Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84914
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德zh_TW
dc.contributor.advisorTa-Te Linen
dc.contributor.author陳玟銨zh_TW
dc.contributor.authorWen-An Chenen
dc.date.accessioned2023-03-19T22:32:27Z-
dc.date.available2023-12-26-
dc.date.copyright2022-08-31-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation行政院農業委員會。2019。農業統計年報。台北:行政院農委會。網址:https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx。出版日期:2021-07-06。
陳約邵。2021。小樣本學習臉部辨識演算法應用於乳牛採食與溫度監測
。碩士論文。台北:臺灣大學生物機電工程學研究所。
Akakpo, A. J. (2015). Three-day fever. Rev Sci Tech, 34(2), 533-8.
Armstrong, D. (1994). Heat stress interaction with shade and cooling. Journal of dairy science, 77(7), 2044-2050.
Arnaud, A., & Bellini, B. (2010, October). Full ISO 11784/11785 compliant RFID reader in a programmable analog-digital, integrated circuit. In 2010 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA) (pp. 107-111). IEEE.
Baker, J. C. (1995). The clinical manifestations of bovine viral diarrhea infection. Veterinary Clinics of North America: Food Animal Practice, 11(3), 425-445.
Benzaquen, M. E., Risco, C. A., Archbald, L. F., Melendez, P., Thatcher, M. J., & Thatcher, W. W. (2007). Rectal temperature, calving-related factors, and the incidence of puerperal metritis in postpartum dairy cows. Journal of dairy science, 90(6), 2804-2814.
Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
Burfeind, O., Von Keyserlingk, M. A. G., Weary, D. M., Veira, D. M., & Heuwieser, W. (2010). Repeatability of measures of rectal temperature in dairy cows. Journal of dairy science, 93(2), 624-627.
Caldara, F. R., Dos santos, luan Sousa , Machado, S. teixeira, Moi, M., De alencar nääs, I., Foppa, L., garcia, R. garófallo, & Dos santos, R. D. kássia silva. (2014). Piglets’ Surface Temperature Change at Different Weights at Birth. Asian-Australas Journal of Animal Sciences, 27(3), 431–438.
Cangar, Ö., Guarino, M., Vranken, E., Fallon, R., Lenehan, J., Mee, J., & Berckmans, D. (2008). Automatic Real-Time Monitoring of Locomotion and Posture Behaviour of Pregnant Cows Prior to Calving Using Online Image Analysis. Computers and Electronics in Agriculture, 64(1), 53–60.
Chellapilla, K., Puri, S., & Simard, P. (2006, October). High performance convolutional neural networks for document processing. In Tenth international workshop on frontiers in handwriting recognition. Suvisoft.
Church, J. S., Hegadoren, P. R., Paetkau, M. J., Miller, C. C., Regev-Shoshani, G., Schaefer, A. L., & Schwartzkopf-Genswein, K. S. (2014). Influence of environmental factors on infrared eye temperature measurements in cattle. Research in veterinary science, 96(1), 220-226.
Choi, Y., Kim, N., Hwang, S., & Kweon, I. S. (2016, October). Thermal image enhancement using convolutional neural network. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 223-230). IEEE.
Cincović, M. R., Majkić, M., Belić, B., Plavša, N., Lakić, I., & Radinović, M. (2017). Thermal comfort of cows and temperature humidity index in period of 2005-2016 in Vojvodina region (Serbia). Acta Agriculturae Serbica, 22(44), 133-145.
Collier, R. J., Baumgard, L. H., Zimbelman, R. B., & Xiao, Y. (2019). Heat stress: physiology of acclimation and adaptation. Animal Frontiers, 9(1), 12-19.
Davis, S. S., Gibson, D. S., & Clark, R. (1984). The effect of bovine ephemeral fever on milk production. Australian Veterinary Journal, 61(4), 128-130.
Das, R., Sailo, L., Verma, N., Bharti, P., & Saikia, J. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary world, 9(3), 260.
Ellis, J. A. (2010). Bovine parainfluenza-3 virus. Veterinary Clinics: Food Animal Practice, 26(3), 575-593.
George, T. S. (1990). Bovine Ephemeral Fever Virus. In. Virus Infections of Ruminants, 405-415.
George, W. D., Godfrey, R. W., Ketring, R. C., Vinson, M. C., & Willard, S. T. (2014). Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. Journal of Animal Science, 92(11), 4949-4955.
Giro, A., Bernardi, A. carlos de campos, Barioni junior, W., Lemes, A. prudêncio, Botta, D., Romanello, N., Barreto, A. do nascimento, & Garcia, A. rossetto. (2019). Application of Microchip and Infrared Thermography for Monitoring Body Temperature of Beef Cattle Kept on Pasture. Journal of Thermal Biology, 84, 121–128.
Gómez, Y., Bieler, R., Hankele, A. K., Zähner, M., Savary, P., & Hillmann, E. (2018). Evaluation of visible eye white and maximum eye temperature as non-invasive indicators of stress in dairy cows. Applied Animal Behaviour Science, 198, 1-8.
Grm, K., Štruc, V., Artiges, A., Caron, M., & Ekenel, H. K. (2018). Strengths and weaknesses of deep learning models for face recognition against image degradations. Iet Biometrics, 7(1), 81-89.
Gunn, K. m., Holly, M. a., Veith, T. i., Buda, A. r., Prasad, R., Rotz, C. alan, Soder, K. j., & Stoner , A. m. K. (2019). Projected Heat Stress Challenges and Abatement Opportunities for U.S. Milk Production. PloS One, 14(3).
Howard, A. g., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, tobias , Andreetto, M., & Adam, H. (n.d.). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. https://doi.org/https://doi.org/10.48550/arXiv.1704.04861
Ivašić-Kos, M., Krišto, M., & Pobar, M. (2019, April). Human detection in thermal imaging using YOLO. In Proceedings of the 2019 5th International Conference on Computer and Technology Applications (pp. 20-24).
Kahrs, R. F. (1977). Infectious bovine rhinotracheitis: a review and update. Journal of the American Veterinary Medical Association, 171(10), 1055-1064.
Kannadaguli, P. (2020, November). YOLO v4 based human detection system using aerial thermal imaging for uav based surveillance applications. In 2020 International Conference on Decision Aid Sciences and Application (DASA) (pp. 1213-1219). IEEE.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
Jorquera-Chavez, M., Fuentes, S., Dunshea, F. R., Warner, R. D., Poblete, T., & Jongman, E. C. (2019). Modelling and validation of computer vision techniques to assess heart rate, eye temperature, ear-base temperature and respiration rate in cattle. Animals, 9(12), 1089.
Li, G., Chen, S., Chen, J., Peng, D., & Gu, X. (2020). Predicting rectal temperature and respiration rate responses in lactating dairy cows exposed to heat stress. Journal of dairy science, 103(6), 5466-5484.
Lowe, G., Sutherland, M., Waas, J., Schaefer, A., Cox, N., & Stewart, M. (2019). Infrared thermography—A non-invasive method of measuring respiration rate in calves. Animals, 9(8), 535.
Marai, I. F. M., & Haeeb, A. A. M. (2010). Buffalo's biological functions as affected by heat stress—A review. Livestock Science, 127(2-3), 89-109.
Masi, I., Wu, Y., Hassner, T., & Natarajan, P. (2018, October). Deep face recognition: A survey. In 2018 31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI) (pp. 471-478). IEEE.
McConnel, C. S., Lombard, J. E., Wagner, B. A., & Garry, F. B. (2008). Evaluation of factors associated with increased dairy cow mortality on United States dairy operations. Journal of dairy science, 91(4), 1423-1432.
Mehdipour Ghazi, M., & Kemal Ekenel, H. (2016). A comprehensive analysis of deep learning based representation for face recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 34-41).
Nabenishi, H., Ohta, H., Nishimoto, T., Morita, T., Ashizawa, K., & Tsuzuki, Y. (2011). Effect of the temperature-humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan. Journal of Reproduction and Development, 1104050364-1104050364.
Nandi, S., & Negi, B. S. (1999). Bovine ephemeral fever: a review. Comparative immunology, microbiology and infectious diseases, 22(2), 81-91.
Narayanan, A., Kumar, R. D., RoselinKiruba, R., & Sharmila, T. S. (2021, March). Study and analysis of pedestrian detection in thermal images using YOLO and SVM. In 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 431-434). IEEE.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
Peng, D., Chen, S., Li, G., Chen, J., Wang, J., & Gu, X. (2019). Infrared thermography measured body surface temperature and its relationship with rectal temperature in dairy cows under different temperature-humidity indexes. International Journal of Biometeorology, 63(3), 327-336.
Pragna, P., Archana, P. r., Aleena, J., Sejian, V., Krishnan, G., Bagath, M., Manimaran, A., Beena, V., Kurien, E. k., Varma, G., & Bhatta, R. (2017). Heat Stress and Dairy Cow: Impact on Both Milk Yield and Composition. International Journal of Dairy Science, 12(1), 1–11.
Salles, M. saladini vieira, Da silva, S. corrêa, Salles, F. andré, Jr, L. carlos R., El faro, L., Bustos mac lean, P. ayleen, Lins de oliveira, C. eduardo, & Martello, L. silva. (2016). Mapping the Body Surface Temperature of Cattle by Infrared Thermography. Journal of Thermal Biology, 62, 63–69.
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815-823).
Schütz, K. E., Cox, N. R., & Matthews, L. R. (2008). How important is shade to dairy cattle? Choice between shade or lying following different levels of lying deprivation. Applied animal behaviour science, 114(3-4), 307-318.
Shu, H., Li, Y., Fang, T., Xing, M., Sun, F., Chen, X., Bindelle, J., Wang, W., & Guo, L. (2022). Evaluation of the Best Region for Measuring Eye Temperature in Dairy Cows Exposed to Heat Stress. Animal Behavior and Welfare, 9.
Silanikove, N., & Koluman, N. (2015). Impact of climate change on the dairy industry in temperate zones: Predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Research, 123(1), 27-34.
Smith, B. I., & Risco, C. A. (2005). Management of periparturient disorders in dairy cattle. Veterinary Clinics: Food Animal Practice, 21(2), 503-521.
Stankovski, S., Ostojic, G., Senk, I., Rakic-Skokovic, M., Trivunovic, S., & Kucevic, D. (2012). Dairy cow monitoring by RFID. Scientia Agricola, 69(1), 75-80.
Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 10,000 classes. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1891-1898).
Takano, C., & Ohta, Y. (2007). Heart rate measurement based on a time-lapse image. Medical engineering & physics, 29(8), 853-857.
Tuan, S. A., Rustia, D. J. A., Hsu, J. T., & Lin, T. T. (2022). Frequency modulated continuous wave radar-based system for monitoring dairy cow respiration rate. Computers and Electronics in Agriculture, 196, 106913.
Tuppurainen, E. S. M., & Oura, C. A. L. (2012). lumpy skin disease: an emerging threat to Europe, the Middle East and Asia. Transboundary and emerging diseases, 59(1), 40-48.
Uddin, J., McNeill, D. M., Lisle, A. T., & Phillips, C. J. (2020). A sampling strategy for the determination of infrared temperature of relevant external body surfaces of dairy cows. International Journal of Biometeorology, 64, 1583-1592.
Vainer, B. G. (2018). A novel high-resolution method for the respiration rate and breathing waveforms remote monitoring. Annals of Biomedical Engineering, 46(7), 960-971.
Valarcher, J. F., & Taylor, G. (2007). Bovine respiratory syncytial virus infection. Veterinary research, 38(2), 153-180.
Viola, P., & Jones, M. (2001, December). Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001 (Vol. 1, pp. I-I). Ieee.
Wagner, S. A., Schimek, D. E., & Cheng, F. C. (2008). Body temperature and white blood cell count in postpartum dairy cows. The Bovine Practitioner, 18-26.
Wang, F. I., Hsu, A. M., & Huang, K. J. (2001). Bovine ephemeral fever in Taiwan. Journal of Veterinary Diagnostic Investigation, 13(6), 462-467.
Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 390-391).
West, J. W. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86(6), 2131-2144.
West, J. W., Mullinix, B. G., & Bernard, J. K. (2003). Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. Journal of Dairy Science, 86(1), 232-242.
Wheelock, J. B., Rhoads, R. P., VanBaale, M. J., Sanders, S. R., & Baumgard, L. H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. Journal of Dairy Science, 93(2), 644-655.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84914-
dc.description.abstract乳牛的產乳量與其健康狀況密切相關。牠們的體溫將是反映身體狀況重要指標之一。紅外線熱影像技術已經有不少相關研究與應用,證實可以在非接觸式的情況下量測乳牛溫度並進一步研究與分析,因此將成為建立乳牛健康管理的自動化監測系統之關鍵。儘管有幾項研究報導了通過手持式熱影像攝影機測量乳牛溫度的方法,但手動測量耗時費力,在牧場的實際應用上並不實際。為了解決這些問題,本研究提出了一種自動化的非接觸式熱影像監測系統,可以有效地從即時熱影像監測系統擷取乳牛眼睛的溫度測量值。該系統利用深度學習方法進行泌乳牛眼睛偵測與定位。應用於即時乳牛眼睛偵測的YOLOv4模型經過訓練和優化;該模型之偵測率達到 0.99 及F1 score 達到0.99。從熱影像串流中擷取出許多包含乳牛眼睛的影像,再應用進一步的影像處理算法計算平均溫度。透過這種方法,熱影像攝影機對每頭經過前方的乳牛進行多次溫度測量。該系統安裝在台大動科系實驗牧場,並進行了長期實驗量測以紀錄個別乳牛溫度的變化,數據分析結果發現環境溫度、乳牛眼睛與熱影像攝影機間的距離及角度、個體牛隻差異、眼睛型態及牛隻行為都會對溫度測量都有很強的影響,代表眼睛溫度測量需要用環境溫度進行校正,並且需要對測量的溫度進行後處理以提高其準確性。此溫度監測系統也結合非接觸式雷達呼吸頻率系統進一步分析乳牛熱緊迫的程度。從實驗中分析群體牛隻結果可以得知,乳牛眼睛溫度與溫溼度指數之線性回歸斜率0.07,相關係數為0.69,乳牛呼吸頻率與溫溼度指數之相關係數為0.74,眼睛溫度與呼吸頻率之相關係數為0.60。以單一溫濕度指數做熱緊迫區分時,從眼睛溫度分析之溫濕度數值為71.8,以呼吸頻率分析之溫濕度數值為68.1。此結果驗證紅外線熱影像可以被運用於牧場中自動監測乳牛之健康狀態,也代表本研究所建立之系統在檢測乳牛發燒或評估熱緊迫方面具有未來應用之價值。zh_TW
dc.description.abstractDairy cows' milk production is closely related to their health status. One of the indicators reflecting their health status is their body temperature. Infrared thermal imaging has been demonstrated to process a high potential for non-contact measurement of dairy cow body temperature, which is crucial for establishing an automated health monitoring system for dairy cow management. Although several studies have reported on the dairy cow temperature measurement by handheld thermal imaging cameras, manual measurement is not a feasible approach for practical application in the dairy industry as it is laborious and time-consuming. To solve these problems, this work proposes an automated non-contact thermal imaging monitoring system that can efficiently take dairy cow eye temperature measurement from thermal video stream in real time. The system utilizes a deep learning approach for dairy cow eye detection. A YOLOv4 model for real-time dairy cow eye detection was trained and optimized; it yielded a hit rate of 0.99 and an F1-score of 0.99. For each detected sub-image containing the dairy cow eye in the video stream, a further image processing algorithm was applied to determine the mean temperature with its variance. With this approach, multiple temperature measurements are taken from each dairy cow walking by the thermal camera. The system was installed in the university experimental dairy farm and long-term experiments were carried out to assess the variations of temperature measurement. It was found that both the ambient temperature, the thermal camera distance and angle, individual differences, eye stage and cow behavior have strong effect on the temperature measurement, indicating that the eye temperature measurement needs to be corrected with the ambient temperature and measured temperatures need to be preprocessed in order to increase its accuracy. The experimental results also show that the proposed system has potential in regard to detecting dairy cow fever or assessing of heat stress. This system also combines the non-contact respiratory rate system to measure the respiratory rate of dairy cows. From the analysis of the results of the group cows in the experiment, it can be known that the linear regression slope between the eye temperature and the THI of dairy cows is 0.07, and the correlation coefficient is 0.69. The correlation coefficient between the respiratory frequency of dairy cows and THI is 0.74. The correlation coefficient between the eye temperature and the respiration rate is 0.60. When using a single THI for heat stress distinction, the THI value analyzed by eye temperature is 71.8, and the THI value analyzed by respiration rate is 68.1. This result validates that the thermal infrared camera can automatically monitor the health status of dairy cows and also represents that the system established in this study has future application value in detecting fever in dairy cows or assessing heat stress.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:32:27Z (GMT). No. of bitstreams: 1
U0001-2208202217412900.pdf: 7519401 bytes, checksum: aa86e5900d9b47d8a0d284ae1c9d9f77 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 II
摘要 III
ABSTRACT IV
目錄 VI
圖目錄 IX
表目錄 XII
1 第一章 緒論 1
1.1前言 1
1.2 研究目的 3
2 第二章 文獻探討 5
2.1 泌乳牛隻的發燒疾病 5
2.2 泌乳牛行為監測與分析 8
2.3 深度學習應用於物體辨識 10
2.4 深度學習應用於臉部辨識 11
2.5 深度學習應用於熱影像系統 12
3 第三章 研究方法 13
3.1 實驗動物與實驗場域 13
3.1.1 泌乳牛 13
3.1.2 實驗場域 13
3.1.2 台大牧場泌乳牛榨乳規則 13
3.2 非接觸式雷達呼吸頻率監測系統 15
3.2.1 雷達及嵌入式系統之模組架構 15
3.2.2 系統硬體及演算法之優化 15
3.3熱影像牛眼溫度監測系統 18
3.4個體牛隻辨識系統 19
3.5 深度學習 20
3.5.1 YOLOv4模型 20
3.5.2 牛眼偵測訓練影像 23
3.6牛眼溫度監測系統軟體架構 24
3.6.1 牛隻移動偵測演算法 25
3.6.2 牛隻眼睛偵測演算法 27
3.6.3 牛眼溫度後處理演算法 27
3.6.4 個體牛隻辨識演算法 28
3.6.5 軟體架構與實作說明 29
4 第四章 結果與討論 32
4.1 非接觸式雷達呼吸頻率監測系統 32
4.2熱影像牛眼溫度監測系統 36
4.2.1 牛眼偵測模型測試 36
4.2.2熱影像牛眼溫度監測系統內之演算法 39
4.2.3 群體牛隻眼睛溫度量測 40
4.3 個體牛隻辨識系統 44
4.3.1量測結果分析 45
4.3.2加入投票原理後之量測結果分析 46
4.4 牛隻眼睛溫度量測結果與分析 49
4.4.1牛眼與攝影機間的距離與角度造成的影響 49
4.4.2牛隻行走時之行為造成的影響 51
4.4.3 個別牛隻的差異造成的影響 52
4.4.4 環境溫度造成的影響 53
4.5 降低溫度量測誤差之後處理演算法 53
4.6 量測品質檢測演算法 55
4.7 後處理演算法後個體牛之量測結果分析 59
4.7.1 個體牛溫度分佈比較 59
4.7.2個體牛與環境溫度間的關係 60
4.7.3個體牛與溫濕度值的關係 63
4.8 眼睛溫度量測結果與呼吸頻率間的比較 68
4.9 牛眼溫度與呼吸頻率對溫濕度指數的綜合分析 69
5 第五章 結論與建議 76
5.1 結論 76
5.2 建議 78
參考文獻 79
附錄 86
附錄一 個體牛眼睛溫度與環境溫度之關係圖 86
附錄二 個體牛眼睛溫度與溫溼度指數之關係圖 90
附錄三 個體牛眼睛溫度與呼吸頻率之關係圖 94
-
dc.language.isozh_TW-
dc.subject深度學習zh_TW
dc.subject呼吸頻率zh_TW
dc.subject熱影像zh_TW
dc.subject監測系統zh_TW
dc.subject紅外線攝影機zh_TW
dc.subject影像處理zh_TW
dc.subject深度學習zh_TW
dc.subject乳牛zh_TW
dc.subject呼吸頻率zh_TW
dc.subject熱影像zh_TW
dc.subject監測系統zh_TW
dc.subject紅外線攝影機zh_TW
dc.subject影像處理zh_TW
dc.subject乳牛zh_TW
dc.subjectrespiration rateen
dc.subjectdairy cowen
dc.subjectdeep learningen
dc.subjectimage processingen
dc.subjectinfrared thermographyen
dc.subjectmonitoring systemen
dc.subjectthermal imageen
dc.subjectrespiration rateen
dc.subjectdairy cowen
dc.subjectdeep learningen
dc.subjectimage processingen
dc.subjectinfrared thermographyen
dc.subjectmonitoring systemen
dc.subjectthermal imageen
dc.title整合熱影像與雷達呼吸監測系統於乳牛熱緊迫程度之分析zh_TW
dc.titleIntegrating Thermal Imaging and Radar Respiration Rate Monitoring System for the Analysis of Dairy Cow Heat Stress Levelen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐濟泰;陳世芳zh_TW
dc.contributor.oralexamcommitteeJih-Tay Hsu;Shih-Fang Chenen
dc.subject.keyword乳牛,深度學習,影像處理,紅外線攝影機,監測系統,熱影像,呼吸頻率,zh_TW
dc.subject.keyworddairy cow,deep learning,image processing,infrared thermography,monitoring system,thermal image,respiration rate,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202202665-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-08-25-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2026-08-31-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
7.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved