55–58 [78] A. Bahador, J. Umeda, E. Hamzah, F. Yusof, X. Li, K. Kondoh, Synergistic Strengthening Mechanisms of Copper Matrix Composites with TiO2 Nanoparticles, Mater. Sci. Eng. A, 772 (20) (2020), 138797 [79]M. Nawa, N. Bamba, T. Sekino, K. Niihara, The Effect of TiO2 Addition on Strengthening and Toughening in Intragranular Type of 12Ce-TZP/Al2O3 Nanocomposites, J. Eur. Ceram. Soc. 18 (3) (1998), 209–219 [80] Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Heterogeneous Precipitation Behavior and Stacking-Fault-Mediated Deformation in a CoCrNi-Based Medium-Entropy Alloy, Acta Mater. 138 (2017) 72–82. [81] Y. Guo, M. Li, P. Li, C. Chen, Q. Zhan, Y. Chang, Y. Zhang, Microstructure and Mechanical Properties of Oxide Dispersion Strengthened FeCoNi Concentrated Solid Solution Alloys, J. Alloys Compd. 820 (2020) 153104. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84948 | - |
| dc.description.abstract | 本研究中(CoCrNi)100-xTix與(CoCrNi)100-x(TiO2)x中熵合金是由高真空電弧融煉爐所製備再經過均質化、熱軋以及退火來調質,在Ti系列中,在Ti-1.0和Ti-2.0中中熵合金的基材還是保持FCC結構,然而在Ti-3.0和Ti-4.0有生成HCP相的Ti(Ni, Co)3 析出物。在CoCrNi中添加Ti不只會因為較大的原子半徑造成晶格扭曲,同時也會帶來晶粒細化的效果,Ti含量的增加以及HCP相析出物的生成造成機械性質的提升,極限抗拉強度以及硬度的上升從866 MPa以及212 HV分別上升到1490 MPa以及409 HV,但同時也造成延性的下降,從77%下降到26%。在TiO2系列中,中熵合金保持著FCC結構,而且TiO2奈米顆粒均勻的分布,電子背散射衍射的結果顯露出了晶粒大小會隨著TiO2的添加而下降,TiO2的添加會帶來良好的機械性質例如極限抗拉強度、延性以及硬度,從TiO2-0的866 MPa、77%和212 HV分別到TiO2-0.4的1130 MPa、65%和248 HV,機械性質的結果展現了極限抗拉強度以及降伏強度大量的上升而同時只損失一點的延性,而其主要歸因於氧化物散佈強化以及晶粒細化所造成的強度以及硬化的上升。 | zh_TW |
| dc.description.abstract | In this study, a series of (CoCrNi)100-xTix and (CoCrNi)100-x(TiO2)x medium entropy alloys (MEAs) was fabricated, respectively, by high vacuum arc melting followed by homogenization, hot-rolling and annealing. In Ti series, the alloys remained a single-phase FCC solid solution for x=0, 1.0 and 2.0 and the Ti(Ni, Co)3 precipitates of HCP phase formed for x=3.0 and 4.0. The presence of Ti, which had the larger atomic radius than the other constituent elements, in the solid solution enhanced the lattice distortion and resulted in grain refinement. The addition of Ti led to the enhanced mechanical properties with the ultimate tensile strength and Vickers hardness increased from 866 MPa and 212 HV at x=0 to 1490 MPa and 409 HV, respectively, at x=4.0. However, the corresponding fracture elongation decreased from 77% to 26%. The strengthening mechanisms were mainly attributed to solid solution strengthening, grain refinement and precipitation strengthening. In TiO2 series, the MEAs were mainly composed of FCC matrix, in which TiO2 nanoparticles were uniformly distributed. Electron backscattered diffraction results revealed that the grain size decreased with the TiO2 addition. The addition of TiO2 led to good mechanical properties with the UTS, elongation and hardness of 866 MPa, 77% and 212 HV at x=0 to ~1130 MPa, ~65% and 248 HV, respectively, at x=0.4. The results demonstrated that both the yield strength and ultimate tensile strength were enhanced significantly with little loss in ductility. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:34:21Z (GMT). No. of bitstreams: 1 U0001-0208202217214100.pdf: 6463565 bytes, checksum: df39aebe4dff5125e8d2a0ec7bd75dc8 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 iii Abstract iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xv Chapter 1. Introduction 1 Chapter 2. Literature Review 5 2.1 High Entropy Alloys 5 2.1.1 Definition 5 2.2 Four Core Effects 7 2.2.1 High Entropy Effect 7 2.2.2 Lattice Distortion Effect 8 2.2.3 Sluggish Diffusion Effect 9 2.2.4 Cocktail Effect 10 2.3 CoCrNi Medium Entropy Alloy 10 2.3.1 CoCrNi MEAs 11 2.3.2 Effects of Metallic Elements Additions 15 2.3.3 Effects of Oxides Additions 21 2.3.4 Processing 24 2.4 Strengthening Mechanisms 25 2.4.1 Solid Solution Strengthening 26 2.4.2 Grain Boundary Strengthening 27 2.4.3 Precipitation Strengthening 28 2.4.4 Oxide Dispersion Strengthening 30 2.5 Addition in Present Work 31 2.5.1 Ti Addition 31 2.5.2 TiO2 Addition 32 Chapter 3. Experimental Procedure 33 3.1 Experimental Flow 33 3.2 Material Preparation 35 3.3Analytical Techniques 36 3.3.1 Electron Probe Microanalyzer (EPMA) 36 3.3.2 X-ray diffraction (XRD) 36 3.3.3 Scanning Electron Microscope (SEM) 37 3.3.4 Transmission Electron Microscope (TEM) 37 3.3.5 Dynamic Light Scattering (DLS) 38 3.3.6 Uniaxial Tension Test 38 3.3.7 Vickers Hardness Test 39 3.3.8 Nanoindentation 39 Chapter 4. Results 40 4.1 (CoCrNi)100-xTix MEAs 40 4.1.1 Chemical Compositions 40 4.1.2 XRD Results 41 4.1.3 Microstructure 43 4.1.4 Mechanical Properties 52 4.2 (CoCrNi)100-x(TiO2)x MEAs 57 4.2.1 Chemical Compositions 57 4.2.2 TiO2 Powder 59 4.2.3 XRD Results 60 4.2.4 Microstructure 61 4.2.5 Mechanical Properties 68 4.3 Comparisons 73 Chapter 5. Conclusions 75 5.1 (CoCrNi)100-xTix MEAs 75 5.2 (CoCrNi)100-x(TiO2)x MEAs 77 Future Work 79 References 80 | |
| dc.language.iso | en | |
| dc.subject | 氧化物散佈強化 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | 中熵合金 | zh_TW |
| dc.subject | 二氧化鈦添加 | zh_TW |
| dc.subject | 鈦添加 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | Ti addition | en |
| dc.subject | medium entropy alloys | en |
| dc.subject | oxide dispersion strengthening | en |
| dc.subject | mechanical properties | en |
| dc.subject | microstructure | en |
| dc.subject | TiO2 nanoparticle addition | en |
| dc.title | 元素及氧化鈦對鈷鉻鎳中熵合金微結構與機械性質的影響 | zh_TW |
| dc.title | Effects of titanium and titanium dioxide additions on the microstructures and mechanical properties of CoCrNi | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0003-2157-0013 | |
| dc.contributor.oralexamcommittee | 楊哲人(Jer-Ren Yang),郭愈麟(Yu-Lin Kuo) | |
| dc.subject.keyword | 中熵合金,氧化物散佈強化,機械性質,微結構,二氧化鈦添加,鈦添加, | zh_TW |
| dc.subject.keyword | medium entropy alloys,oxide dispersion strengthening,mechanical properties,microstructure,TiO2 nanoparticle addition,Ti addition, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU202201981 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-26 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0208202217214100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
