Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84889
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧子彬(Tzu-Pin Lu)
dc.contributor.authorYa-Ting Wuen
dc.contributor.author吳雅婷zh_TW
dc.date.accessioned2023-03-19T22:31:03Z-
dc.date.copyright2022-10-04
dc.date.issued2022
dc.date.submitted2022-08-25
dc.identifier.citation1. Registry, T.T.C., Cancer Registry Annual Report, 2019 Taiwan. 2021. 2. Registry, T.T.C., Cancer Registry Annual Report, 2009 Taiwan. 2012. 3. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 2021. 71(3): p. 209-249. 4. Islami, F., et al., Annual Report to the Nation on the Status of Cancer, Part 1: National Cancer Statistics. Journal of the National Cancer Institute, 2021. 113(12): p. 1648-1669. 5. Observatory, G.C. Stage distribution, age (15–99), ovarian cancer, 2010-2014. 2022; Available from: https://gco.iarc.fr/survival/survmark/visualizations/viz8/?groupby=%22country%22&cancer=%22OVAR%22&country=%22Australia%22&gender=2&age_group=%2215-99%22&show_ci=%22%22. 6. Registry, T.T.C., Cancer Registry Annual Report, 2017 Taiwan. 2019. 7. Registry, T.T.C., Cancer Registry Annual Report, 2018 Taiwan. 2020. 8. Observatory, G.C. Age-standardized net survival, age (15-99), ovarian cancer, 2010-2014. 2022; Available from: https://gco.iarc.fr/survival/survmark/visualizations/viz7/?mode=%22circle%22&groupby=%22country%22&period=%221%22&cancer=%22OVAR%22&country=%22Australia%22&gender=2&stage=%22TNM%22&age_group=%2215-99%22&show_ci=false&countries=%5B%22Australia%22%2C%22Canada%22%2C%22Denmark%22%2C%22Ireland%22%2C%22New+Zealand%22%2C%22Norway%22%2C%22UK%22%5D. 9. Torre, L.A., et al., Ovarian cancer statistics, 2018. CA Cancer J Clin, 2018. 68(4): p. 284-296. 10. Peres, L.C., et al., Invasive Epithelial Ovarian Cancer Survival by Histotype and Disease Stage. Journal of the National Cancer Institute, 2019. 111(1): p. 60-68. 11. Hildebrand, J.S., et al., Racial disparities in treatment and survival from ovarian cancer. Cancer Epidemiology, 2019. 58: p. 77-82. 12. Poole, E.M., P.A. Konstantinopoulos, and K.L. Terry, Prognostic implications of reproductive and lifestyle factors in ovarian cancer. Gynecologic Oncology, 2016. 142(3): p. 574-587. 13. du Bois, A., et al., Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: A combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials. Cancer, 2009. 115(6): p. 1234-1244. 14. Gupta, D. and C.G. Lis, Role of CA125 in predicting ovarian cancer survival - a review of the epidemiological literature. Journal of Ovarian Research, 2009. 2(1): p. 13. 15. Wentzensen, N., et al., Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2016. 34(24): p. 2888-2898. 16. Antoniou, A., et al., Average Risks of Breast and Ovarian Cancer Associated with BRCA1 or BRCA2 Mutations Detected in Case Series Unselected for Family History: A Combined Analysis of 22 Studies. The American Journal of Human Genetics, 2003. 72(5): p. 1117-1130. 17. Ketabi, Z., et al., Ovarian cancer linked to lynch syndrome typically presents as early-onset, non-serous epithelial tumors. Gynecologic Oncology, 2011. 121(3): p. 462-465. 18. Boyd, J., et al., Clinicopathologic Features of BRCA-Linked and Sporadic Ovarian Cancer. JAMA, 2000. 283(17): p. 2260-2265. 19. Safra, T., et al., BRCA Mutation Status and Determinant of Outcome in Women with Recurrent Epithelial Ovarian Cancer Treated with Pegylated Liposomal Doxorubicin. Molecular Cancer Therapeutics, 2011. 10(10): p. 2000-2007. 20. Chiang, Y.-C., et al., Trends in incidence and survival outcome of epithelial ovarian cancer: 30-year national population-based registry in Taiwan. Journal of gynecologic oncology, 2013. 24(4): p. 342-351. 21. Chang, L.-C., et al., Prognostic factors in epithelial ovarian cancer: A population-based study. PloS one, 2018. 13(3): p. e0194993-e0194993. 22. Cox, D.R., Regression Models and Life-Tables. Journal of the Royal Statistical Society: Series B (Methodological), 1972. 34(2): p. 187-202. 23. Harrell, F.E., Jr., K.L. Lee, and D.B. Mark, Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med, 1996. 15(4): p. 361-87. 24. Akaike, H., A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974. 19(6): p. 716-723. 25. Lee, Y.-Y., et al., Prognosis of ovarian clear cell carcinoma compared to other histological subtypes: A meta-analysis. Gynecologic Oncology, 2011. 122(3): p. 541-547. 26. III, W.E.W., et al., Prognostic Factors for Stage III Epithelial Ovarian Cancer: A Gynecologic Oncology Group Study. Journal of Clinical Oncology, 2007. 25(24): p. 3621-3627. 27. Board., P.A.T.E., Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment (PDQ®): Patient Version. 2022, Bethesda (MD): National Cancer Institute (US): In: PDQ Cancer Information Summaries [Internet]. 28. Karam, A.K. and B.Y. Karlan, Ovarian cancer: the duplicity of CA125 measurement. Nature Reviews Clinical Oncology, 2010. 7(6): p. 335-339. 29. Fagotti, A., et al., Randomized trial of primary debulking surgery versus neoadjuvant chemotherapy for advanced epithelial ovarian cancer (SCORPION-NCT01461850). Int J Gynecol Cancer, 2020. 30(11): p. 1657-1664. 30. Stewart, C., C. Ralyea, and S. Lockwood, Ovarian Cancer: An Integrated Review. Seminars in Oncology Nursing, 2019. 35(2): p. 151-156. 31. Huffman, D.L., et al., Disparities in ovarian cancer treatment and overall survival according to race: An update. Gynecologic Oncology, 2021. 162(3): p. 674-678. 32. Gilks, C.B. and J. Prat, Ovarian carcinoma pathology and genetics: recent advances. Human Pathology, 2009. 40(9): p. 1213-1223. 33. Kossa, M., et al., Ovarian Cancer: A Heterogeneous Disease. Pathobiology, 2018. 85(1-2): p. 41-49. 34. Bandera, E.V., et al., Racial/Ethnic Disparities in Ovarian Cancer Treatment and Survival. Clinical cancer research : an official journal of the American Association for Cancer Research, 2016. 22(23): p. 5909-5914. 35. Phan, V.H., et al., Ethnic differences in drug metabolism and toxicity from chemotherapy. Expert Opinion on Drug Metabolism & Toxicology, 2009. 5(3): p. 243-257. 36. Alsop, K., et al., BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2012. 30(21): p. 2654-2663.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84889-
dc.description.abstract背景:卵巢癌不論在台灣亦或是全球女性中,癌症死亡率排名都在前十名內,不同國家間診斷出卵巢癌的期別有所差異,而期別對於卵巢癌的存活率有顯著的影響,目前卵巢癌主要以發生率最高的上皮型卵巢癌(Epithelial ovarian cancer)為主,其中又可細分為漿液型(Serous)、黏液型(Mucinous)、子宮內膜型(Endometrioid)、明亮細胞型(clean cell)卵巢癌,不同亞型的卵巢癌發生率與存活率皆有差異,並且也具有種族間的差異,因此本研究期望藉由台灣癌症登記中心所蒐集的卵巢癌病人資料建立屬於台灣人的卵巢癌存活預測模型,再使用美國的癌症登記數據庫The Surveillance, Epidemiology, and End Results (SEER) 的資料來進行外部驗證及評估種族差異的影響,且希望藉由本研究成果能對於醫生診治不同卵巢癌亞型病人時能給予治療方案上的輔助。 方法:本研究主要使用台灣癌症登記系統(The Taiwan Cancer Registry, TCR)之長表資料,選取於2009年1月1日至2015年12月31日間診斷為卵巢癌的病人,追蹤至2017年12月31日,建立兩種存活預測模型,模型一納入常見臨床變項,模型二新增癌症特定因子變項,以期增加模型準確度;使用美國癌症研究所的SEER資料庫進行外部驗證,納入同樣的罹病年份與追蹤年數,可區分為白人、黑人、亞洲人的資料進行外部驗證及外推性研究。 結果:以所有死亡為終點的分析中,在模型一中達到顯著的變項有年齡(18-39, HR=1;40-49,HR=1.48, P=0.07;50-59, HR=1.53, P=0.054;60+, HR=2.59, P<0.001);腫瘤亞型(Serous, HR=1;Clear cell, HR=1.85, P<0.001;Endometrioid, HR=0.9, P=0.438;Mucinous, HR=1.63, P=0.004)、腫瘤分級分化程度(Grade low, HR=1;Grade high, HR=2.12, P=0.002)、病理T(Pathological T1, HR=1;Pathological T2, HR=3.06, P<0.001;Pathological T3, HR=6.18, P<0.001)、病理M(HR=3.25,P<0.001)、是否進行化療(HR=0.69,P=0.027)與淋巴結侵犯比例(HR=2.34,P<0.001),加入的交互作用項有:年齡*腫瘤分級分化程度、腫瘤亞型*病理N、腫瘤分級分化程度*病理M、病理N*病理M;在模型二達到顯著的變項有年齡(18-39, HR=1;40-49,HR=1.19, P=0.514;50-59, HR=1.01, P=0.78;60+, HR=1.96, P=0.009);腫瘤亞型(Serous, HR=1;Clear cell, HR=2.93, P<0.001;Endometrioid, HR=1.68, P=0.002;Mucinous, HR=3.32, P<0.001)、腫瘤分級分化程度(Grade low, HR=1;Grade high, HR=2.05, P=0.003)、病理T(Pathological T1, HR=1;Pathological T2, HR=3.67, P<0.001;Pathological T3, HR=6.4, P<0.001)、病理M(HR=1.63,P<0.001)、治療後CA125數值(0-35 ug/ml, HR=1;35-100 ug/ml, HR=2.31, P<0.001;100+, HR=3.92, P<0.001)、是否殘存腫瘤(HR=2, P=0.005),加入的交互作用項有:年齡*病理N、腫瘤分級分化程度*治療後是否殘存腫瘤;兩種模型的C-index數值不論在台灣或是美國資料集皆在0.7以上,且於存活預測的表現良好,存活與觀察間的差異大多數不超過5%。 結論:本研究所建立的兩種模型在預測台灣卵巢癌病人的存活上具有良好的表現,且在美國SEER資料中也同樣具有良好表現,基於種族的資料可證實本研究之模型具有外推性,期望可藉由本研究對於醫師在臨床治療決策的評估及醫病溝通上可達到助益。zh_TW
dc.description.abstractBackground: Ovarian cancer (OC) is the top 10 cause of cancer death not only in Taiwan but also in the whole world. The diagnosed stage information of OC varies from country to country, and it is a significant survival predictor of OC. Currently, epithelial ovarian cancer, which has the highest incidence, is the most common type of OC, and can be further divided into four subtypes, including serous, mucinous, endometrioid, and clear cell ovarian cancer. Unsurprisingly, different subtypes of OC have distinct incidence and survival rates, and these data are also specific to populations with distinct genetic backgrounds. To solve these issues, this thesis aims to develop a survival prediction model for OC in Taiwan by using the data collected from the Taiwan Cancer Registry. Next, the prediction model will be validated by using the data from the SEER dataset, a national cancer registry in the United States, in order to evaluate whether racial differences exist. Method: In this study, patients diagnosed with ovarian cancer between January 1, 2009 and December 31, 2015 were analyzed by using the data from the TCR, and all patients were followed until December 31, 2017. Two survival prediction models were developed by using different combinations of variables, respectively. The model 1 included the clinical variables in common to the TCR and the SEER datasets whereas the model 2 added cancer-specific variables from the TCR to improve the accuracy. The SEER dataset was used for external validation, and the analyzed patients had the same study period as what we had from the TCR data. That is patients with the same year of diagnosis and the year of follow-up time were analyzed. Lastly, the patients and can be further divided into three different groups according to their genetic ancestry, including white, black, and Asian. Results: In the analysis using all death as the endpoint, the variables that reached significance in the model 1 included age(18-39, HR=1;40-49,HR=1.48, P=0.07;50-59, HR=1.53, P=0.054; 60+, HR=2.59, P<0.001); histology subtype (Serous, HR=1; Clear cell, HR=1.85, P<0.001; Endometrioid, HR=0.9, P=0.438; Mucinous, HR=1.63, P=0.004),Tumor grade(Grade low, HR=1;Grade high, HR=2.12, P=0.002), Pathological T(Pathological T1, HR=1; Pathological T2, HR=3.06, P<0.001; Pathological T3, HR=6.18, P<0.001), Pathological M(HR=3.25,P<0.001), chemotherapy(HR=0.69,P=0.027), lymph node stage (HR=1.41, P=0.011), metastasis (HR=1.68, P<0.001) and lymph node ratio (HR=2.34,P<0.001).The interaction variables included age*Tumor grade, histology subtype* Pathological M, Tumor grade* Pathological M, Pathological N* Pathological M. The significant variables obtained from the model 2 included age (18-39, HR=1;40-49,HR=1.19, P=0.514;50-59, HR=1.01, P=0.78;60+, HR=1.96, P=0.009), histology subtype (Serous, HR=1;Clear cell, HR=2.93, P<0.001;Endometrioid, HR=1.68, P=0.002;Mucinous, HR=3.32, P<0.001),Tumor grade(Grade low, HR=1;Grade high, HR=2.05, P=0.003), Pathological T (Pathological T1, HR=1;Pathological T2, HR=3.67, P<0.001;Pathological T3, HR=6.4, P<0.001), Pathological M(HR=1.63,P<0.001), Carbohydrate Antigen 125 lab value after treatment (0-35 ug/ml, HR=1;35-100 ug/ml, HR=2.31, P<0.001;100+, HR=3.92, P<0.001), Residual Tumor(HR=2, P=0.005). The interaction variables included age* Pathological N, Tumor grade* Residual Tumor . The C-index values of these two models were above 0.7 in both TCR and SEER datasets. The models had good performance in survival prediction based on the calibration data, and the proportional difference between prediction and observation were mostly less than 5%. Conclusion: The two models developed in this study showed good performance in predicting survival of ovarian cancer patients in Taiwan and also in the SEER dataset. Notably, no huge racial differences were observed in predicting survival outcomes in OC patients, and thus we believe these two models can be useful for clinical treatment decision making and communication between patients and their physicians in the future.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:31:03Z (GMT). No. of bitstreams: 1
U0001-2508202221501800.pdf: 2183055 bytes, checksum: 365c9897a0b20d42b4a015921acca79b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents中文摘要 IV ABSTRACT VI 目錄 IX 第一章 導論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 第二章 材料與方法 3 2.1 樣本 3 2.1.1 資料來源 3 2.1.2 資料特性 4 2.1.3 樣本資料篩選 4 2.2 分析方法 5 2.2.1 Cox比例風險模型(Cox proportional hazard model) 5 2.2.2 Harrell’s C-index (concordance index) 6 2.2.3 臨床變項分析 6 第三章 結果 7 3.1 樣本資料篩選 7 3.2 臨床變項敘述統計分析 7 3.3 影響台灣人卵巢癌存活預測的變項及模型預測表現 8 3.3.1 藉由Cox比例風險模型篩選出影響存活的變項 8 3.3.1.1 模型一:常見臨床變項 8 3.3.1.2 模型二:常見臨床變項加上癌症特定因子變項 9 3.3.2 模型預測表現 11 3.3.2.1 模型一 11 3.3.2.2 模型二 11 3.4 美國SEER之外部資料驗證 12 3.4.1 Cox比例風險模型分析影響存活的變項 12 3.4.2 由台灣資料進行模型預測之驗證 12 3.5 漿液型卵巢癌的存活預測 13 3.5.1 Cox比例風險模型分析影響存活的變項 13 3.5.1.1 模型一:常見臨床變項 13 3.5.1.2 模型二:常見臨床變項加上癌症特定因子變項 14 3.5.2 美國SEER之外部資料驗證 15 第四章 討論與結論 16 4.1 主要發現 16 4.2 研究限制 18 4.3 於公共衛生與臨床上的貢獻 18 參考資料 19
dc.language.isozh-TW
dc.title使用癌症登記系統資料預測台灣卵巢癌病患的存活情形zh_TW
dc.titlePredicting Survival Outcomes for Ovarian Cancer Patients by Using National Cancer Registry Data from Taiwanen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭自宏(Tzu-Hung Hsiao),林敬恒(Ching-Heng Lin),李文宗(Wen-Chung Lee),江濬如(CHUN-JU CHIANG)
dc.subject.keyword卵巢癌,台灣癌症登記系統,SEER,存活預測,種族差異,zh_TW
dc.subject.keywordOvarian cancer,the Taiwan Cancer Registry (TCR),The Surveillance, Epidemiology, and End Results (SEER),Survival Prediction,racial differences,en
dc.relation.page49
dc.identifier.doi10.6342/NTU202202829
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-26
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
dc.date.embargo-lift2023-08-25-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2508202221501800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved