Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84925
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅君(Ya-Chun Chang)
dc.contributor.authorTsai-Yen Wuen
dc.contributor.author吳采晏zh_TW
dc.date.accessioned2023-03-19T22:33:03Z-
dc.date.copyright2022-08-26
dc.date.issued2022
dc.date.submitted2022-08-24
dc.identifier.citation毛青樺。2008。蟹爪蘭X病毒與紅龍果X病毒之分子特性與偵測。國立臺灣大學植物病理與微生物學研究所碩士論文。 呂有其。2007。仙人掌病毒X新分離株之特性分析與感染性選殖株之構築。國立臺灣大學植物病理與微生物學研究所碩士論文。 李勇賜。2010。紅龍果C病毒之特性分析、感染性選殖株構築與抗血清製備。國立臺灣大學植物病理與微生物學研究所碩士論文。 吳悅民。2019。影響仙人掌X病毒與紅龍果X病毒間協力作用之因子探討。國立臺灣大學植物病理與微生物學研究所碩士論文。 張佑瑋。2017。兩種仙人掌X病毒感染性選殖株之研究與紅龍果原生質體系統之建立。國立臺灣大學植物病理與微生物學研究所碩士論文。 張雅君、郭庭禕、毛青樺、呂有其、李勇賜。2015。臺灣紅龍果病毒性病害之研究與現況分析。台灣新浮現之重要作物病害及其防治研討會專刊:107-114。 陳柏因。2022。探討TGB1蛋白於仙人掌X病毒與紅龍果X病毒之感染中所扮演之角色。國立臺灣大學植物病理與微生物學研究所碩士論文。 陳奕秀。2020。探討紅龍果X病毒鞘蛋白與寄主因子之交互作用。國立臺灣大學植物病理與微生物學研究所碩士論文。 陳盟松、曾宥紘、許晴情、于逸知、吳庭嘉、楊嘉凌、白桂芳。2018。紅龍果綜合栽培管理技術。臺中區農業改良場技術專刊。198: 1-54。 黃士晃。2011。紅龍果栽培改善措施(下)。臺南區農業專訊。78: 4-7。 黃靖益。2017。仙人掌X病毒與紅龍果X病毒交互作用之探討。國立臺灣大學植物病理與微生物學研究所碩士論文。 劉碧娟。2014。台灣紅龍果的栽培。行政院農業委員農業試驗所特刊144號: 1-32。 劉碧娟、余健美。2021。產業概況。紅龍果外銷流程技術手冊。1: 19-20。 AbouHaidar, M. G., and Gellatly, D. 1999. Potexviruses. Encyclopedia of Virology 2: 1364-1368. Amelunxen, F. 1985. Die Virus-Eiweibspindeln der Kakteen. Darstellung, elektronenmikroskopische und biochemische Analyse des Virus. Protoplasma 49: 140-178. Artico, S., Nardeli, S., Brilhante, O., Grossi-de-Sa, M., and Alves-Ferreira, M. 2010. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biology 10: 49. Bachmair, A., and Varshavsky, A. 1989. The degradation signal in a short-lived protein. Cell 56: 1019-1032. Bamunusinghe, D., Seo, J. K., and Rao, A. L. N. 2011. Subcellular localization and rearrangement of endoplasmic reticulum by brome mosaic virus capsid protein. Journal of Virology 85: 2953-2963. Canetta, E., Kim, S. H., Kalinina, N. O., Shaw, J., and Adya, A. K. 2008. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro. J. Mol. Biol. 376: 932-937. Caplan, J., and Dinesh-Kumar, S. P. 2006. Using viral vectors to silence endogenous genes. Current Protocols in Microbiology 16:1-13. Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H. Jr., Van Montagu, M., Inzé, D., and Van Camp, W. 1998. Defence activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proceedings of the National Academy of Sciences 95: 5818-5823. Champagne, J., Laliberte-Gagne, M. E., and Leclerc, D. 2007. Phosphorylation of the termini of Cauliflower mosaic virus precapsid protein is important for productive infection. Molecular Plant-Microbe Interactions 20: 648-658. Chapman, M. R., and Kao, C. C. 1999. A minimal RNA promoter for minus-strand RNA synthesis by the brome mosaic virus polymerase complex. Journal of Molecular Biology 286: 709-720. Chen, C., Wu, J., Hua, Q. Z., Tel‑Zur, N., Xie, F. F., Zhang, Z. K., Chen, J. Y., Zhang, R., Hu, G. B., Zhao, J. T., and Qin, Y. H. 2019. Identification of reliable reference genes for quantitative real-time PCR normalization in pitaya. Plant Methods 15: 70. Chen, Z., Ricigliano, J. R., and Klessig, D. F. 1993. Purification and characterization of a soluble salicylic acid binding protein from tobacco. Proceedings of the National Academy of Sciences 90: 9533-9537. Chen, Z. X., Silva, H., and Klessig, D. F. 1993. Active oxygen species in the induction of plant systemic acquired-resistance by salicylic acid. Science 262: 1883-1886. Cheng, N. H., Su, C. L., Carter, S. A., and Nelson, R. S. 2000. Vascular invasion routes and systemic accumulation patterns of tobacco mosaic virus in Nicotiana benthamiana. Plant J. 23:349-362. Cheng, S. F., Huang, Y. P., Chen, L. H., Hsu, Y. H., and Tsai, C. H. 2013. Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiology 163: 1598-1608. Delledonne, M., Zeier, J., Marocco, A., and Lamb, C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. U.S.A. 98: 13454-13459. Dietz, K. J., Turkan, I., and Krieger-Liszkay, A. 2016. Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 171: 1541-1550. Evallo, E., Taguiam, J. D., and Balendres, M. A. 2021. A brief review of plant diseases caused by Cactus virus X. Crop Protection 143: 105566. Gómez, G., and Pallas, V. 2004. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. J. Virol. 78: 10104-10110. Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. 1996. Real time quantitative PCR. Genome Res. 6: 986-994. Horvath, E., Janda, T., Szalai, G., and Paldi, E. 2002. In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Science 163: 1129-1135. Huang, H., Ullah, F., Zhou, D. X., Yi, M., and Zhao, Y. 2019. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 10: 800. Huang, S., Van Aken, O., Schwarzlander, M., Belt, K., and Millar, A. H. 2016. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol. 171: 1551-1559. Huisman, M. J., Linthorst, H. J., Bol, J. F., and Cornelissen, J. C. 1988. The complete nucleotide sequence of Potato Virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. Journal of General Virology 69: 1789-1798. Hyodo, K., and Okuno, T. 2020. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Advance in Virus Research 107:38-71. Inaba, J. I., Kim, B. M., Shimura, H., and Masuta, C. 2011. Virus-induced necrosis is a consequence of direct protein-protein interaction between a viral RNA-silencing suppressor and a host catalase. Plant Physiology 156: 2026-2036. Ivanov, K. I., and Makinen, K. 2012. Coat proteins, host factors and plant viral replication. Current Opinion in Virology 6: 721-728. Ivanov, K. I., Puustinen, P., Gabrenaite, R., Vihinen, H., Rönnstrand, L., Valmu, L., Kalkkinen, N., and Mäkinen, K. 2003. Phosphorylation of the potyvirus capsid protein by protein kinase CK2 and its relevance for virus infection. Plant Cell 15: 2124-2139. Jelkmann, W., Martin, R. R., Lesemann, D. E., Vetten, H. J., and Skelton, F. 1990. A new potexvirus associated with strawberry mild yellow edge disease. Journal of General Virology 71: 1251-1258. Jiang, H. T., Zhang, W. L., Li, X. X., Shu, C., Jiang, W. B., and Cao, J. K. 2021. Nutrition, phytochemical profile, bioactivities and applications in food ndustry of pitaya (Hylocereus spp.) peels: A comprehensive review. Trends in Food Science and Technology 116: 199-217. Jiao, Z. Y., Tian, Y. Y., Cao, Y. Y., Wang, J., Zhan, B. H., Zhao, Z. X., Sun, B., Guo, C., Ma, W. D., Liao, Z. F., Zhang, H. M., Zhou, T., Xia, Y. J., and Fan, Z. F. 2021. A novel pathogenicity determinant hijacks maize catalase 1 to enhance viral multiplication and infection. New Phytologist 230:1126-1141. Jiao, Z. Y., Wang, J., Tian, Y. Y., Wang, S. Y., Sun, X., Li, S. Q., Ma, W. D., Zhou, T., and Fan, Z. F. 2021. Maize catalases localized in peroxisomes support the replication of maize chlorotic mottle virus. Phytopathology Research 3:17. Jin, Y. H., Liu, F., Huang, W., Sun, Q., and Huang, X. Y. 2019. Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data. Scientific reports 9: 8480. Kamigaki, A., Mano, S., Terauchi, K., Nishi, Y., Tachibe-Kinoshita, Y., Nito, K., Kondo, M., Hayashi, M., Nishimura, M., and Esaka, M. 2003. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor. The Plant Journal 33: 161-175. Karimi, M. 2002. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7:93-195. Kassanis, B., and Govier, D. A. 1971. New evidence on the mechanism of aphid transmission of potato C and potato aucuba mosaic viruses. Journal of General Virology 10:99-101. Kaur, N., Reumann, S., and Hu, J. P. 2009. Peroxisome biogenesis and function. Arabidopsis Book 7. Kim, J. S., Park, C. Y., Nam, M., Lee, J. S., Kim, H. G., and Lee, S. H. First report of cactus virus X infecting Hylocereus undatus in Korea. Plant Disease 100: 2544-2544. Kreuze, J. F., Vaira, A. M., Menzel, W., Candresse, T., Zavriev, S. K., and Hammond, J. 2020. ICTV virus taxonomy profile: Alphaflexiviridae. Journal of General Virology 101: 699-700. Laliberté, J. F., and Sanfaçon, H. 2010. Cellular remodeling during plant virus infection. Annual Review of Phytopathology 48:69-91. Lee, K. 2020. Investigation of host genes affected by Cactus virus X and Pitaya virus X infection. Department of Plant Pathology and Microbiology, National Taiwan University. Master Thesis. Li, Y. S., Mao, C. H., Kuo, T. Y., and Chang, Y. C. 2015. Viral diseases of pitaya and other Cactaceae plants. Improving Pitaya Production and Marketing 119-127. Li, Y., Wu, M. Y., Song, H. H., Hu, X., and Qiu, B. S. 2005. Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement of virus. Archives of Virology 150: 1993-2008. Liang, W. X., Zou, X. X., Carballar-Lejarazú, R., Wu, L. J., Sun, W. H., Yuan, X. Y., Wu, X. Q., Li, P. F., Ding, H., Ni, L., Huang, W., and Zou, S. Q. 2018. Selection and evaluation of reference genes for qRT-PCR analysis in Euscaphis konishii Hayata based on transcriptome data. Plant Methods 14: 42. Liao, J. Y., Chang, C. A., Yan, C. R., Chen, Y. C., and Deng, T. C. 2003. Detection and incidence of cactus virus X in pitaya in Taiwan. Plant Pathol. Bull. 12: 225-234. Lin, K. Y., Wu, S. Y., Hsu, Y. H., and Lin, N. S. 2022. MiR398-regulated antioxidants contribute to Bamboo mosaic virus accumulation and symptom manifestation. Plant Physiology 1: 593-607. Lin, Z. F., Hong, Y. G., Yin, M. G. 2008. A tomato HD-zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. The Plant Journal 55: 301-310. Liou, M. R., Hung, C. L., and Liou, R. F. 2007. First Report of Cactus virus X on Hylocereus undatus (Cactaceae) in Taiwan. Plant Disease 85: 229. Liu, D. S., Shi, L. D., Han, C. G., Yu, J. L., Li, D. W., and Zhang, Y. L. 2012. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS one 7: 51-64. Liu, G. S., Li, H. L., and Fu, D. Q. 2021. Applications of virus-induced gene silencing for identification of gene function in fruit. Food Quality and Safety 5: 18. Mathioudakis, M. M., Veiga, R. S. L., Canto, T., Medina, V., Mossialos, D., Makris, A. M., and Livieratos, I. 2013. Pepino mosaic virus triple gene block protein 1 (TGBp1) interacts with and increases tomato catalase 1 activity to enhance virus accumulation. Molecular Plant Pathology 14: 589-601. McCartney, A. W., Greenwood, J. S., Fabian, M. R., White, K. A., and Mullen, R. T. 2005. Localization of the Tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. The Plant Cell 17: 3513-3531. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Breusegem, F. V., and Noctor, G. 2010. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany 61: 4197-4220. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. 2004. The reactive oxygen gene network in plants. Trends in Plant Science 9: 490-498. Mizrahi, Y., Nerd, A., and Nobel, P. S. 1997. Cacti as crops. Horticultural Reviews 18: 291-320. Mochizuki, T., Hirai, K., Kanda, A., Ohnishi, J., Ohki, T., and Tsuda, S. 2009. Induction of necrosis via mitochondrial targeting of melon necrotic spot virus replication protein p29 by its second transmembrane domain. Virology 390: 239-349. Molho, M., Zhu, S., and Nagy, P. D. 2022. Race against time between the virus and host: actin-assisted rapid biogenesis of replication organelles is used by TBSV to limit the recruitment of cellular restriction factors. Virology Mullen, R. T., Lee, M. S., and Trelease, R. N. 1997. Identification of the peroxisomal targeting signal for cottonseed catalase. The Plant Journal 12: 313-322. Murota, K., Shimura, H., Takeshita, M., and Masuta, C. 2017. Interaction between cucumber mosaic virus 2b protein and plant catalase induces a specific necrosis in association with proteasome activity. Plant Cell Reports 36: 37-47. Nagy, P. D. 2008. Yeast as a model host to explore plant virus-host interactions. Annual Review of Phytopathology 46:217-242. Ogawa, K., Murota, K., Shimura, H. 2015. Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. BMC Plant Biology 15: 93. Panavas, T., Hawkins, C. M., Panaviene, Z., and Nagy, P. D. 2005. The role of the p33: p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of cucumber necrosis tombusvirus. Virology 338: 81-95. Park, C. H., Song, E. G., and Ryu, K. H. 2018. Detection of co-infection of Notocactus leninghausii f. cristatus with six virus species in South Korea. The Plant Pathology Journal 34: 65-70. Park, M. R., Park, S. H., Cho, S. Y., and Kim, K. H. 2009. Nicotiana benthamiana protein, NbPCIP1, interacting with Potato virus X coat protein plays a role as susceptible factor for viral infection. Virology 386: 257-269. Polidoros, A. N., Mylona, P. V., and Scandalios, J. G. 2001. Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Research 10: 555-569. Roshan, P., Kulshreshtha, A., Kumar, S., Purohit, R., and Hallan, V. 2018. AV2 protein of tomato leaf curl palampur virus promotes systemic necrosis in Nicotiana benthamiana and interacts with host Catalase2. Scientific Reports 8:1273. Ruffer, M., Steipe, B., and Zenk, M. H. 1995. Evidence against specific binding of salicylic acid to plant catalase. FEBS Lett. 377: 175-180. Ryu, K. H., and Hong, J. S. 2008. Potexvirus. Encyclopedia of Virology 3: 310-313. Ryu, K. H., Song, E. G., and Hong, J. S. 2021. Potexviruses (Alphaflexiviridae). Encyclopedia of Virology 3: 623-630. Sánchez, G., Gerhardt, N., Siciliano, F., Vojnov, A., Malcuit, I., and Marano, M. R. 2010. Salicylic acid is involved in the Nb-mediated defense responses to Potato virus X in Solanum tuberosum. Molecular Plant-Microbe Interactions 23: 394-405 Sandalio, L. M., and Romero-Puertas, M. C. 2015. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann. Bot. 116: 475-485. Schmidt, R., Mieulet, D., Hubberten, H. M., Obata, T., Hoefgen, R., Fernie, A. R., Fisahn, J., San Segundo, B., Guiderdoni, E., Schippers, J. H. M., and Mueller-Roeber, B. 2013. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25: 2115-2131. Schmittgen, T. D., and Livak, K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3: 1101-1108. Schwartz, M., Chen, J., Janda, M., Sullivan, M., den Boon, J., and Ahlquist, P. 2002. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Molecular Cell 9: 505-514. Silva, M. S., Wellink, J., Goldbach, R. W., and van Lent, J. W. M. 2002. Phloem loading and unloading of Cowpea mosaic virus in Vigna unguiculata. J. Gen. Virol. 83: 1493-1504. Srivastava, R. A. 1998. Analysis of RNA by Northern blotting using riboprobes. Methods Mol. Biol. 86: 103-112. Stintzing, F. C., Schieber, A., and Carle, R. 2002. Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus (Weber) Britton & Rose. Food Chemistry 77: 101-106. Toledo, S. M., Azzam, E. I., Gasmann, M. K., and Mitchel, R. E. 1995. Use of semiquantitative reverse transcription-polymerase chain reaction to study gene expression in normal human skin fibroblasts following low dose-rate irradiation. Int. J. Radiat. Biol. 67: 135-143. Tymms, M. J. 1995. Quantitative measurement of mRNA using the RNase protection assay. Methods Mol. Biol. 37: 31-46. Wan, H., Zhao, Z., Qian, C., Sui, Y., and Malik, A. A. 2010. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Analytical Biochemistry 399: 257-261. Wan, J., Cabanillas, D. G., Zheng, H., and Laliberté, J. F. 2015. Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes. Plant Physiol. 167: 1374-1388. Wang, A. 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annual Review of Phytopathology 53:45-66. Witlekens, H., Inze, D., Montagu, V. M., and Camp, W. V. 1995. Catalase in plants. Molecular Breeding 1: 207-228. Yang, T., Qiu, L., Huang, W. Y., Xu, Q. Y., Zou, J. L., Peng, Q. D., Lin, H. H., and Xi, D. H. 2020. Chilli veinal mottle virus HCPro interacts with catalase to facilitate virus infection in Nicotiana tabacum. Journal of Experimental Botany 71: 5656-5668. Yu, Y. T., Zhang, G., Chen, Y. K., Bai, Q. Q., Gao, C. S., Zeng, L. B., Li, Z. M., Cheng, Y., Chen, J., Sun, X. P., Guo, L. T., Xu, J. P., and Yan, Z. 2019. Selection of reference genes for qPCR analyses of gene expression in ramie leaves and roots across eleven abiotic/biotic treatments. Sci Rep. 9:20004. Yuan, H. M., Liu, W. C., and Lu, Y. T. 2017. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host and Microbe 21: 125-127. Zamocky, M., Furtmüller, P. G., and Obinger, C. 2008. Evolution of catalases from bacteria to humans. Antioxidants and Redox Signaling 10: 1527-1547. Zamocky, M., and Koller, F. 1999. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Progress in Biophysics and Molecular Biology 72:19-66. Zhang, L. L., Chen, C. B., Xie, F. F. 2021. A novel WRKY transcription factor HmoWRKY40 associated with betalain biosynthesis in pitaya (Hylocereus monacanthus) through regulating HmoCYP76AD1. International Journal of Molecular Sciences 22: 2171. Zhang, M., Li, Q., Liu, T., Liu, L., Shen, D., and Zhu, Y. 2015. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases. Plant Physiol 1671: 164-175. Zhou, Y. B., Liu, C., Tang, D. Y., Yan, L., Wang, D., and Yang, Y. Z. 2018. The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. Plant Cell 30:1100-1118. Zhu, S. F., Gao, F., Cao, X. S., Chen, M., Ye, G. Y., Wei, C. H., and Li, Y. 2005. The Rice dwarf virus P2 protein interacts with ent-Kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiology 139: 1935-1945.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84925-
dc.description.abstract仙人掌科(Cactaceae)三角柱屬(Hylocereus)的紅龍果為台灣重要的熱帶水果作物,台灣田間的紅龍果病毒有紅龍果X病毒(Pitaya virus X, PiVX)、仙人掌X病毒(Cactus virus X, CVX)與蟹爪蘭X病毒(Zygocactus virus X, ZyVX)三種 Potexvirus屬病毒,其中CVX和PiVX的感染率高於ZyVX。為瞭解CVX和PiVX這兩種病毒在植物中的感染機制,本研究從實驗室前人的紅龍果轉錄組資料庫和交聯免疫共沉澱的研究結果,篩選出可能和病毒具有交互作用之寄主因子,並從中挑選紅龍果的過氧化氫酶 (catalase, CAT)作為研究目標,探討HuCAT2對CVX和PiVX感染過程之影響。過氧化氫酶為植物在H2O2代謝途徑中的重要酵素,且過氧化氫酶家族根據其蛋白表現於不同組織被分成三大類,而親緣關係樹顯示HuCAT2較接近第二類家族,代表在維管束組織有較高之表現。本研究先透過紅龍果轉錄組資料庫和RT-qPCR分析,篩選出ubiquitin-conjugating enzyme E2 variant 1D-like基因為表現量最穩定之參考基因。而後以RT-qPCR分析HuCAT2基因在感染CVX和PiVX間的表現情形,結果顯示於紅龍果植株單獨和共同接種CVX和PiVX病毒,皆會提高HuCAT2 mRNA的表現量。另一方面,為釐清HuCAT2對CVX和PiVX的影響,透過農桿菌注射法 (agroinfiltration)於圓葉菸草中共同表現HuCAT2蛋白和紅龍果病毒株,以西方墨點法分析的結果顯示,過量表現HuCAT2蛋白有助於CVX鞘蛋白之累積,而對於PiVX的影響則較不明顯。另外,透過螢光顯微鏡觀察發現,單獨表現HuCAT2-eGFP蛋白後的二至四天中,其蛋白會從葉肉細胞內移動至表皮細胞之細胞膜附近或維管束中;然而當和紅龍果病毒株共同表現時,並未觀察到HuCAT2-eGFP蛋白的分布有明顯的變化。由於未能透過菸草脆裂病毒 (Tobacco rattle virus, TRV)之病毒載體系統對紅龍果進行基因靜默,因此將基因靜默之目標改為白藜的過氧化氫酶 (CqCAT),先以RT-qPCR確認目標基因mRNA被靜默,然後接種CVX和PiVX,再分析病毒的累積情形。結果顯示抑制CqCAT基因之表現,對於CVX和PiVX鞘蛋白和基因體RNA的累積量似乎有負面的影響。綜合以上結果,我們認為CVX和PiVX在感染寄主植物過程中,CAT基因產物可能作為寄主因子,扮演影響CVX和PiVX的複製和鞘蛋白累積之角色,其中對CVX鞘蛋白累積的幫助較為明顯。zh_TW
dc.description.abstractPitaya is a member of the genus Hylocereus in the family Cactaceae and also an important tropical fruit crop. The viruses currently reported to infect pitaya are Pitaya virus X (PiVX), Cactus virus X (CVX) and Zygocactus virus X (ZyVX). Among these potexviruses, the infection rate of CVX and PiVX is higher than that of ZyVX. To investigate the infection mechanism of CVX and PiVX, we screened the potential host factors from the previously established pitaya transcriptome database and the LC-MS/MS analysis of co-immunoprecipitation, and HuCAT2, a predicted pitaya catalase, was selected as a candidate host gene. The aim of this study is to investigate the interaction between pitaya viruses and HuCAT2. Catalase is an important antioxidant enzyme that catalyzes the decomposition of H2O2, and plant catalases can be classified into three groups based on their expression properties. According to the phylogenetic tree, HuCAT2 corresponds to Class II catalases, which are mainly expressed in vascular tissues. In order to identify an ideal reference gene for analyzing CVX- and PiVX-infected pitaya by quantitative RT-PCR (RT-qPCR), several candidate reference genes with relatively stable expression level were selected from the pitaya transcriptome database, and finally ubiquitin-conjugation E2 variant 1D-like gene was recognized as the pitaya reference gene based on the result of RT-qPCR. The expression level of HuCAT2 mRNA was all up-regulated in the single and co-inoculated pitaya plants by CVX and PiVX. On the other hand, the overexpression of HuCAT2 protein by agroinfiltration enhanced the accumulation of CVX coat protein (CP) in Nicotiana benthamiana, but not that of PiVX CP as shown by western blot. In addition, the fluorescence microscopy analysis revealed that overexpressed HuCAT2-eGFP proteins localized to the plasma membrane of epidermal cells and vascular tissues at 2-4 days after agroinfiltration, and did not change its locations when co-expressed with pitaya viruses. Because the gene silencing of pitaya could not be achieved by Tobacco rattle virus (TRV)-based vector, the target gene was changed to the CAT gene (CqCAT) of Chenopodium quinoa. Before inoculation of CVX and PiVX to C. quinoa, RT-qPCR was used to confirm the mRNA of CqCAT was silenced, and then the accumulation of the virus was analyzed for 2-4 days. The results indicated that gene silencing of CqCAT appeared to have a negative effect on the accumulation of CVX and PiVX coat protein and genomic RNA. In summary, we suggested that the CAT gene product may play as a host factor to affect coat protein and genomic RNA accumulation of CVX and PiVX, especially in helping the accumulation of CVX coat protein.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:33:03Z (GMT). No. of bitstreams: 1
U0001-2308202217082600.pdf: 4580198 bytes, checksum: 7936829321ce730995d19721d2004bf9 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 i Abstract iii 壹、前言 1 一、 紅龍果之介紹 1 二、 紅龍果X病毒和仙人掌X病毒之介紹 2 (一) Potexvirus 屬病毒之基本特性介紹 2 (二) 仙人掌X病毒 (Cactus virus X) 3 (三) 紅龍果X病毒 (Pitaya virus X) 4 三、 病毒與寄主因子之交互作用 4 (一) 植物病毒會誘導改變寄主細胞結構 5 (二) 病毒鞘蛋白與寄主因子之交互作用 6 四、 過氧化氫酶 (catalase)之介紹 7 (一) 活性氧化物 (reactive oxygen species, ROS) 7 (二) 植物的過氧化氫酶 7 (三) 過氧化氫酶與植物病原交互作用之研究 8 五、 研究動機 10 貳、材料方法 11 一、 植物材料與種植方式 11 (一) 圓葉菸草 (Nicotiana benthamiana) 11 (二) 白藜 (Chenopodium quinoa) 11 (三) 白肉紅龍果 (Hylocereus undatus) 11 二、 序列分析、多重序列排併比對和親緣關係分析 11 三、 紅龍果內部控制基因之篩選 12 四、 引子對之設計 12 五、 紅龍果與白藜植株之機械接種 13 (一) 接種源製備 13 (二) 紅龍果 13 (三) 白藜 14 六、 植物全RNA之萃取 14 七、 反轉錄定量聚合酶連鎖反應 (RT-qPCR) 15 八、 多引子對反轉錄聚合酶連鎖反應 (multiplex RT-PCR) 16 九、 載體之構築 17 (一) 紅龍果蛋白表現載體 17 (二) 白藜基因靜默載體 18 十、 農桿菌短暫表現法 19 (一) 農桿菌轉型 19 (二) 以農桿菌注射將蛋白表現載體和紅龍果病毒二元選殖株送入圓葉菸草 20 (三) 以農桿菌注射法將TRV載體送入圓葉菸草中 21 十一、 西方墨點法 22 (一) 植物蛋白之萃取 22 (二) 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 22 (三) 蛋白質轉漬 22 (四) 抗體反應與偵測 23 十二、 螢光蛋白之觀察 24 參、結果 25 一、 紅龍果CAT2基因之特性 25 (一) HuCAT2基因之可能功能分析 25 (二) HuCAT2與其他植物CAT蛋白的親緣關係與蛋白質序列比對 26 二、 透過轉錄組數據篩選作為紅龍果內部控制之參考基因 27 (一) 篩選候選基因和序列分析 28 (二) 驗證引子對之專一性和穩定性 29 (三) 四個參考基因之Ct值分析 29 三、 CVX與PiVX感染紅龍果植株對於HuCAT2基因表現量之影響 30 (一) 於紅龍果子葉接種CVX和PiVX後病毒RNA的累積量變化 30 (二) 接種CVX和PiVX會上調HuCAT2的表現量 31 四、 大量表現紅龍果HuCAT2蛋白對於CVX與PiVX累積量之影響 32 (一) 透過農桿菌注射法表現HuCAT2蛋白之結果 32 (二) 共同表現表現HuCAT2和PiVX病毒選殖株對於PiVX鞘蛋白累積量之影響 33 (三) 共同表現表現HuCAT2和CVX病毒選殖株對於CVX鞘蛋白累積量之影響 33 (四) CVX或PiVX病毒的存在對於HuCAT2在細胞中分布的影響 34 五、 靜默HuCAT2基因對Tobacco rattle virus (TRV)鞘蛋白累積之影響 35 六、 靜默CqCAT基因對於CVX與PiVX鞘蛋白和RNA累積量之影響 36 肆、討論 39 一、 驗證參考基因於紅龍果植株接種CVX和PiVX後基因表現穩定度的必要性 39 二、 植物組織層次並未觀察到CVX和PiVX的協力作用 41 三、 大量表現HuCAT2蛋白對於紅龍果病毒累積量影響之實驗設計調整 43 四、 CAT基因對於CVX和PiVX病毒複製與累積的影響 44 五、 未能透過TRV載體誘導HuCAT2基因之靜默 48 六、 結語 50 伍、引用文獻 51 陸、附表 63 柒、附圖 70 捌、附錄 108
dc.language.isozh-TW
dc.subject過氧化氫酶zh_TW
dc.subject紅龍果zh_TW
dc.subject仙人掌X病毒zh_TW
dc.subject紅龍果X病毒zh_TW
dc.subjectCactus virus Xen
dc.subjectPitayaen
dc.subjectPitaya virus Xen
dc.subjectCatalaseen
dc.title探討紅龍果X病毒與仙人掌X病毒及寄主因子之交互作用zh_TW
dc.titleInvestigation of the interaction between host factors and Pitaya virus X and Cactus virus Xen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林詩舜(Shih-Shun Lin),張立(Li Chang)
dc.subject.keyword紅龍果,仙人掌X病毒,紅龍果X病毒,過氧化氫酶,zh_TW
dc.subject.keywordPitaya,Pitaya virus X,Cactus virus X,Catalase,en
dc.relation.page118
dc.identifier.doi10.6342/NTU202202716
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
dc.date.embargo-lift2022-08-26-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-2308202217082600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved