請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林之謙(Je-Chian Lin) | |
| dc.contributor.author | Wen-Ting Wang | en |
| dc.contributor.author | 王文廷 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:30:39Z | - |
| dc.date.copyright | 2022-08-30 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-08-29 | |
| dc.identifier.citation | [1] Niklaus Kohler and S. Moffatt. Life-cycle analysis of the built environment. Industry and Environment, 26:17–21, 04 2003. [2] Astrid Roetzel, Aris Tsangrassoulis, and Udo Dietrich. Impact of building design and occupancy on office comfort and energy performance in different climates. Building and Environment, 71:165–175, 01 2014. [3] Olivier Dartevelle and Sophie Obyn. Measure: Establishment of a questionnaire to evaluate occupants’ satisfaction adapted to high energy performance residential buildings. 09 2015. [4] Zheng Yang, Ali Ghahramani, and Burcin Becerik-Gerber. Building occupancy diversity and hvac (heating, ventilation, and air conditioning) system energy efficiency. Energy, 109:641–649, 2016. [5] Tiantian du, S.C. Jansen, Michela Turrin, and Andy Dobbelsteen. Impact of space layout on energy performance of office buildings coupling daylight with thermal simulation. E3S Web of Conferences, 111:03077, 01 2019. [6] Tiantian du, S.C. Jansen, Michela Turrin, and Andy Dobbelsteen. Effect of space layouts on the energy performance of office buildings in three climates. Journal of Building Engineering, 39:102198, 07 2021. [7] Andrew Sonta, Thomas Dougherty, and Rishee Jain. Data-driven optimization of building layouts for energy efficiency. Energy and Buildings, 238:110815, 05 2021. [8] Rhys Goldstein, Alex Tessier, and Azam Khan. Space layout in occupant behavior simulation. Conference Proceedings: IBPSA-AIRAH Building Simulation Conference, 01 2011. [9] Ipek Gursel Dino and Göktürk Üçoluk. Multiobjective design optimization of building space layout, energy, and daylighting performance. Journal of Computing in Civil Engineering, 31, 03 2017. [10] Liu Yong and Hao Chibiao. A generative design method of building layout generated by path. Applied Mathematics and Nonlinear Sciences, 03 2022. [11] Nobuto Iwata. World trade organization and the recycling trade: Trade measures for global environmental preservation. Japanese Economy, 33(4):45–64, 2006. [12] Steffen Petersen and Svend Svendsen. Method and simulation program informed decisions in the early stages of building design. Energy and Buildings, 42(7):11131119, 2010. [13] B. Roisin, M. Bodart, A. Deneyer, and P. D'Herdt. Lighting energy savings in offices using different control systems and their real consumption. Energy and Buildings, 40(4):514–523, 2008. [14] Elham Delzendeh and S. Wu. The influence of space layout design on occupant's energy behaviour. pages 601–608, 07 2017. [15] June Young Park, Mohamed M. Ouf, Burak Gunay, Yuzhen Peng, William O’Brien, Mikkel Baun Kjærgaard, and Zoltan Nagy. A critical review of field implementations of occupant-centric building controls. Building and Environment, 165:106351, 2019. [16] Bharathan Balaji, Jian Xu, Anthony Nwokafor, Rajesh Gupta, and Yuvraj Agarwal. Sentinel: Occupancy based hvac actuation using existing wifi infrastructure within commercial buildings. 2013. [17] Qingtan Deng, Guangbin Wang, Yuetao Wang, Hao Zhou, and Lei Ma. A quantitative analysis of the impact of residential cluster layout on building heating energy consumption in cold iib regions of china. Energy and Buildings, 253:111515, 2021. [18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. 27, 2014. [19] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4396–4405, 2019. [20] Sheng-Wei Huang, Che-Tsung Lin, Shu-Ping Chen, Yen-Yi Wu, Po-Hao Hsu, and Shang-Hong Lai. Auggan: Cross domain adaptation with gan-based data augmentation. pages 731–744, 2018. [21] Zak Murez, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi, and Kyungnam Kim. Image to image translation for domain adaptation. pages 4500–4509, 2018. [22] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional adversarial networks. July 2017. [23] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-resolution image synthesis and semantic manipulation with conditional gans. June 2018. [24] Weixin Huang and Hao Zheng. Architectural drawings recognition and generation through machine learning. 10 2018. [25] N. Peters. Enabling Alternative Architectures: Collaborative Frameworks for Participatory Design. Harvard University Graduate School of Design, 2018. [26] Stanislas Chaillou. ArchiGAN: Artificial Intelligence x Architecture, pages 117–127. 09 2020. [27] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015. [28] Samuel Dodge, Jiu Xu, and Björn Stenger. Parsing floor plan images. In 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pages 358–361, 2017. [29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241, Cham, 2015. Springer International Publishing. [30] Zahra Ziran and Simone Marinai. Object detection in floor plan images. In Luca Pancioni, Friedhelm Schwenker, and Edmondo Trentin, editors, Artificial Neural Networks in Pattern Recognition, pages 383–394, Cham, 2018. Springer International Publishing. [31] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https://github.com/facebookresearch/detectron2, 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84882 | - |
| dc.description.abstract | 室內佈局與能源光照需求有著密不可分的關係,並同時影響著建築物能源消耗。許多研究探討如何藉由改變室內布局降低能源消耗,然而,這些方法往往僅適用於初步設計階段,並無法直接且有系統地應用到實際存在的建物中,此外,也常因為使用模擬的方式在進行分析時對建物進行過多假設導致其難以反映真實情況,因此,本研究擬提出一套利用生成性對抗網路(GAN)生成室內佈局輔助光照需求分析,進而實現室內佈局的最佳化的方法,而最佳化後的結果亦能夠成為後續相關案例的參考對象。透過蒐集相關平面圖,本研究首先利用物件辨識模型提取相關有用資訊,並藉由深度學習模型生成相對應的多個室內佈局選項,再將生成的平面圖像轉換成立體的幾何模型,接著進行光照模擬分析,分析過後即可比較其與原佈局的優劣,進而給出最佳的室內佈局建議。而根據我們最後的實驗結果,改變室內佈局最多可提升38%的太陽輻射接收量,進而降低室內光照需求。 | zh_TW |
| dc.description.abstract | Interior building layouts and lighting energy demand are interrelated and the design of the layouts can further affect the building energy consumption. However, recent studies are limited to the preliminary design phase, which cannot be directly and clearly applied to the case of actual buildings after construction. In addition, the use of simulation methods for analysis often results in too many assumptions for buildings themselves and makes it difficult to reflect on the real situation. Therefore, this research proposes a set of indoor building layout auxiliary lighting demand analysis using a generative adversarial network (GAN) to optimize the indoor building layout. The results can also be used as a reference for subsequent related cases. This research collected hundreds of online indoor layout data as an input for the framework. This study first uses object recognition models to extract relevant space and object information from the building layouts and then generates numerous corresponding indoor building layout options by the generative model. Next, the system automatically converts the 2D floor plan into a 3D geometric model. Finally, the system imports the 3D model to the energy analysis software for lighting simulation analysis. The results can be compared with the original layout and provide optimal indoor layout suggestions. The experiments showed that the radiation reception after changing building layout can be improve by 38%. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:30:39Z (GMT). No. of bitstreams: 1 U0001-2608202210285600.pdf: 5868438 bytes, checksum: 6178aff1b2a790190115374afeb9f1ed (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Contents Verification Letter from the Oral Examination Committee i Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Figures ix List of Tables x Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 Literature Review 6 2.1 The relationship between building layouts and energy demand . . . . 6 2.1.1 Building layouts and energy efficiency . . . . . . . . . . . . . . . . 6 2.1.2 Building layouts and lighting efficiency . . . . . . . . . . . . . . . 7 2.1.3 Optimizing buildings for lighting efficiency . . . . . . . . . . . . . 8 2.2 2D Simulation and 3D Simulation . . . . . . . . . . . . . . . . . . . 8 2.3 Computer Vision Techniques . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 Interior Floor plan Generation . . . . . . . . . . . . . . . . . . . . 10 2.3.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 3 Building Layout Optimization Framework 14 3.1 System Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Building Layout Generation . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Window Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Building Layout Generation . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Window Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 3D Geometry Generation . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5.1 Extract The 2D Geometric Information . . . . . . . . . . . . . . . . 24 3.5.2 Construct The 3D Geometry . . . . . . . . . . . . . . . . . . . . . 26 3.6 Lighting Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Chapter 4 Experiments 32 4.1 Building Layout Generation . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Window Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3 3D Geometry Generation . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Lighting Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Chapter 5 Conclusion 44 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References 48 | |
| dc.language.iso | en | |
| dc.subject | 光照需求分析 | zh_TW |
| dc.subject | 生成對抗網路 | zh_TW |
| dc.subject | 室內佈局 | zh_TW |
| dc.subject | Lighting Analysis | en |
| dc.subject | Generative Adversarial Network | en |
| dc.subject | Building Layout | en |
| dc.title | 應用生成對抗網路建立光照需求模擬最佳之室內佈局 | zh_TW |
| dc.title | Building Layout Optimization Framework Using Generative Adversarial Network for Lighting Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹瀅潔(Ying-Chieh Chan),張陸滿(Luh-Maan Chang) | |
| dc.subject.keyword | 生成對抗網路,室內佈局,光照需求分析, | zh_TW |
| dc.subject.keyword | Generative Adversarial Network,Building Layout,Lighting Analysis, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU202202840 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-08-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-08-30 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2608202210285600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
