Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84891
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor周瑞仁(JUI-JEN CHOU)
dc.contributor.authorHsin-Wei Hungen
dc.contributor.author洪信煒zh_TW
dc.date.accessioned2023-03-19T22:31:09Z-
dc.date.copyright2022-09-12
dc.date.issued2022
dc.date.submitted2022-08-26
dc.identifier.citation1.中國網。2018。全球無人機產業產值將超 4000 億美元。網址:https://kknews.cc/zh-tw/finance/k9ggyzb.html 。上網日期:2021-10-5。 2.林清一、邵珮琪、葉雲兆。2019。無人機飛航管理(UTM)系統。中國工程師學會會刊92卷04期,85-101。 3.行政院飛航安全委員會。2010。臺灣飛安統計 2001-2010。網址: https://www.ttsb.gov.tw/media/1132/statistics01-10.pdf 。上網日期:2022-5-15。 4.陳品潔。2018。聖誕節前50架無人機闖英國機場,逾11萬人受影響。網址: https://www.upmedia.mg/news_info.php?SerialNo=54507。上網日期:2021-10-13日。 5.郭建源、賴昱鐶。2020。高樓風對居住環境的影響。網址: https://ejournal.stpi.narl.org.tw/sd/download?source=10904-01.pdf&vlId=bcfe10a640144b0eb80a2097badff9eb&nd=1&ds=1。上網日期:2022-04-09。 6.深圳大疆創新科技有限公司。2019。MAVIC 2技術參數。 網址: https://www.dji.com/tw/mavic-2?site=brandsite&from=nav。 上網日期:2022-10-01。 7.維基百科, 自由的百科全書。2021。網址:https://zh.wikipedia.org/w/index.php?title=%E8%B2%9D%E6%B0%8F%E7%B6%B2%E8%B7%AF&oldid=68108431。上網日期: 2021-10-05。 8.Aiello, G., F. Hopps, D. Santisi, and M. Venticinque. 2020. The employment of unmanned aerial vehicles for analyzing and mitigating disaster risks in industrial sites. IEEE transactions on engineering management, 67(3), 519-530. 9.Allouch, A., A. Koubâa, M. Khalgui, and T. Abbes. 2019. Qualitative and quantitative risk analysis and safety assessment of unmanned aerial vehicles missions over the internet. IEEE Access. vol. 7, 53392-53410. 10.Autel Robotics. 2019. EVO II Pro specification. Available at: https://shop.autelrobotics.com/collections/evo-ii/products/evo-ii-pro-6k. Accessed 23 April 2021. 11.Barr, L. C., R. Newman, E. Ancel, C. M. Belcastro, J. V. Foster, J. Evans, and D. H. Klyde. 2017. Preliminary risk assessment for small unmanned aircraft systems. 17th AIAA Aviation Technology, Integration, and Operations Conference, 3272. 12.Björkman, P. 2011. Probabilistic safety assessment using quantitative analysis techniques: Application in the heavy automotive industry. Ph.D dissertation. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology. 13.Brito, M., and G. Griffiths. 2016. A Bayesian approach for predicting risk of autonomous underwater vehicle loss during their missions. Reliability Engineering & System Safety, 146, 55-67. 14.Counihan, J. O. 1975. Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmospheric Environment, 9(10), 871-905. 15.Ercan, H., H. Ulucan, and M. S. Can. 2022. Investigation of wind effect on different quadrotors. Aircraft Engineering and Aerospace Technology. 16.Jun, H. B., and D. Kim. 2017. A Bayesian network-based approach for fault analysis. Expert Systems with Applications, 81, 332-348. 17.Kopardekar, P., J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E. Robinson. 2016. Unmanned aircraft system traffic management (UTM) concept of operations. AIAA Aviation and Aeronautics Forum (Aviation 2016) (No. ARC-E-DAA-TN32838). 18.Kwag, S., A. Gupta. and N. Dinh. 2018. Probabilistic risk assessment based model validation method using Bayesian network. Reliability Engineering & System Safety, 169, 380-393. 19.la Cour-Harbo, A. 2019. Quantifying risk of ground impact fatalities for small unmanned aircraft. Journal of Intelligent & Robotic Systems, 93(1), 367-384. 20.LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. 1989. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551. 21.MENG, Y., and K. HIBI. 1998. Turbulent measurements of the flow field around a high-rise building. Wind Engineers, JAWE, 1998(76), 55-64. 22.National Academies of Sciences, Engineering, and Medicine. 2018. Assessing the Risks of Integrating Unmanned Aircraft Systems (UAS) into the National Airspace System. National Academies Press. 23.Primatesta, S., A. Rizzo, and A. la Cour-Harbo. 2020. Ground risk map for unmanned aircraft in urban environments. Journal of Intelligent & Robotic Systems, 97(3), 489-509. 24.Primatesta, S., L. S. Cuomo, G. Guglieri, and A. Rizzo. 2018. An innovative algorithm to estimate risk optimum path for unmanned aerial vehicles in urban environments. Transportation research procedia, 35, 44-53. 25.Roland, H. E., and B. Moriarty. 1991. System Safety Engineering and Management. John Wiley & Sons. 26.Walker, R. A., and R. A. Clothier. 2015. Safety Risk Management of Unmanned Aircraft Systems. Handbook of Unmanned Aerial Vehicles, Springer. Available at: https://auteldrones.com/pages/evo-ii-collections. Accessed 11 October 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84891-
dc.description.abstract本研究針對無人機飛航風險發展一套數據驅動之評估系統。隨著無人機應用越來越廣泛且價格逐漸親民,使用頻率快速增加,惟因無人機較有人機的飛行空域低且重量輕,使得飛航安全、安寧與隱私等問題逐漸受到普遍的關注,在此背景下勢必需要一套考慮環境與天候對無人機飛航安全影響之系統。本系統係屬團隊研究的一部分,整體研究除了針對空域中之無人機進行風險評估外,同時亦對無人機進行分散式監管,並以收集到的飛航數據利用區塊鏈架構進行個人化保險費率之計算。由於無人機較易受到天候、地形及訊號等因素的影響,可能導致無人機飛行偏差甚至發生事故,因此飛航風險評估在無人機監管中將扮演不可或缺的角色。本研究開發一套無人機飛航風險評估方法,利用大量歷史飛行數據配合數值地表模型建立風險模型以預測不同情境下之風險分佈。惟因現階段實際飛行數據不足,本研究根據有限的實際飛行數據,透過WindPerfect風場模擬軟體產生大量的模擬數據,並以卷積神經網路歸納分析風場、衛星定位及通信訊號強度與飛行路徑偏差間的交互關係,進而建立無人機飛航風險等級圖,風險等級地圖包含城市、山區與海岸等場域,大致包含目前無人機操作者作業之情境,利用色階深淺表示風險的高低程度,並設計親善的使用者介面,提供操作者進行風險評估與任務規劃。透過無人機飛航風險等級圖,操作者可於起飛前初步得知各區域之風險,以針對飛航任務進行相應的調整,達到降低飛航風險之目的。zh_TW
dc.description.abstractThis study develops a data-driven system for the risk evaluation of unmanned aerial vehicles (UAV ) flights. UAVs’ prices are getting more affordable and growing in popularity. However, due to flying at low attitudes and light weight, the security and privacy issues it derives are of widespread concern. Therefore, it is urgent to develop a UAV flight risk assessment system which is part of an overall study by our UAV research team. In addition to risk assessment, the entire research topics include decentralized supervision of UAVs and personal insurance premiums calculation based on historical flight data and claims records. UAV flights are easily affected by wind, terrain, navigation and communication quality etc. which led to deviate from planned flight courses or even crash. This study uses lots of historical flight data and digital surface model to establish a risk model for constructing risk maps in different scenarios, including various wind speed, communication quality, urban, mountainous, and coastal areas. Due to the lack of flight data at this stage, our study generates wind field simulation data using the WindPerfect software, GPS/communication signal quality and flight deviation based on actual flight experience. With those data, a convolution neural network (CNN ) model is established to construct the flight risk map. A friendly user interface is also developed to provide operators to plan flight paths and avoid high risk area based on the UAV flight risk map before takeoff.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:31:09Z (GMT). No. of bitstreams: 1
U0001-2508202213582200.pdf: 6777935 bytes, checksum: 27fbea20c371ea44f577bad3f6aa0b64 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 ii Abstract iii 第1章 前言 1 1.1無人機發展 1 1.2無人機安全隱憂 1 1.3數據驅動無人機風險評估系統 2 第2章 文獻探討 4 2.1無人機飛航管理系統 4 2.2無人機風險評估 5 2.2.1針對無人機本身進風險分析 6 2.2.1.1定性功能安全分析法 6 2.2.1.2定量安全分析法 8 2.2.2針對無人機墜毀所造成影響評估風險 9 2.3數據驅動風險評估系統 10 3.1整體系統介紹 11 3.2無人機風險來源分析 13 3.3風險評估系統架構 14 3.3.1綜觀風險因素分析 14 3.3.3圖層套疊之工具與優勢 16 3.4路徑偏差演算法計算 16 3.4.1路徑規畫概念 17 3.4.2無人機設備 17 3.4.3無人機控制及雲端同步應用程式 19 3.4.4規劃路徑轉為軌跡型式 20 3.4.5路徑偏差計算 22 3.4.6實驗場域 23 3.4.7飛行數據異常值檢測與處理 24 3.4.7.1路徑偏差角度之離群值處理 24 3.4.7.2單位時間前進距離之異常值處理 25 3.5模擬數據生成 27 3.5.1場域劃分 29 3.5.2風速強度測定 30 3.5.2.1臺灣大學永齡館周圍場域風速實驗 30 3.5.2.2 城市與海岸場景季度風速比較 34 3.5.3風場模擬數據生成 35 3.5.3.1風切變指數 35 3.5.3.2計算流體力學軟體 36 3.5.3.3 WindPerfectDX風場計算可信度測試 37 3.5.3.4 風速模擬之場景與取得途徑 39 3.5.3.5建築立體模型轉檔 42 3.5.3.6 風速模擬程式參數設定 43 3.5.4 通訊信號強度數據 44 3.5.5衛星定位強度測定 46 3.5.6路徑偏差長度生成 48 3.6卷積神經網路建構風險評估模型 52 3.6.1 卷積神經網路 52 3.6.2模型概述 52 3.6.3 模型架構 53 3.6.4風險模型訓練損失函數 54 3.7 使用者介面 55 3.7.1 Cesium JS 函式庫 55 3.7.2 使用者介面功能彙整 55 3.7.3 前端網頁與後端伺服器架構 56 第4章 成果與討論 58 4.1實驗場域 58 4.2 飛行路徑偏差演算法成果可視化 62 4.3 風場模擬成果展示與比較 64 4.3.1 特定高度風切變冪律公式與風速模擬成果比較 64 4.3.2不同情境之風速模擬成果 65 4.4 飛航風險預測模型 68 4.4.1不同參數之飛航風險模型之比較 68 4.4.2 不同情境之風險等級預測 70 4.5使用者介面 73 4.5.1風險地圖可視化 73 4.5.2 路徑生成與飛行模擬 74 第5章 結論 77 參考文獻 78
dc.language.isozh-TW
dc.title基於卷積神經網路發展無人機飛航風險評估系統zh_TW
dc.titleDevelopment of the Risk Assessment System for Drones Based on Convolutional Neural Networken
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾智昕(JHIH-SIN JHONG),廖世偉(Shih-Wei Liao),張斐章(FEI-JHANG JHANG)
dc.subject.keyword無人機,飛航監管,風險地圖,機器學習,空間資訊,飛航資訊,zh_TW
dc.subject.keywordUAV,Aviation surveillance,Risk map,Machine learning,Spatial information,UAV flight data,en
dc.relation.page80
dc.identifier.doi10.6342/NTU202202805
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
dc.date.embargo-lift2024-08-31-
Appears in Collections:生物機電工程學系

Files in This Item:
File SizeFormat 
U0001-2508202213582200.pdf
Access limited in NTU ip range
6.62 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved