請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84870完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊吉水 | zh_TW |
| dc.contributor.advisor | Jye-Shane Yang | en |
| dc.contributor.author | 徐應豐 | zh_TW |
| dc.contributor.author | Ying-Feng Hsu | en |
| dc.date.accessioned | 2023-03-19T22:30:01Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2022-08-30 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Yang, J.-S.; Lin, C.-J., Fate of photoexcited trans-aminostilbenes. J. Photochem. Photobiol. A 2015, 312, 107-120. 2. Dugave, C.; Demange, L., Cis−Trans Isomerization of Organic Molecules and Biomolecules: Implications and Applications. Chem. Rev. 2003, 103 (7), 2475-2532. 3. Saltiel, J.; Waller, A. S.; Sears, D. F.; Garrett, C. Z., Fluorescence quantum yields of trans-stilbene-d0 and -d2 in n-hexane and n-tetradecane: medium and deuterium isotope effects on decay processes. J. Phys. Chem. 1993, 97 (11), 2516-2522. 4. Waldeck, D. H., Photoisomerization dynamics of stilbenes. Chem. Rev. 1991, 91 (3), 415-436. 5. Saltiel, J.; Waller, A. S.; Sears Jr, D. F.; Garrett, C. Z., Fluorescence quantum yields of trans-stilbene-d0 and-d2 in n-hexane and n-tetradecane: medium and deuterium isotope effects on decay processes. J. Phys. Chem. 1993, 97 (11), 2516-2522. 6. Charlton, J. L.; Saltiel, J., An analysis of trans-stilbene fluorescence quantum yields and lifetimes. J. Phys. Chem. 1977, 81 (20), 1940-1944. 7. Muszkat, K. A.; Fischer, E., Structure, spectra, photochemistry, and thermal reactions of the 4a,4b-dihydrophenanthrenes. J. Chem. Soc. B. Phys. org. 1967, (0), 662-678. 8. Saltiel, J.; Waller, A. S.; Sears, D. F., Dynamics of cis-stilbene photoisomerization: the adiabatic pathway to excited trans-stilbene. J. Photochem. Photobiol. A 1992, 65 (1), 29-40. 9. Saltiel, J.; Waller, A. S.; Sears Jr, D. F., The temperature and medium dependencies of cis-stilbene fluorescence. The energetics of twisting in the lowest excited singlet state. J. Am. Chem. Soc. 1993, 115 (6), 2453-2465. 10. Oelgemöller, M.; Brem, B.; Frank, R.; Schneider, S.; Lenoir, D.; Hertkorn, N.; Origane, Y.; Lemmen, P.; Lex, J.; Inoue, Y., Cyclic trans-stilbenes: synthesis, structural and spectroscopic characterization, photophysical and photochemical properties. J. Chem. Soc. Perkin Trans. II 2002, (10), 1760-1771. 11. Lewis, F. D.; Kalgutkar, R. S.; Yang, J.-S., The Photochemistry of trans-ortho-, -meta-, and -para-Aminostilbenes. J. Am. Chem. Soc. 1999, 121 (51), 12045-12053. 12. Oelgemöller, M.; Frank, R.; Lemmen, P.; Lenoir, D.; Lex, J.; Inoue, Y., Synthesis, structural characterization and photoisomerization of cyclic stilbenes. Tetrahedron 2012, 68 (21), 4048-4056. 13. Lewis, F. D.; Zuo, X., Torsional Barriers for Planar versus Twisted Singlet Styrenes. J. Am. Chem. Soc. 2003, 125 (8), 2046-2047. 14. Yang, J.-S.; Lin, C.-K.; Lahoti, A. M.; Tseng, C.-K.; Liu, Y.-H.; Lee, G.-H.; Peng, S.-M., Effect of Ground-State Twisting on the trans → cis Photoisomerization and TICT State Formation of Aminostilbenes. J. Phys. Chem. A 2009, 113 (17), 4868-4877. 15. Saltiel, J.; D'Agostino, J. T., Separation of viscosity and temperature effects on the singlet pathway to stilbene photoisomerization. J. Am. Chem. Soc. 1972, 94 (18), 6445-6456. 16. Quick, M.; Berndt, F.; Dobryakov, A. L.; Ioffe, I. N.; Granovsky, A. A.; Knie, C.; Mahrwald, R.; Lenoir, D.; Ernsting, N. P.; Kovalenko, S. A., Photoisomerization Dynamics of Stiff-Stilbene in Solution. J. Phys. Chem. B 2014, 118 (5), 1389-1402. 17. Yang, J.-S.; Liau, K.-L.; Wang, C.-M.; Hwang, C.-Y., Substituent-Dependent Photoinduced Intramolecular Charge Transfer in N-Aryl-Substituted trans-4-Aminostilbenes. J. Am. Chem. Soc. 2004, 126 (39), 12325-12335. 18. Yang, J.-S.; Liau, K.-L.; Hwang, C.-Y.; Wang, C.-M., Photoinduced Single- versus Double-Bond Torsion in Donor−Acceptor−Substituted trans-Stilbenes. J. Phys. Chem. A 2006, 110 (26), 8003-8010. 19. Yang, J.-S.; Liau, K.-L.; Li, C.-Y.; Chen, M.-Y., Meta Conjugation Effect on the Torsional Motion of Aminostilbenes in the Photoinduced Intramolecular Charge-Transfer State. J. Am. Chem. Soc. 2007, 129 (43), 13183-13192. 20. Schmidbaur, H.; Raubenheimer, H. G., Excimer and Exciplex Formation in Gold(I) Complexes Preconditioned by Aurophilic Interactions. Angew. Chem. Int. Ed. 2020, 59 (35), 14748-14771. 21. Chu, A.; Hau, F. K.-W.; Yam, V. W.-W., AuI⋅⋅⋅AuI Interaction Assisted Host–Guest Interactions and Stimuli-Responsive Self-Assembly in Tetranuclear Alkynylgold(I) Calix[4]arene-Based Isocyanide Complexes. Chem. Eur. J. 2017, 23 (46), 11076-11084. 22. Seki, T.; Ida, K.; Sato, H.; Aono, S.; Sakaki, S.; Ito, H., Aurophilicity-Mediated Construction of Emissive Porous Molecular Crystals as Versatile Hosts for Liquid and Solid Guests. Chem. Eur. J. 2020, 26 (3), 735-744. 23. Ito, H.; Saito, T.; Oshima, N.; Kitamura, N.; Ishizaka, S.; Hinatsu, Y.; Wakeshima, M.; Kato, M.; Tsuge, K.; Sawamura, M., Reversible Mechanochromic Luminescence of [(C6F5Au)2(μ-1,4-Diisocyanobenzene)]. J. Am. Chem. Soc. 2008, 130 (31), 10044-10045. 24. Seki, T.; Ozaki, T.; Okura, T.; Asakura, K.; Sakon, A.; Uekusa, H.; Ito, H., Interconvertible multiple photoluminescence color of a gold(i) isocyanide complex in the solid state: solvent-induced blue-shifted and mechano-responsive red-shifted photoluminescence. Chem. Sci. 2015, 6 (4), 2187-2195. 25. Wu, N. M.-W.; Ng, M.; Yam, V. W.-W., Photochromic Benzo[b]phosphole Alkynylgold(I) Complexes with Mechanochromic Property to Serve as Multistimuli-Responsive Materials. Angew. Chem. Int. Ed. 2019, 58 (10), 3027-3031. 26. Seki, T.; Sakurada, K.; Muromoto, M.; Ito, H., Photoinduced single-crystal-to-single-crystal phase transition and photosalient effect of a gold(i) isocyanide complex with shortening of intermolecular aurophilic bonds. Chem. Sci. 2015, 6 (2), 1491-1497. 27. Coker, N. L.; Krause Bauer, J. A.; Elder, R. C., Emission Energy Correlates with Inverse of Gold−Gold Distance for Various [Au(SCN)2]- Salts. J. Am. Chem. Soc. 2004, 126 (1), 12-13. 28. Blake, A. J.; Donamaría, R.; Lippolis, V.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Seal, A.; Weinstein, J. A., Unequivocal Experimental Evidence of the Relationship between Emission Energies and Aurophilic Interactions. Inorg. Chem. 2019, 58 (8), 4954-4961. 29. Seki, T.; Jin, M.; Ito, H., Introduction of a Biphenyl Moiety for a Solvent-Responsive Aryl Gold(I) Isocyanide Complex with Mechanical Reactivation. Inorg. Chem. 2016, 55 (23), 12309-12320. 30. Chiu, C.-W.; Yang, J.-S., Photoluminescent and Photoresponsive Iptycene-Incorporated π-Conjugated Systems: Fundamentals and Applications. ChemPhotoChem 2020, 4 (8), 538-563. 31. Yang, J.-S.; Lin, C.-S.; Hwang, C.-Y., Cu2+-Induced Blue Shift of the Pyrene Excimer Emission: A New Signal Transduction Mode of Pyrene Probes. Org. Lett. 2001, 3 (6), 889-892. 32. Yang, J.-S.; Swager, T. M., Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials. J. Am. Chem. Soc. 1998, 120 (21), 5321-5322. 33. Matsunaga, Y.; Yang, J.-S., Multicolor Fluorescence Writing Based on Host–Guest Interactions and Force-Induced Fluorescence-Color Memory. Angew. Chem. Int. Ed. 2015, 54 (27), 7985-7989. 34. Hsu, L.-Y.; Maity, S.; Matsunaga, Y.; Hsu, Y.-F.; Liu, Y.-H.; Peng, S.-M.; Shinmyozu, T.; Yang, J.-S., Photomechanochromic vs. mechanochromic fluorescence of a unichromophoric bimodal molecular solid: multicolour fluorescence patterning. Chem. Sci. 2018, 9 (48), 8990-9001. 35. Lien, C.-Y.; Hsu, Y.-F.; Liu, Y.-H.; Peng, S.-M.; Shinmyozu, T.; Yang, J.-S., Steric Engineering of Cyclometalated Pt(II) Complexes toward High-Contrast Monomer–Excimer-Based Mechanochromic and Vapochromic Luminescence. Inorg. Chem. 2020, 59 (16), 11584-11594. 36. Lapouyade, R.; Czeschka, K.; Majenz, W.; Rettig, W.; Gilabert, E.; Rulliere, C., Photophysics of donor-acceptor substituted stilbenes. A time-resolved fluorescence study using selectively bridged dimethylamino cyano model compounds. J. Phys. Chem. 1992, 96 (24), 9643-9650. 37. Lee, C.-H.; Hsu, L.-Y.; Lien, C.-Y.; Huang, P.-Y.; Yang, J.-S., Mechanochromic and vapochromic fluorescence of a bulky π-system: Alkyl chain-length effects, triplex emission, and differential sensing of aniline vapors. J. Chin. Chem. Soc. 2020, 67 (11), 1957-1970. 38. Lin, C.-J.; Liu, Y.-H.; Peng, S.-M.; Shinmyozu, T.; Yang, J.-S., Excimer–Monomer Photoluminescence Mechanochromism and Vapochromism of Pentiptycene-Containing Cyclometalated Platinum(II) Complexes. Inorg. Chem. 2017, 56 (9), 4978-4989. 39. Villarón, D.; Wezenberg, S. J., Stiff-Stilbene Photoswitches: From Fundamental Studies to Emergent Applications. Angew. Chem. Int. Ed. 2020, 59 (32), 13192-13202. 40. Saltiel, J.; Marinari, A.; Chang, D. W.-L.; Mitchener, J. C.; Megarity, E. D., Trans-cis photoisomerization of the stilbenes and a reexamination of the positional dependence of the heavy-atom effect. J. Am. Chem. Soc. 1979, 101 (11), 2982-2996. 41. Charlton, J. L.; Saltiel, J., An analysis of trans-stilbene fluorescence quantum yields and lifetimes. J. Phys. Chem. 1977, 81 (20), 1940-1944. 42. Petek, H.; Yoshihara, K.; Fujiwara, Y.; Lin, Z.; Penn, J. H.; Frederick, J. H., Is the nonradiative decay of S1 cis-stilbene due to the dihydrophenanthrene isomerization channel? Suggestive evidence from photophysical measurements on 1,2-diphenylcycloalkenes. J. Phys. Chem. 1990, 94 (19), 7539-7543. 43. Saltiel, J.; Waller, A. S.; Sears, D. F., The temperature and medium dependencies of cis-stilbene fluorescence. The energetics of twisting in the lowest excited singlet state. J. Am. Chem. Soc. 1993, 115 (6), 2453-2465. 44. Nakamura, T.; Takeuchi, S.; Taketsugu, T.; Tahara, T., Femtosecond fluorescence study of the reaction pathways and nature of the reactive S1 state of cis-stilbene. Phys. Chem. Chem. Phys. 2012, 14 (18), 6225-6232. 45. Görner, H.; Kuhn, H. J., Cis-Trans Photoisomerization of Stilbenes and Stilbene-Like Molecules. In Advances in Photochemistry, 1994; Vol. 19, pp 1-117. 46. Gegiou, D.; Muszkat, K. A.; Fischer, E., Temperature dependence of photoisomerization. V. Effect of substituents on the photoisomerization of stilbenes and azobenzenes. J. Am. Chem. Soc. 1968, 90 (15), 3907-3918. 47. Chul, S. S.; Seok, C. J., Photodimerization of Indeno[2,1-a]indene. Bull. Chem. Soc. Jpn. 1982, 55 (4), 1310-1312. 48. Pyun, C.-H.; Lyle, T. A.; Daub, G. H.; Park, S.-M., Fluorescence lifetimes of several structurally rigid t-stilbene derivatives. Chem. Phys. Lett. 1986, 124 (1), 48-52. 49. Lewis, F. D.; Yang, J.-S., The Excited State Behavior of Aminostilbenes. A New Example of the Meta Effect. J. Am. Chem. Soc. 1997, 119 (16), 3834-3835. 50. Lewis, F. D.; Weigel, W.; Zuo, X., Relaxation Pathways of Photoexcited Diaminostilbenes. The meta-Amino Effect. J. Phys. Chem. A 2001, 105 (19), 4691-4696. 51. Yang, J.-S.; Chiou, S.-Y.; Liau, K.-L., Fluorescence Enhancement of trans-4-Aminostilbene by N-Phenyl Substitutions: The “Amino Conjugation Effect”. J. Am. Chem. Soc. 2002, 124 (11), 2518-2527. 52. Lin, C.-K.; Wang, Y.-F.; Cheng, Y.-C.; Yang, J.-S., Multisite Constrained Model of trans-4-(N,N-Dimethylamino)-4′-nitrostilbene for Structural Elucidation of Radiative and Nonradiative Excited States. J. Phys. Chem. A 2013, 117 (15), 3158-3164. 53. Yang, J.-S.; Liau, K.-L.; Tu, C.-W.; Hwang, C.-Y., Excited-State Behavior of N-Phenyl-Substituted trans-3-Aminostilbenes: Where the “m-Amino Effect” Meets the “Amino-Conjugation Effect”. J. Phys. Chem. A 2005, 109 (29), 6450-6456. 54. Lewis, F. D.; Kalgutkar, R. S., The Photochemistry of cis-ortho-, meta-, and para-Aminostilbenes. J. Phys. Chem. A 2001, 105 (1), 285-291. 55. Wezenberg, S. J.; Vlatković, M.; Kistemaker, J. C. M.; Feringa, B. L., Multi-State Regulation of the Dihydrogen Phosphate Binding Affinity to a Light- and Heat-Responsive Bis-Urea Receptor. J. Am. Chem. Soc. 2014, 136 (48), 16784-16787. 56. Wezenberg, S. J.; Feringa, B. L., Photocontrol of Anion Binding Affinity to a Bis-urea Receptor Derived from Stiff-Stilbene. Org. Lett. 2017, 19 (2), 324-327. 57. Villarón, D.; Duindam, N.; Wezenberg, S. J., Push-Pull Stiff-Stilbene: Proton-Gated Visible-Light Photoswitching and Acid-Catalyzed Isomerization. Chem. Eur. J. 2021, 27 (69), 17346-17350. 58. Wezenberg, S. J.; Chen, L.-J.; Bos, J. E.; Feringa, B. L.; Howe, E. N. W.; Wu, X.; Siegler, M. A.; Gale, P. A., Photomodulation of Transmembrane Transport and Potential by Stiff-Stilbene Based Bis(thio)ureas. J. Am. Chem. Soc. 2022, 144 (1), 331-338. 59. Huang, Z.; Yang, Q.-Z.; Khvostichenko, D.; Kucharski, T. J.; Chen, J.; Boulatov, R., Method to Derive Restoring Forces of Strained Molecules from Kinetic Measurements. J. Am. Chem. Soc. 2009, 131 (4), 1407-1409. 60. Wang, Y.; Tian, Y.; Chen, Y.-Z.; Niu, L.-Y.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z.; Boulatov, R., A light-driven molecular machine based on stiff stilbene. Chem. Commun. 2018, 54 (57), 7991-7994. 61. Chen, Z.-J.; Lu, H.-F.; Chiu, C.-W.; Hou, F.-M.; Matsunaga, Y.; Chao, I.; Yang, J.-S., A Molecular Rotor That Probes the Helical Inversion of Stiff-Stilbene. Org. Lett. 2020, 22 (23), 9158-9162. 62. Chen, Z.-J.; Lu, H.-F.; Chao, I.; Yang, J.-S., A Rotation-Inversion Dual-Motion Molecular Switch: Race for NMR Signaling. J. Org. Chem. 2022, 87 (7), 5029-5034. 63. Chen, Z.-J.; Lu, H.-F.; Chao, I.; Yang, J.-S., On–off switching of the correlated motion in a rotation-inversion dual-mode molecular system. J. Chin. Chem. Soc. ASAP. 64. Xu, J.-F.; Chen, Y.-Z.; Wu, D.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z., Photoresponsive Hydrogen-Bonded Supramolecular Polymers Based on a Stiff Stilbene Unit. Angew. Chem. Int. Ed. 2013, 52 (37), 9738-9742. 65. Yan, X.; Xu, J.-F.; Cook, T. R.; Huang, F.; Yang, Q.-Z.; Tung, C.-H.; Stang, P. J., Photoinduced transformations of stiff-stilbene-based discrete metallacycles to metallosupramolecular polymers. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (24), 8717-8722. 66. Wang, Y.; Xu, J.-F.; Chen, Y.-Z.; Niu, L.-Y.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z., Photoresponsive supramolecular self-assembly of monofunctionalized pillar[5]arene based on stiff stilbene. Chem. Commun. 2014, 50 (53), 7001-7003. 67. Costil, R.; Crespi, S.; Pfeifer, L.; Feringa, B. L., Modulation of a Supramolecular Figure-of-Eight Strip Based on a Photoswitchable Stiff-Stilbene. Chem. Eur. J. 2020, 26 (35), 7783-7787. 68. Alene, D. Y.; Arumugaperumal, R.; Shellaiah, M.; Sun, K. W.; Chung, W.-S., Stiff-Stilbene-Bridged Biscalix[4]arene as a Highly Light-Responsive Supramolecular Gelator. Org. Lett. 2021, 23 (7), 2772-2776. 69. Improta, R.; Santoro, F., Excited-State Behavior of trans and cis Isomers of Stilbene and Stiff Stilbene: A TD-DFT Study. J. Phys. Chem. A 2005, 109 (44), 10058-10067. 70. Baumann, W.; Bischof, H.; Fröhling, J. C.; Brittinger, C.; Rettig, W.; Rotkiewicz, K., Considerations on the dipole moment of molecules forming the twisted intramolecular charge transfer state. J. Photochem. Photobiol. A 1992, 64 (1), 49-72. 71. Doany, F. E.; Heilweil, E. J.; Moore, R.; Hochstrasser, R. M., Picosecond study of an intermediate in the trans to cis isomerization pathway of stiff stilbene. J. Chem. Phys. 1984, 80 (1), 201-206. 72. Lewis, F. D.; Kurth, T. L.; Kalgutkar, R. S., A push–pull 4a,4b-dihydrophenanthrene. Chem. Commun. 2001, (15), 1372-1373. 73. Goerner, H.; Schulte-Frohlinde, D., Trans .fwdarw. cis photoisomerization of stilbene and 4-halogenated stilbenes, evidence for an upper excited triplet pathway. J. Phys. Chem. 1979, 83 (24), 3107-3118. 74. Lewis, F. D.; Zuo, X., Activated Decay Pathways for Planar vs Twisted Singlet Phenylalkenes. J. Am. Chem. Soc. 2003, 125 (29), 8806-8813. 75. Sun, W.-T.; Huang, Y.-T.; Huang, G.-J.; Lu, H.-F.; Chao, I.; Huang, S.-L.; Huang, S.-J.; Lin, Y.-C.; Ho, J.-H.; Yang, J.-S., Pentiptycene-Derived Light-Driven Molecular Brakes: Substituent Effects of the Brake Component. Chem. Eur. J. 2010, 16 (38), 11594-11604. 76. Chen, Y.-C.; Sun, W.-T.; Lu, H.-F.; Chao, I.; Huang, G.-J.; Lin, Y.-C.; Huang, S.-L.; Huang, H.-H.; Lin, Y.-D.; Yang, J.-S., A Pentiptycene-Derived Molecular Brake: Photochemical E→Z and Electrochemical Z→E Switching of an Enone Module. Chem. Eur. J. 2011, 17 (4), 1193-1200. 77. Mallory, F. B.; Mallory, C. W., Photocyclization of Stilbenes and Related Molecules. In Organic Reactions, John Wiley and Sons: New York; Vol. 30: 1984; pp 1-456. 78. Sun, W.-T.; Huang, G.-J.; Huang, S.-L.; Lin, Y.-C.; Yang, J.-S., A Light-Gated Molecular Brake with Antilock and Fluorescence Turn-On Alarm Functions: Application of Singlet-State Adiabatic Cis → Trans Photoisomerization. J. Org. Chem. 2014, 79 (13), 6321-6325. 79. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. A.01, Wallingford, CT, 2016. 80. Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393 (1), 51-57. 81. Pedersen, B. S.; Scheibye, S.; Nilsson, N. H.; Lawesson, S.-O., Studies on organophosphorus compounds XX. syntheses of thioketones. Bull. Soc. Chim. Belg. 1978, 87 (3), 223-228. 82. Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R., Reinterpretation of the anomalous fluorescense of p-n,n-dimethylamino-benzonitrile. Chem. Phys. Lett. 1973, 19 (3), 315-318. 83. Wang, C.; Chi, W.; Qiao, Q.; Tan, D.; Xu, Z.; Liu, X., Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chem. Soc. Rev. 2021, 50 (22), 12656-12678. 84. Gruen, H.; Görner, H., Fluorescence of Trans-4-Cyano-4′-dimethylaminostilbene; No Evidence for a TICT State. Zeitschrift für Naturforschung A 1983, 38 (8), 928-936. 85. Huang, G.-J.; Ho, J.-H.; Prabhakar, C.; Liu, Y.-H.; Peng, S.-M.; Yang, J.-S., Site-Selective Hydrogen-Bonding-Induced Fluorescence Quenching of Highly Solvatofluorochromic GFP-like Chromophores. Org. Lett. 2012, 14 (19), 5034-5037. 86. Koide, Y.; Urano, Y.; Hanaoka, K.; Piao, W.; Kusakabe, M.; Saito, N.; Terai, T.; Okabe, T.; Nagano, T., Development of NIR Fluorescent Dyes Based on Si–rhodamine for in Vivo Imaging. J. Am. Chem. Soc. 2012, 134 (11), 5029-5031. 87. Duan, Y.-N.; Cui, L.-Q.; Zuo, L.-H.; Zhang, C., Recyclable Hypervalent-Iodine-Mediated Dehydrogenative α,β′-Bifunctionalization of β-Keto Esters Under Metal-Free Conditions. Chem. Eur. J. 2015, 21 (37), 13052-13057. 88. Biggs, D.; Casy, A.; Chu, I.; Coutts, R., Monoquaternary neuromuscular blocking agents based on 1-tetralone and 1-indanone. J. Med. Chem. 1976, 19 (4), 472-475. 89. Matveeva, E. D.; Podrugina, T. A.; Morozkina, N. Y.; Zefirova, O. N.; Seregin, I. V.; Bachurin, S. O.; Pellicciari, R.; Zefirov, N. S., Syntheses of Compounds Active toward Glutamate Receptors: II. Synthesis of Spiro Hydantoins of the Indan Series. Russ. J. Org. Chem. 2002, 38 (12), 1769-1774. 90. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378-6396. 91. Mansour, M. A.; Connick, W. B.; Lachicotte, R. J.; Gysling, H. J.; Eisenberg, R., Linear Chain Au(I) Dimer Compounds as Environmental Sensors: A Luminescent Switch for the Detection of Volatile Organic Compounds. J. Am. Chem. Soc. 1998, 120 (6), 1329-1330. 92. Gussenhoven, E. M.; Fettinger, J. C.; Pham, D. M.; Malwitz, M. M.; Balch, A. L., A Reversible Polymorphic Phase Change Which Affects the Luminescence and Aurophilic Interactions in the Gold(I) Cluster Complex, [μ3-S(AuCNC7H13)3](SbF6). J. Am. Chem. Soc. 2005, 127 (31), 10838-10839. 93. White-Morris, R. L.; Olmstead, M. M.; Balch, A. L., Aurophilic Interactions in Cationic Gold Complexes with Two Isocyanide Ligands. Polymorphic Yellow and Colorless Forms of [(Cyclohexyl Isocyanide)2AuI](PF6) with Distinct Luminescence. J. Am. Chem. Soc. 2003, 125 (4), 1033-1040. 94. Hau, F. K.-W.; Cheung, K.-L.; Zhu, N.; Yam, V. W.-W., Calixarene-based alkynyl-bridged gold(i) isocyanide and phosphine complexes as building motifs for the construction of chemosensors and supramolecular architectures. Org. Chem. Front. 2019, 6 (8), 1205-1213. 95. Zeman, C. J.; Shen, Y.-H.; Heller, J. K.; Abboud, K. A.; Schanze, K. S.; Veige, A. S., Excited-State Turn-On of Aurophilicity and Tunability of Relativistic Effects in a Series of Digold Triazolates Synthesized via iClick. J. Am. Chem. Soc. 2020, 142 (18), 8331-8341. 96. Yam, V. W.-W.; Cheng, E. C.-C., Highlights on the recent advances in gold chemistry—a photophysical perspective. Chem. Soc. Rev. 2008, 37 (9), 1806-1813. 97. Jobbágy, C.; Deák, A., Stimuli-Responsive Dynamic Gold Complexes. Eur. J. Inorg. Chem. 2014, 2014 (27), 4434-4449. 98. Schmidbaur, H., The aurophilicity phenomenon: A decade of experimental findings, theoretical concepts and emerging applications. Gold Bulletin 2000, 33 (1), 3-10. 99. Schmidbaur, H.; Schier, A., A briefing on aurophilicity. Chem. Soc. Rev. 2008, 37 (9), 1931-1951. 100. Schmidbaur, H.; Schier, A., Aurophilic interactions as a subject of current research: an up-date. Chem. Soc. Rev. 2012, 41 (1), 370-412. 101. Assefa, Z.; McBurnett, B. G.; Staples, R. J.; Fackler, J. P.; Assmann, B.; Angermaier, K.; Schmidbaur, H., Syntheses, Structures, and Spectroscopic Properties of Gold(I) Complexes of 1,3,5-Triaza-7-phosphaadamantane (TPA). Correlation of the Supramolecular Au.cntdot. .cntdot. .cntdot.Au Interaction and Photoluminescence for the Species (TPA)AuCl and [(TPA-HCl)AuCl]. Inorg. Chem. 1995, 34 (1), 75-83. 102. Seki, T.; Takamatsu, Y.; Ito, H., A Screening Approach for the Discovery of Mechanochromic Gold(I) Isocyanide Complexes with Crystal-to-Crystal Phase Transitions. J. Am. Chem. Soc. 2016, 138 (19), 6252-6260. 103. Seki, T.; Kobayashi, K.; Mashimo, T.; Ito, H., A gold isocyanide complex with a pendant carboxy group: orthogonal molecular arrangements and hypsochromically shifted luminescent mechanochromism. Chem. Commun. 2018, 54 (79), 11136-11139. 104. Seki, T.; Ida, K.; Ito, H., A meta-diisocyanide benzene-based aryl gold isocyanide complex exhibiting multiple solid-state molecular arrangements and luminescent mechanochromism. Mater. Chem. Front. 2018, 2 (6), 1195-1200. 105. Jin, M.; Sumitani, T.; Sato, H.; Seki, T.; Ito, H., Mechanical-Stimulation-Triggered and Solvent-Vapor-Induced Reverse Single-Crystal-to-Single-Crystal Phase Transitions with Alterations of the Luminescence Color. J. Am. Chem. Soc. 2018, 140 (8), 2875-2879. 106. Wang, X.-Y.; Zhang, J.; Dong, Y.-B.; Zhang, Y.; Yin, J.; Liu, S. H., Different structures modulated mechanochromism and aggregation-induced emission in a series of Gold(I) complexes. Dyes Pigm. 2018, 156, 74-81. 107. Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pérez, J.; Laguna, A.; Mohamed, A. A.; Fackler, J. P., {Tl[Au(C6Cl5)2]}n: A Vapochromic Complex. J. Am. Chem. Soc. 2003, 125 (8), 2022-2023. 108. Lasanta, T.; Olmos, M. E.; Laguna, A.; López-de-Luzuriaga, J. M.; Naumov, P., Making the Golden Connection: Reversible Mechanochemical and Vapochemical Switching of Luminescence from Bimetallic Gold–Silver Clusters Associated through Aurophilic Interactions. J. Am. Chem. Soc. 2011, 133 (41), 16358-16361. 109. Yang, J.-S.; Yan, J.-L., Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem. Commun. 2008, (13), 1501-1512. 110. Yang, J.-S.; Ko, C.-W., Pentiptycene Chemistry: New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem. 2006, 71 (2), 844-847. 111. Fang, Y.; Zhu, Z.-L.; Xu, P.; Wang, S.-Y.; Ji, S.-J., Aerobic radical-cascade cycloaddition of isocyanides, selenium and imidamides: facile access to 1,2,4-selenadiazoles under metal-free conditions. Green Chemistry 2017, 19 (7), 1613-1618. 112. Nishina, N.; Yamamoto, Y., Gold-catalyzed intermolecular hydroamination of allenes: first example of the use of an aliphatic amine in hydroamination. Synlett 2007, (11), 1767-1770. 113. Ito, H.; Muromoto, M.; Kurenuma, S.; Ishizaka, S.; Kitamura, N.; Sato, H.; Seki, T., Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat. Commun. 2013, 4 (1), 2009. 114. Hsu, C.-W.; Lin, C.-C.; Chung, M.-W.; Chi, Y.; Lee, G.-H.; Chou, P.-T.; Chang, C.-H.; Chen, P.-Y., Systematic Investigation of the Metal-Structure–Photophysics Relationship of Emissive d10-Complexes of Group 11 Elements: The Prospect of Application in Organic Light Emitting Devices. J. Am. Chem. Soc. 2011, 133 (31), 12085-12099. 115. Lu, W.; Zhu, N.; Che, C.-M., Polymorphic Forms of a Gold(I) Arylacetylide Complex with Contrasting Phosphorescent Characteristics. J. Am. Chem. Soc. 2003, 125 (51), 16081-16088. 116. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, (18), 1740-1741. 117. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120 (1), 215-241. 118. Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H., Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77 (2), 123-141. 119. Lu, T.; Chen, F., Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33 (5), 580-592. 120. Wenger, O. S., Vapochromism in Organometallic and Coordination Complexes: Chemical Sensors for Volatile Organic Compounds. Chem. Rev. 2013, 113 (5), 3686-3733. 121. Xue, P.; Ding, J.; Wang, P.; Lu, R., Recent progress in the mechanochromism of phosphorescent organic molecules and metal complexes. J. Mater. Chem. C 2016, 4 (28), 6688-6706. 122. Yam, V. W.-W.; Au, V. K.-M.; Leung, S. Y.-L., Light-Emitting Self-Assembled Materials Based on d8 and d10 Transition Metal Complexes. Chem. Rev. 2015, 115 (15), 7589-7728. 123. Shao, B.; Jin, R.; Li, A.; Liu, Y.; Li, B.; Xu, S.; Xu, W.; Xu, B.; Tian, W., Luminescent switching and structural transition through multiple external stimuli based on organic molecular polymorphs. J. Mater. Chem. C 2019, 7 (11), 3263-3268. 124. Huang, G.; Xia, Q.; Huang, W.; Tian, J.; He, Z.; Li, B. S.; Tang, B. Z., Multiple Anti-Counterfeiting Guarantees from a Simple Tetraphenylethylene Derivative – High-Contrasted and Multi-State Mechanochromism and Photochromism. Angew. Chem. Int. Ed. 2019, 58 (49), 17814-17819. 125. Liu, Y.; Li, A.; Xu, S.; Xu, W.; Liu, Y.; Tian, W.; Xu, B., Reversible Luminescent Switching in an Organic Cocrystal: Multi-Stimuli-Induced Crystal-to-Crystal Phase Transformation. Angew. Chem. Int. Ed. 2020, 59 (35), 15098-15103. 126. Bi, X.; Shi, Y.; Peng, T.; Yue, S.; Wang, F.; Zheng, L.; Cao, Q.-E., Multi-Stimuli Responsive and Multicolor Adjustable Pure Organic Room Temperature Fluorescence-Phosphorescent Dual-Emission Materials. Adv. Funct. Mater. 2021, 31 (24), 2101312. 127. Yao, Z.-Q.; Xu, J.; Zou, B.; Hu, Z.; Wang, K.; Yuan, Y.-J.; Chen, Y.-P.; Feng, R.; Xiong, J.-B.; Hao, J.; Bu, X.-H., A Dual-Stimuli-Responsive Coordination Network Featuring Reversible Wide-Range Luminescence-Tuning Behavior. Angew. Chem. Int. Ed. 2019, 58 (17), 5614-5618. 128. Guo, X.; Zhu, N.; Wang, S.-P.; Li, G.; Bai, F.-Q.; Li, Y.; Han, Y.; Zou, B.; Chen, X.-B.; Shi, Z.; Feng, S., Stimuli-Responsive Luminescent Properties of Tetraphenylethene-Based Strontium and Cobalt Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2020, 59 (44), 19716-19721. 129. Slater Anna, G.; Cooper Andrew, I., Function-led design of new porous materials. Science 2015, 348 (6238), aaa8075. 130. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112 (2), 1105-1125. 131. McKeown, N. B., Nanoporous molecular crystals. J. Mater. Chem. 2010, 20 (47), 10588-10597. 132. Mastalerz, M.; Oppel, I. M., Rational Construction of an Extrinsic Porous Molecular Crystal with an Extraordinary High Specific Surface Area. Angew. Chem. Int. Ed. 2012, 51 (21), 5252-5255. 133. Chen, Z.; Liang, J.; Nie, Y.; Xu, X.; Yu, G.-A.; Yin, J.; Liu, S. H., A novel carbazole-based gold(i) complex with interesting solid-state, multistimuli-responsive characteristics. Dalton Trans. 2015, 44 (40), 17473-17477. 134. Seki, T.; Sakurada, K.; Ito, H., Controlling Mechano- and Seeding-Triggered Single-Crystal-to-Single-Crystal Phase Transition: Molecular Domino with a Disconnection of Aurophilic Bonds. Angew. Chem. Int. Ed. 2013, 52 (49), 12828-12832. 135. Ghimire, M. M.; Nesterov, V. N.; Omary, M. A., Remarkable Aurophilicity and Photoluminescence Thermochromism in a Homoleptic Cyclic Trinuclear Gold(I) Imidazolate Complex. Inorg. Chem. 2017, 56 (20), 12086-12089. 136. Glebko, N.; Dau, T. M.; Melnikov, A. S.; Grachova, E. V.; Solovyev, I. V.; Belyaev, A.; Karttunen, A. J.; Koshevoy, I. O., Luminescence Thermochromism of Gold(I) Phosphane–Iodide Complexes: A Rule or an Exception? Chem. Eur. J. 2018, 24 (12), 3021-3029. 137. Jin, M.; Yamamoto, S.; Seki, T.; Ito, H.; Garcia-Garibay, M. A., Anisotropic Thermal Expansion as the Source of Macroscopic and Molecular Scale Motion in Phosphorescent Amphidynamic Crystals. Angew. Chem. Int. Ed. 2019, 58 (50), 18003-18010. 138. Luong, L. M. C.; Malwitz, M. A.; Moshayedi, V.; Olmstead, M. M.; Balch, A. L., Role of Anions and Mixtures of Anions on the Thermochromism, Vapochromism, and Polymorph Formation of Luminescent Crystals of a Single Cation, [(C6H11NC)2Au]+. J. Am. Chem. Soc. 2020, 142 (12), 5689-5701. 139. Donamaría, R.; Gimeno, M. C.; Lippolis, V.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E., Tuning the Luminescent Properties of a Ag/Au Tetranuclear Complex Featuring Metallophilic Interactions via Solvent-Dependent Structural Isomerization. Inorg. Chem. 2016, 55 (21), 11299-11310. 140. Puddephatt, R. J., Macrocycles, catenanes, oligomers and polymers in gold chemistry. Chem. Soc. Rev. 2008, 37 (9), 2012-2027. 141. Kuo, C.-Z.; Hsu, L.-Y.; Chen, Y.-S.; Goto, K.; Maity, S.; Liu, Y.-H.; Peng, S.-M.; Kong, K. V.; Shinmyozu, T.; Yang, J.-S., Alkyl Chain Length- and Polymorph-Dependent Photomechanochromic Fluorescence of Anthracene Photodimerization in Molecular Crystals: Role of the Lattice Stiffness. Chem. Eur. J. 2020, 26 (50), 11511-11521. 142. Hsu, Y.-F.; Chen, S.-Y.; Maity, S.; Liu, Y.-H.; Peng, S.-M.; Yang, J.-S., A polymorphic pentiptycene-containing gold(i) isocyanide complex: solvent- and conformation-dependent supramolecular luminescence. Dalton Trans. 2020, 49 (44), 15602-15606. 143. Zhu, X.; Yuan, B.; Plunkett, K. N., Tunable electron acceptors based on cyclopenta[hi]aceanthrylenes. Tetrahedron Lett. 2015, 56 (51), 7105-7107. 144. Ahmad, S.; Isab, A. A.; Perzanowski, H. P.; Hussain, M. S.; Akhtar, M. N., Gold(I) complexes with tertiary phosphine sulfide ligands. Transition Met. Chem. 2002, 27 (2), 177-183. 145. Hogarth, G.; Álvarez-Falcón, M. M., Gold(I) alkynyl complexes derived from ethynylanilines: crystal structure of [Au(CC-4-C6H4NH2){P(3-tolyl)3}] a polymer in the solid state via NH⋯Au contacts. Inorg. Chim. Acta 2005, 358 (5), 1386-1392. 146. Yamagishi, H.; Sato, H.; Hori, A.; Sato, Y.; Matsuda, R.; Kato, K.; Aida, T., Self-assembly of lattices with high structural complexity from a geometrically simple molecule. Science 2018, 361 (6408), 1242-1246. 147. Carlson, T. F.; Fackler, J. P., Raman spectroscopic investigations of dinuclear gold ylide complexes; further relationships of Au–Au bond lengths versus Au–Au stretching frequencies. J. Organomet. Chem. 2000, 596 (1), 237-241. 148. Leung, K. H.; Phillips, D. L.; Tse, M.-C.; Che, C.-M.; Miskowski, V. M., Resonance Raman Investigation of the Au(I)−Au(I) Interaction of the 1[dσ*pσ] Excited State of Au2(dcpm)2(ClO4)2 (dcpm = Bis(dicyclohexylphosphine)methane). J. Am. Chem. Soc. 1999, 121 (20), 4799-4803. 149. Phillips, D. L.; Che, C.-M.; Leung, K. H.; Mao, Z.; Tse, M.-C., A comparative study on metal–metal interaction in binuclear two- and three-coordinated d10-metal complexes: Spectroscopic investigation of M(I)–M(I) interaction in the 1[dσ*pσ] excited state of [M2(dcpm)2]2+ (dcpm=bis(dicyclohexylphosphino)methane) (M=Au, Ag, Cu) and [M2(dmpm)3]2+ (dmpm=bis(dimethylphosphino)methane) (M=Au, Ag, Cu) complexes. Coord. Chem. Rev. 2005, 249 (13), 1476-1490. 150. Latouche, C.; Lin, Y.-R.; Tobon, Y.; Furet, E.; Saillard, J.-Y.; Liu, C.-W.; Boucekkine, A., Au–Au chemical bonding induced by UV irradiation of dinuclear gold(i) complexes: a computational study with experimental evidence. Phys. Chem. Chem. Phys. 2014, 16 (47), 25840-25845. 151. Wing-Wah Yam, V.; Li, C.-K.; Chan, C.-L., Proof of Potassium Ions by Luminescence Signaling Based on Weak Gold–Gold Interactions in Dinuclear Gold(I) Complexes. Angew. Chem. Int. Ed. 1998, 37 (20), 2857-2859. 152. Yang, J.-S.; Lin, Y.-D.; Chang, Y.-H.; Wang, S.-S., Synthesis, Dual Fluorescence, and Fluoroionophoric Behavior of Dipyridylaminomethylstilbenes. J. Org. Chem. 2005, 70 (15), 6066-6073. 153. Park, S. K.; Cho, I.; Gierschner, J.; Kim, J. H.; Kim, J. H.; Kwon, J. E.; Kwon, O. K.; Whang, D. R.; Park, J.-H.; An, B.-K.; Park, S. Y., Stimuli-Responsive Reversible Fluorescence Switching in a Crystalline Donor–Acceptor Mixture Film: Mixed Stack Charge-Transfer Emission versus Segregated Stack Monomer Emission. Angew. Chem. Int. Ed. 2016, 55 (1), 203-207. 154. Buck, J. T.; Wilson, R. W.; Mani, T., Intramolecular Long-Range Charge-Transfer Emission in Donor–Bridge–Acceptor Systems. J. Phys. Chem. Lett. 2019, 10 (11), 3080-3086. 155. Shigeta, Y.; Kobayashi, A.; Ohba, T.; Yoshida, M.; Matsumoto, T.; Chang, H.-C.; Kato, M., Shape-Memory Platinum(II) Complexes: Intelligent Vapor-History Sensor with ON–OFF Switching Function. Chem. Eur. J. 2016, 22 (8), 2682-2690. 156. Hasegawa, T.; Kobayashi, A.; Ohara, H.; Yoshida, M.; Kato, M., Emission Tuning of Luminescent Copper(I) Complexes by Vapor-Induced Ligand Exchange Reactions. Inorg. Chem. 2017, 56 (9), 4928-4936. 157. Kobayashi, A.; Yamamoto, N.; Shigeta, Y.; Yoshida, M.; Kato, M., Two-way vapochromism of a luminescent platinum(ii) complex with phosphonic-acid-functionalized bipyridine ligand. Dalton Trans. 2018, 47 (5), 1548-1556. 158. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H., Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77 (2), 123-141. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84870 | - |
| dc.description.abstract | 本論文研究二苯乙烯衍生物與含五苯荑結構之金錯合物的光物理行為。第1章內容為基礎背景知識的簡要介紹,包含基本光化學、二苯乙烯衍生物的光化學、金(I)錯合物的性質、及五苯荑結構的性質與應用。第2章內容是探討間位胺基效應對剛硬性二苯乙烯衍生物之作用,並研究剛硬性二苯乙烯衍生物的剛硬性與平面性對間位胺基效應之影響。第3章內容是探討在具有強拉電子腈基的二苯乙烯衍生物加上間位胺基的取代時,是否會產生扭曲分子內電荷轉移態,並合成了環化個別單鍵的化合物來研究扭曲分子內電荷轉移態的結構。第4章內容是探討含五苯荑結構的金(I)異腈錯合物[Ph-Au-C≡N-Phip-OC8H17]的同質多晶形結構與光物理行為之關係。第5章內容是建立在第4章的基礎上,探討含有五苯荑結構之金(I)異腈錯合物[Ph-C≡C-Au-C≡N-Phip-OC8H17]的晶體孔洞之結構與刺激響應的光物理行為。 | zh_TW |
| dc.description.abstract | In this thesis, the photophysical behavior of stilbene derivatives and pentiptycene containing gold(I) complexes are investigated. In Chapter 1, we introduce some background, including basic photochemistry, photochemistry of stilbene derivatives, properties of gold(I) complexes, and features of the pentiptycene scaffold. In Chapter 2, we explore the application of the meta-amino effect in stiff-stilbene, and investigates the interplay between the rigidity and planarity of stiff-stilbene and the meta-amino effect on the fluorescence quantum efficiency. In Chapter 3, we investigate whether the meta-amino substitution could induce the formation of a twisted intramolecular charge transfer (TICT) state for stilbenes containing a strong electron-withdrawing group. Model compounds of constrained single bonds are synthesized to identify the single bond that is responsible for the TICT state. In Chapter 4, the correlation between the polymorph of a pentiptycene-containing gold(I) isocyanide complex [Ph-Au-C≡N-Phip-OC8H17] and the observed photophysical behavior is reported. In Chapter 5, we follow-up research of Chapter 4 and the results reveal that the new pentiptycene-containing gold(I) isocyanide complex [Ph-C≡C-Au-C≡N-Phip-OC8H17] adopts a porous supramolecular assembly in solid state and displays novel stimuli-responsive luminescence properties. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:30:01Z (GMT). No. of bitstreams: 1 U0001-2508202217545800.pdf: 37705280 bytes, checksum: 64414a61d071ad3f66c80de5de9eca5c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Chapter 1. Background 1 1.1. Brief introduction of photochemistry 1 1.1.1. Excited states behavior 2 1.1.2. Non-radiation deactivation 4 1.1.3. Radiative deactivation 6 1.1.4. Quantum yields 6 1.1.5. Fluorescence quantum yield 7 1.1.6. Phosphorescence quantum yield 7 1.1.7. Lifetimes 8 1.2. Photochemistry of stilbene and its derivative 9 1.2.1. trans-cis photoisomerization and Photocyclization 10 1.2.2. Twisted Intramolecular Charge Transfer (TICT) 21 1.2.3. Twisted Intramolecular Charge Transfer (TICT) for stilbene derivatives 24 1.3. Gold(I) complexes 27 1.3.1. Photophysical properties of gold complex 27 1.3.2. Relationship of the aurophilic interaction vs Au-Au distance (dAu) 36 1.4. Pentiptycence scaffold 40 1.4.1. Structural features 40 1.4.2. Applications 42 1.5. Objectives of Research 50 Chapter 2. A Highly Fluorescent cis-Stiff-Stilbene 53 2.1. Introduction 55 2.2. Results 58 2.3. Discussion 79 2.4. Conclusion 85 2.5. Experimental section 86 Chapter 3. Twisted Intramolecular Charge Transfer (TICT) Formation of trans-3-(N, N-Dimethylamino)-4’-Cyanostilbene 99 3.1. Introduction 101 3.2. Results 104 3.3. Discussion 114 3.4. Conclusion 116 3.5. Experimental section 116 Chapter 4. A polymorphic pentiptycene-containing gold(I) isocyanide complex: solvent- and conformation dependent supramolecular luminescence 125 4.1. Introduction 127 4.2. Results and Discussion 128 4.3. Conclusion 147 4.4. Experimental section 148 Chapter 5. Porous Supramolecular Assembly of Pentiptycene-Containing Gold(I) Complexes: Persistent Excited-State Aurophilicity and Inclusion-induced Emission Enhancement 157 5.1. Introduction 159 5.2. Results and discussion 163 5.3. Conclusion 207 5.4. Experimental Section 209 Chapter 6. Concluding Remarks 217 Reference………………………………………………………………………..219-232 Appendix………………………………………………………………………..233-256 | - |
| dc.language.iso | en | - |
| dc.subject | 二苯乙烯 | zh_TW |
| dc.subject | 間位胺基效應 | zh_TW |
| dc.subject | 同質多晶形性 | zh_TW |
| dc.subject | 多孔洞結構 | zh_TW |
| dc.subject | 多重刺激響應 | zh_TW |
| dc.subject | 扭曲分子內電荷轉移態 | zh_TW |
| dc.subject | 五苯荑 | zh_TW |
| dc.subject | polymorphism | en |
| dc.subject | stilbene | en |
| dc.subject | pentiptycene | en |
| dc.subject | wisted intramolecular interaction (TICT) | en |
| dc.subject | multi-stimuli response properties | en |
| dc.subject | meta-amino effect | en |
| dc.subject | porous structure | en |
| dc.title | 探討含五苯荑之金(I)異腈錯合物與含間位胺基取代之二苯乙烯衍生物的光物理行為 | zh_TW |
| dc.title | The study of photophysical behavior of pentiptycene-containing gold(I) isocyanide complexes and meta-amino substituted stilbene derivatives | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 鄭原忠;邱靜雯;詹益慈;孫世勝 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Chung Cheng;Ching-Wen Chiu;Yi-Tsu Chan;Shih-Sheng Sun | en |
| dc.subject.keyword | 間位胺基效應,同質多晶形性,多孔洞結構,多重刺激響應,扭曲分子內電荷轉移態,五苯荑,二苯乙烯, | zh_TW |
| dc.subject.keyword | meta-amino effect,polymorphism,porous structure,multi-stimuli response properties,wisted intramolecular interaction (TICT),pentiptycene,stilbene, | en |
| dc.relation.page | 256 | - |
| dc.identifier.doi | 10.6342/NTU202202822 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-08-29 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 36.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
