Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84869
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬(Ruey-Fen Liou)
dc.contributor.authorBing-Jen Chiangen
dc.contributor.author江秉真zh_TW
dc.date.accessioned2023-03-19T22:29:58Z-
dc.date.copyright2022-09-02
dc.date.issued2022
dc.date.submitted2022-08-29
dc.identifier.citationAhn, S. J., Donahue, K., Koh, Y., Martin, R. R., and Choi, M. Y. 2019. Microbial-based double-stranded RNA production to develop cost-effective RNA interference application for insect pest management. Int. J. Insect Sci. 11:1179543319840323. Amaro, T. M., Thilliez, G. J., Motion, G. B., and Huitema, E. 2017. A perspective on CRN proteins in the genomics age: evolution, classification, delivery and function revisited. Front. Plant Sci 8:99. Aslam, S. N., Erbs, G., Morrissey, K. L., Newman, M. A., Chinchilla, D., Boller, T., Molinaro, A., Jackson, R. W., and Cooper, R. M. 2009. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Mol. Plant Pathol. 10:375-387. Böhm, H., Albert, I., Oome, S., Raaymakers, T. M., Van den Ackerveken, G., and Nürnberger, T. 2014. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog. 10:e1004491. doi: 10.1371/journal.ppat.1004491. Baek, E., Yoon, J. Y., and Palukaitis, P. 2017. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco. Virology 510:29-39. Benitez-Alfonso, Y., Faulkner, C., Pendle, A., Miyashima, S., Helariutta, Y., and Maule, A. 2013. Symplastic intercellular connectivity regulates lateral root patterning. Dev. Cell 26:136-147. Blackman, L. M., Cullerne, D. P., and Hardham, A. R. 2014. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genom. 15:785. doi: 10.1186/1471-2164-15-785. Blackman, L. M., Cullerne, D. P., Torrena, P., Taylor, J., and Hardham, A. R. 2015. RNA-Seq analysis of the expression of genes encoding cell wall degrading enzymes during infection of lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One 10:e0136899. doi: 10.1371/journal.pone.0136899. Boevink, P. C., Birch, P. R. J., Turnbull, D., and Whisson, S. C. 2020. Devastating intimacy: the cell biology of plant-Phytophthora interactions. New Phytol. 228:445-458. Bozkurt, T. O., and Kamoun, S. 2020. The plant-pathogen haustorial interface at a glance. J. Cell Sci. 133. doi: 10.1242/jcs.237958. Brasier, C., and Webber, J. 2010. Sudden larch death. Nature 466:824-825. Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., and Nürnberger, T. 2002. Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. EMBO J. 21:6681-6688. Chang, Y. H., Yan, H. Z., and Liou, R. F. 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol. Plant Pathol. 16:123-136. Chen, X. Y., and Kim, J. Y. 2009. Callose synthesis in higher plants. Plant Signal. Behav. 4:489-492. Cheng, W., Lin, M., Chu, M., Xiang, G., Guo, J., Jiang, Y., Guan, D., and He, S. 2022. RNAi-based gene silencing of RXLR effectors protects plants against the oomycete pathogen Phytophthora capsici. Mol. Plant Microbe Interact. 35:440-449. Cheval, C., and Faulkner, C. 2018. Plasmodesmal regulation during plant-pathogen interactions. New Phytol. 217:62-67. Costa, R., Dominguez, A., and Choupina, A. 2020. Cloning and expression analysis of an endo-1,3-β-D-glucosidase from Phytophthora cinnamomi. Mol. Biol. Rep. 47:935-942. Derevnina, L., Dagdas, Y. F., De la Concepcion, J. C., Bialas, A., Kellner, R., Petre, B., Domazakis, E., Du, J., Wu, C.-H., Lin, X., Aguilera-Galvez, C., Cruz-Mireles, N., Vleeshouwers, V. G. A. A., and Kamoun, S. 2016. Nine things to know about elicitins. New Phytol. 212:888-895. Drula, E., Garron, M.-L., Dogan, S., Lombard, V., Henrissat, B., and Terrapon, N. 2021. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50:D571-D577. Fawke, S., Doumane, M., and Schornack, S. 2015. Oomycete interactions with plants: infection strategies and resistance principles. Microbiol. Mol. Biol. Rev. 79:263-280. Ferrari, S., Savatin, D., Sicilia, F., Gramegna, G., Cervone, F., and De Lorenzo, G. 2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4. doi: 10.3389/fpls.2013.00049. Gaudioso-Pedraza, R., and Benitez-Alfonso, Y. 2014. A phylogenetic approach to study the origin and evolution of plasmodesmata-localized glycosyl hydrolases family 17. Front. Plant Sci. 5. doi: 10.3389/fpls.2014.00212. Gaulin, E., Dramé, N., Lafitte, C., Torto-Alalibo, T., Martinez, Y., Ameline-Torregrosa, C., Khatib, M., Mazarguil, H., Villalba-Mateos, F., Kamoun, S., Mazars, C., Dumas, B., Bottin, A., Esquerré-Tugayé, M. T., and Rickauer, M. 2006. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18:1766-1777. Grünwald, N. J., Goss, E. M., and Press, C. M. 2008. Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Mol. Plant Pathol. 9:729-740. Guo, L. Y., and Ko, W. H. 1993. Two widely accessible media for growth and reproduction of Phytophthora and Pythium species. Appl. Environ. Microbiol. 59:2323-2325. Gupta, D., Singh, O. W., Basavaraj, Y. B., Roy, A., Mukherjee, S. K., and Mandal, B. 2021. Direct foliar application of dsRNA derived from the full-length gene of NSs of groundnut bud necrosis virus limits virus accumulation and symptom expression. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.734618. Gust, A. A., Pruitt, R., and Nürnberger, T. 2017. Sensing danger: key to activating plant immunity. Trends Plant Sci. 22:779-791. Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H. Y., Handsaker, R. E., Cano, L. M., et al. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393-398. Hardham, A. R., and Shan, W. 2009. Cellular and molecular biology of Phytophthora-plant interactions. Pages 3-27 in: Plant Relationships. H. B. Deising, ed. Springer Berlin Heidelberg, Berlin, Heidelberg. He, J., Ye, W., Choi, D. S., Wu, B., Zhai, Y., Guo, B., Duan, S., Wang, Y., Gan, J., Ma, W., and Ma, J. 2019. Structural analysis of Phytophthora suppressor of RNA silencing 2 (PSR2) reveals a conserved modular fold contributing to virulence. Proc. Natl. Acad. Sci. USA 116:8054-8059. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280:309-316. Hou, S., Liu, Z., Shen, H., and Wu, D. 2019. Damage-associated molecular pattern-triggered immunity in plants. Front. Plant Sci. 10:646. doi: 10.3389/fpls.2019.00646. Howard, R. J., Ferrari, M. A., Roach, D. H., and Money, N. P. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. USA 88:11281-11284. Huffaker, A., and Ryan, C. A. 2007. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc. Natl. Acad. Sci. USA 104:10732-10736. Huffaker, A., Pearce, G., and Ryan, C. A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA 103:10098-10103. Inoue, H., Nojima, H., and Okayama, H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96:23-28. Jones, J. D. G., and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. Joubert, D. A., Kars, I., Wagemakers, L., Bergmann, C., Kemp, G., Vivier, M. A., and van Kan, J. A. 2007. A polygalacturonase-inhibiting protein from grapevine reduces the symptoms of the endopolygalacturonase BcPG2 from Botrytis cinerea in Nicotiana benthamiana leaves without any evidence for in vitro interaction. Mol. Plant Microbe Interact. 20:392-402. Judelson, H. S., and Ah-Fong, A. M. V. 2018. Exchanges at the plant-oomycete interface that influence disease. Plant Physiol. 179:1198-1211. Kaldis, A., Berbati, M., Melita, O., Reppa, C., Holeva, M., Otten, P., and Voloudakis, A. 2018. Exogenously applied dsRNA molecules deriving from the Zucchini yellow mosaic virus (ZYMV) genome move systemically and protect cucurbits against ZYMV. Mol. Plant Pathol. 19:883-895. Kalyandurg, P. B., Sundararajan, P., Dubey, M., Ghadamgahi, F., Zahid, M. A., Whisson, S. C., and Vetukuri, R. R. 2021. Spray-induced gene silencing as a potential tool to control potato late blight disease. Phytopathology:Phyto02210054sc. Kamoun, S., Furzer, O., Jones, J. D. G., Judelson, H. S., Ali, G. S., Dalio, et al. 2015. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 16:413-434. Karimi, M., Inze, D., and Depicker, A. 2002. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7:193-195. Kars, I., Krooshof, G. H., Wagemakers, L., Joosten, R., Benen, J. A., and van Kan, J. A. 2005. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J. 43:213-225. Ke, T. Y. 2019. Transcriptome analysis to investigate the effect of OPEL, an apoplastic effector from Phytophthora parasitica, on Nicotiana tabacum. National Taiwan University, Taipei. Khatib, M., Lafitte, C., Esquerré-Tugayé, M.-T., Bottin, A., and Rickauer, M. 2004. The CBEL elicitor of Phytophthora parasitica var. nicotianae activates defence in Arabidopsis thaliana via three different signalling pathways. New Phytol. 162:501-510. Kim, J. Y. 2005. Regulation of short-distance transport of RNA and protein. Curr. Opin. Plant Biol. 8:45-52. Koch, A., Biedenkopf, D., Furch, A., Weber, L., Rossbach, O., Abdellatef, E., et al. 2016. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 12:e1005901. Konakalla, N. C., Kaldis, A., Berbati, M., Masarapu, H., and Voloudakis, A. E. 2016. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta 244:961-969. Kroon, L. P. N. M., Brouwer, H., de Cock, A. W. A. M., and Govers, F. 2012. The genus Phytophthora anno 2012. Phytopathology 102:348-364. Lai, M.-W., and Liou, R.-F. 2018. Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica. Curr. Genet. 64:931-943. Larroque, M., Belmas, E., Martinez, T., Vergnes, S., Ladouce, N., Lafitte, C., Gaulin, E., and Dumas, B. 2013. Pathogen-associated molecular pattern-triggered immunity and resistance to the root pathogen Phytophthora parasitica in Arabidopsis. J. Exp. Bot. 64:3615-3625. Latijnhouwers, M., de Wit, P. J., and Govers, F. 2003. Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol. 11:462-469. Lico, C., Benvenuto, E., and Baschieri, S. 2015. The two-faced potato virus X: from plant pathogen to smart nanoparticle. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.01009. Livak, K. J., and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402-408. Lu, R., Malcuit, I., Moffett, P., Ruiz, M. T., Peart, J., Wu, A. J., Rathjen, J. P., Bendahmane, A., Day, L., and Baulcombe, D. C. 2003. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22:5690-5699. Mélida, H., Sandoval-Sierra, J. V., Diéguez-Uribeondo, J., and Bulone, V. 2013. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Eukaryot. Cell 12:194-203. Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X., Tyler, B. M., and Wang, Y. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27:2057-2072. Ma, Z., Zhu, L., Song, T., Wang, Y., Zhang, Q., Xia, Y., Qiu, M., Lin, Y., Li, H., Kong, L., Fang, Y., Ye, W., Wang, Y., Dong, S., Zheng, X., Tyler, B. M., and Wang, Y. 2017. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 355:710-714. Maizel, A., Markmann, K., Timmermans, M., and Wachter, A. 2020. To move or not to move: roles and specificity of plant RNA mobility. Curr. Opin. Plant Biol. 57:52-60. Mateos, F. V., Rickauer, M., and Esquerré-Tugayé, M. T. 1997. Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol. Plant Microbe Interact. 10:1045-1053. Meng, Y., Zhang, Q., Ding, W., and Shan, W. 2014. Phytophthora parasitica: a model oomycete plant pathogen. Mycology 5:43-51. Mims, C., Richardson, E., Holt, B., and Dangl, J. 2004. Ultrastructure of the host-pathogen interface in Arabidopsis leaves infected with the downy mildew Hyaloperonospora parasitica. Can. J. Bot. 82:1001-1008. Molnar, A., Melnyk, C. W., Bassett, A., Hardcastle, T. J., Dunn, R., and Baulcombe, D. C. 2010. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872-875. Naveed, Z. A., Wei, X., Chen, J., Mubeen, H., and Ali, G. S. 2020. The PTI to ETI continuum in Phytophthora-plant interactions. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.593905. Nguyen, H. P., Chakravarthy, S., Velásquez, A. C., McLane, H. L., Zeng, L., Nakayashiki, H., Park, D. H., Collmer, A., and Martin, G. B. 2010. Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Mol. Plant Microbe Interact. 23:991-999. Nunes, C. C., and Dean, R. A. 2012. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol. Plant Pathol. 13:519-529. Oome, S., Raaymakers, T. M., Cabral, A., Samwel, S., Böhm, H., Albert, I., Nürnberger, T., and Ackerveken, G. V. d. 2014. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc. Natl. Acad. Sci. USA 111:16955-16960. Ori, N., Sessa, G., Lotan, T., Himmelhoch, S., and Fluhr, R. 1990. A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J. 9:3429-3436. Qiao, L., Lan, C., Capriotti, L., Ah-Fong, A., Sanchez, J. N., Hamby, R., Heller, J., Zhao, H., Glass, N. L., Judelson, H. S., Mezzetti, B., Niu, D., and Jin, H. 2021. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol. J. 19:1756-1768. Qutob, D., Kamoun, S., and Gijzen, M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J. 32:361-373. Rafiei, V., Vélëz, H., and Tzelepis, G. 2021. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. Int. J. Mol. Sci. 22. Rehmany, A. P., Gordon, A., Rose, L. E., Allen, R. L., Armstrong, M. R., Whisson, S. C., Kamoun, S., Tyler, B. M., Birch, P. R. J., and Beynon, J. L. 2005. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:1839-1850. Sang, H., and Kim, J.-I. 2020. Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnol. Rep. 14:1-8. Shan, W., Marshall, J. S., and Hardham, A. R. 2004. Gene expression in germinated cysts of Phytophthora nicotianae. Mol. Plant Pathol. 5:317-330. Singh, O. W., Gupta, D., Joshi, B., Roy, A., Mukherjee, S. K., and Mandal, B. 2022. Spray application of a cocktail of dsRNAs reduces infection of chilli leaf curl virus in Nicotiana benthamiana. J. Plant Dis. Prot. 129:433-438. Stam, R., Jupe, J., Howden, A. J. M., Morris, J. A., Boevink, P. C., Hedley, P. E., and Huitema, E. 2013. Identification and characterisation CRN effectors in Phytophthora capsici shows modularity and functional diversity. PLoS One 8:e59517. doi: 10.1371/journal.pone.0059517. Tabein, S., Jansen, M., Noris, E., Vaira, A. M., Marian, D., Behjatnia, S. A. A., Accotto, G. P., and Miozzi, L. 2020. The induction of an effective dsRNA-mediated resistance against tomato spotted wilt virus by exogenous application of double-stranded RNA largely depends on the selection of the viral RNA target region. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.533338. Taylor, F. J. 1978. Problems in the development of an explicit hypothetical phylogeny of the lower eukaryotes. BioSystems 10:67-89. Tilsner, J., Linnik, O., Louveaux, M., Roberts, I. M., Chapman, S. N., and Oparka, K. J. 2013. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J. Cell Biol. 201:981-995. Tomczynska, I., Stumpe, M., Doan, T. G., and Mauch, F. 2020. A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases. New Phytol. 227:1467-1478. Torto, T. A., Li, S., Styer, A., Huitema, E., Testa, A., Gow, N. A., van West, P., and Kamoun, S. 2003. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res. 13:1675-1685. Varghese, J. N., Garrett, T. P., Colman, P. M., Chen, L., Høj, P. B., and Fincher, G. B. 1994. Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities. Proc. Natl. Acad. Sci. USA 91:2785-2789. Wang, M., and Jin, H. 2017. Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends Microbiol. 25:4-6. Wang, S., Welsh, L., Thorpe, P., Whisson, S. C., Boevink, P. C., Birch, P. R. J., and Lindow, S. E. 2018. The Phytophthora infestans haustorium is a site for secretion of diverse classes of infection-associated proteins. mBio 9:e01216-01218. Wu, C. H., Yan, H. Z., Liu, L. F., and Liou, R. F. 2008. Functional characterization of a gene family encoding polygalacturonases in Phytophthora parasitica. Mol. Plant Microbe Interact. 21:480-489. Wu, S. W., Kumar, R., Iswanto, A. B. B., and Kim, J. Y. 2018. Callose balancing at plasmodesmata. J. Exp. Bot. 69:5325-5339. Xia, Y., Ma, Z., Qiu, M., Guo, B., Zhang, Q., Jiang, H., Zhang, B., Lin, Y., Xuan, M., Sun, L., Shu, H., Xiao, J., Ye, W., Wang, Y., Wang, Y., Dong, S., Tyler, B. M., and Wang, Y. 2020. N-glycosylation shields Phytophthora sojae apoplastic effector PsXEG1 from a specific host aspartic protease. Proc. Natl. Acad. Sci. USA 117:27685-27693. Xu, Y., Zhang, Y., Zhu, J., Sun, Y., Guo, B., Liu, F., Huang, J., Wang, H., Dong, S., Wang, Y., and Wang, Y. 2021. Phytophthora sojae apoplastic effector AEP1 mediates sugar uptake by mutarotation of extracellular aldose and is recognized as a MAMP. Plant Physiol. 187:321-335. Yamaguchi, Y., Pearce, G., and Ryan, C. A. 2006. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc. Natl. Acad. Sci. USA 103:10104-10109. Yan, H.-Z., and Liou, R.-F. 2005. Cloning and analysis of pppg1, an inducible endopolygalacturonase gene from the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 42:339-350. Yan, H. Z., and Liou, R. F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genet. Biol. 43:430-438. Yu, X., Feng, B., He, P., and Shan, L. 2017. From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55:109-137. Zhang, W., Kollwig, G., Stecyk, E., Apelt, F., Dirks, R., and Kragler, F. 2014. Graft-transmissible movement of inverted-repeat-induced siRNA signals into flowers. Plant J. 80:106-121.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84869-
dc.description.abstract在植物與病原菌交互作用中,植物病原菌會分泌許多細胞壁分解酵素 (cell wall degrading enzymes, CWDEs),以分解或弱化植物細胞壁的結構幫助入侵。近年研究發現在與病原菌長年共演化過程中,植物可藉由辨識部分CWDEs為pathogen-associated molecular patterns (PAMPs)或其分解產物[稱為damage-associated molecular patterns (DAMPs)]引發植物pattern-triggered immunity (PTI)。疫病菌質外體效應蛋白OPEL及其同源性基因可在菸草引發PTI反應,包括細胞死亡、癒傷葡聚醣沉積、活性氧分子累積及誘導防禦基因表現等。OPEL及其同源性基因的GH16 domain被預測具有β-1,3-聚葡萄糖酶保守性序列,而且其突變嚴重影響OPEL誘發植物防禦反應的能力,顯示β-1,3-聚葡萄糖酶活性可能在疫病菌與植物的交互作用扮演重要角色。為探討這個可能性,本研究自疫病菌挑選5個編碼β-1,3-聚葡萄糖酶、屬於GH17基因族的候選基因,並以agroinfection在圓葉菸草過表現,發現其中的PPG24在系統葉造成明顯黃化、嵌紋、葉片皺縮等病徵。PPG24僅存在於卵菌,在細菌、真菌、動物與植物皆未發現其同源基因。在疫病菌感染植物後3小時,PPG24即大量表現,顯示其極有可能作用於疫病菌感染植物前期。此外,在過表現PPG24的圓葉菸草離葉接種疫病菌可促進病害發展。為探討PPG24在疫病菌致病過程的重要性,本研究建立以”rub-induced gene silencing”靜默PPG24的技術,發現疫病菌在PPG24 5-UTR dsRNA處理植物之系統葉的致病力顯著降低;以共軛焦顯微鏡觀察,發現在這些葉片之疫病菌靜止子所長出的發芽管有部分明顯變短,顯示PPG24可能在靜止子萌發後的發芽管延伸過程扮演關鍵角色,從而影響疫病菌的致病力。另一方面,過表現PPG24可誘導PAL以及Pti5基因的表現,但顯著降低Potato virus X (PVX)的累積量;被刪除訊息胜肽的PPG24突變蛋白完全失去引發前述病徵的活性,卻仍保有減少PVX累積的能力。這些結果顯示PPG24必須被分泌至質外體,才能在植物引發嚴重病徵,可是這病徵並非導因於病毒的大量增殖。此外,不論是否含帶訊息胜肽,PPG24都能調降PVX的累積量,相關調控機制仍待進一步探討。zh_TW
dc.description.abstractUpon infection of plants, pathogens secret various cell wall degrading enzymes (CWDEs) to help degrade or weaken cell wall to facilitate infection. During the co-evolution with pathogens, plants have evolved the ability to recognize some of the CWDEs as pattern-associated molecular patterns (PAMPs) or their degrading products as damage-associated molecular patterns (DAMPs) to trigger pattern-triggered immunity (PTI). Phytophthora parasitica apoplastic effector OPEL can trigger PTI responses including cell death, callose deposition, ROS production, and expression of defense genes in Nicotiana tabacum (cv. Samsun-NN). The glycoside hydrolase 16 (GH16) domain of OPEL contains conserved signature of β-1,3-glucanase, which is indispensable for OPEL to trigger PTI response. To know whether other β-1,3-glucanase-encoding genes of P. parasitica such as those of the GH17 family show similar activity, five GH17 candidate genes were selected and assayed by agroinfection of Nicotiana benthamiana. One of these genes, named PPG24, triggered severe symptoms of yellowing, mosaic, and crinkling on systemic leaves of N. benthamiana. Homologs of PPG24 exist only in oomycetes, but not in bacteria, fungi, plants, and animals. The expression of PPG24 was highly induced at 3 and 6 hour post infection of P. parasitica. When overexpressed, PPG24 enhanced disease severity caused by P. parasitica. To verify the importance of PPG24 in virulence, a “rub-induced gene silencing” method was established. On the systemic leaves of N. benthamiana plants pretreated with PPG24 5-UTR dsRNA, virulence of P. parasitica was significantly compromised. Moreover, the length of germ tubes of some germinating cysts became much shorter than that on the control plants. Therefore, PPG24 appears to be a key factor required for the elongation of germ tubes and thereby is involved in the early infection stage of P. parasitica. On the other hand, PPG24 overexpression upregulated the expression of PAL and Pti5, whereas downregulated PVX accumulation. Notably, PPG24 devoid of signal peptide failed to cause the aforementioned severe symptoms, but retained part of the PPG24 activity to downregulate PVX accumulation. These results indicate secretion to the apoplast is essential for PPG24 to induce severe symptoms, which is less likely caused by increased accumulation of viruses though. As well, no matter containing signal peptide or not, PPG24 overexpression downregulated PVX accumulation. Further analysis will help to elucidate the underlying mechanism.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:29:58Z (GMT). No. of bitstreams: 1
U0001-2508202217393400.pdf: 2768547 bytes, checksum: acf714fddd6cbb775fbf22aaa340e45a (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致 謝 i 摘 要 ii Abstract iv Introduction 1 1.Oomycetes 1 2.The infection process of Phytophthora 4 3.Plant immune response to Phytophthora 10 4.HIGS, SIGS, and “Rub-induced gene silencing” 14 5.Putative β-1,3-glucanase-encoding genes in P. parasitica 15 6.Research motivation and aims of this study 16 Materials and methods 17 1.Growth condition for plants and P. parasitica 17 2.Sequence and phylogenetic analysis of PPG24 17 3.Plasmid construction 18 4.Agroinfiltration and agroinfection 21 5.Inoculation with P. parasitica 22 6.Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 23 7.Rub application of dsRNA to induce gene silencing of PPG24 24 8.Confocal microscopy 26 Results 27 1.Analysis of GH17 candidate genes by agroinfection in N. benthamiana 27 2.Conserved domain prediction and phylogenetic analysis of PPG24 28 3.PPG24 is induced in the early infection stage of P. parasitica 29 4.PPG24 overexpression on N. benthamiana promotes P. parasitica infection 30 5.Preparation of PPG24-targeted dsRNA 31 6.Rub application of PPG24 dsRNA attenuates P. parasitica infection 31 7.Rub application of PPG24 dsRNA impedes the elongation of P. parasitica germ tubes on the systemic leaves 33 8.Deletion of signal peptide abolished the activity of PPG24 to cause severe symptoms 34 9.PPG24 overexpression downregulates PVX accumulation 34 10.PPG24 overexpression induced the expression of PAL and Pti5 37 Discussion 38 1.Signal peptide is essential for PPG24 to induce severe symptoms 38 2.Possible cause for PPG24 to induce severe symptoms on N. benthamiana 39 3.siRNA transport in plant 39 4.Gene silencing of Phytophthora spp. 41 5.Possible roles of PPG24 in plant-P. parasitica interaction 42 6.Putative enzymatic activity of PPG24 43 7.Conclusion 44 References 45 Table 61 Figure 63
dc.language.isoen
dc.title"探討疫病菌β-1,3-glucanase基因在植物-疫病菌交互作用的角色"zh_TW
dc.titleInvestigate the role of a β-1,3-glucanase encoding gene in Phytophthora parasitica-plant interactionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾嘉綾(Chia-Lin Chung),馬麗珊(Lay-Sun Ma),張立(Li Chang)
dc.subject.keyword疫病菌,β-1,3-聚葡萄醣酶,GH17,基因靜默,細胞壁分解酵素,zh_TW
dc.subject.keywordPhytophthora parasitica,β-1,3-glucanase,GH17,gene silencing,cell wall degrading enzyme,en
dc.relation.page84
dc.identifier.doi10.6342/NTU202202821
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
dc.date.embargo-lift2027-08-29-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-2508202217393400.pdf
  目前未授權公開取用
2.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved