Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84866
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao-Sung Lin)
dc.contributor.authorGuan-Ting Shenen
dc.contributor.author沈冠廷zh_TW
dc.date.accessioned2023-03-19T22:29:49Z-
dc.date.copyright2022-09-26
dc.date.issued2022
dc.date.submitted2022-08-26
dc.identifier.citation[1] I. J. Polmear, Light Alloys : Metallurgy of the Light Metals, 3rd ed. London: Arnold, 1995. [2] J. E. Hatch, Aluminum:Properties and Physical Metallurgy. Ohio: American Society for Metals, Metals Park, 1984. [3] J. I. Rajan, 'Development of ultrafine grained A356 aluminium alloy by severe plastic deformation and studies on its deformation behaviour and machinability,' Ph.D., Indian Institute of Technology Bhilai, 2017. [4] K. K. Sankaran and R. S. Mishra, Metallurgy and design of alloys with hierarchical microstructures. Elsevier, 2017. [5] P. Wang et al., 'A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting,' T Nonferr Metal Soc, vol. 30, no. 8, pp. 2001-2034, Aug 2020, doi: 10.1016/S1003-6326(20)65357-2. [6] A. L. Dons, 'The Alstruc homogenization model for industrial aluminum alloys,' Journal of Light Metals, vol. 1, no. 2, pp. 133-149, 2001. [7] 廖啟民, '鋁合金的腐蝕與防治,' Journal of Chinese Corrosion Engineering, pp. 29-40, 1991. [8] E. McCafferty, Introduction to corrosion science. New York: Springer, 2010. [9] A. S. Azar, Lekatou, A., Sunding, M.F. et al., 'Corrosion performance and degradation mechanism of a bi-metallic aluminum structure processed by wire-arc additive manufacturing,' npj Materials Degradation, vol. 5, 2021. [10] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 2d English ed. Houston, Tex.: National Association of Corrosion Engineers, 1974. [11] N. Birbilis and R. G. Buchheit, 'Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH,' (in English), J Electrochem Soc, vol. 155, no. 3, pp. C117-C126, 2008, doi: 10.1149/1.2829897. [12] A. Boag, 'The relationship between microstructure and stable pitting initiation in aerospace aluminium alloy 2024-T3,' Ph.D., RMIT University, 2008. [13] A. Boag et al., 'How complex is the microstructure of AA2024-T3?,' Corrosion Science, vol. 51, no. 8, pp. 1565-1568, Aug 2009, doi: 10.1016/j.corsci.2009.05.001. [14] E. A. Starke and J. T. Staley, 'Application of modern aluminum alloys to aircraft,' Prog Aerosp Sci, vol. 32, no. 2-3, pp. 131-172, 1996, doi: Doi 10.1016/0376-0421(95)00004-6. [15] G. S. Chen, M. Gao, and R. P. Wei, 'Microconstituent-induced pitting corrosion in aluminum alloy 2024-T3,' Corrosion, vol. 52, no. 1, pp. 8-15, Jan 1996, doi: 10.5006/1.3292099. [16] A. Boag, A. E. Hughes, A. M. Glenn, T. H. Muster, and D. McCulloch, 'Corrosion of AA2024-T3 Part I. Localised corrosion of isolated IM particles,' Corrosion Science, vol. 53, no. 1, pp. 17-26, Jan 2011, doi: 10.1016/j.corsci.2010.09.009. [17] C. M. Liao, J. M. Olive, M. Gao, and R. P. Wei, 'In-situ monitoring of pitting corrosion in aluminum alloy 2024,' Corrosion, vol. 54, no. 6, pp. 451-458, Jun 1998, doi: Doi 10.5006/1.3284873. [18] G. O. Ilevbare, O. Schneider, R. G. Kelly, and J. R. Scully, 'In situ confocal laser scanning microscopy of AA 2024-T3 corrosion metrology - I. Localized corrosion of particles,' J Electrochem Soc, vol. 151, no. 8, pp. B453-B464, 2004, doi: 10.1149/1.1764780. [19] A. E. Hughes, C. MacRae, N. Wilson, A. Torpy, T. H. Muster, and A. M. Glenn, 'Sheet AA2024-T3: a new investigation of microstructure and composition,' Surf Interface Anal, vol. 42, no. 4, pp. 334-338, Apr 2010, doi: 10.1002/sia.3163. [20] A. E. Hughes, A. M. Glenn, N. Wilson, A. Moffatt, A. J. Morton, and R. G. Buchheit, 'A consistent description of intermetallic particle composition: An analysis of ten batches of AA2024-T3,' (in English), Surf Interface Anal, vol. 45, no. 10, pp. 1558-1563, Oct 2013, doi: 10.1002/sia.5207. [21] J. C. Seegmiller, R. C. Bazito, and D. A. Buttry, 'Visualization of cathode activity for Fe-rich and Cu-rich intermetallic particles via cathodic corrosion from dioxygen reduction at aluminum alloy 2024-T3,' Electrochem Solid St, vol. 7, no. 1, pp. B1-B4, Jan 2004, doi: 10.1149/1.1625592. [22] N. Dimitrov, J. A. Mann, M. Vukmirovic, and K. Sieradzki, 'Dealloying of Al2CuMg in alkaline media,' (in English), J Electrochem Soc, vol. 147, no. 9, pp. 3283-3285, Sep 2000, doi: Doi 10.1149/1.1393896. [23] R. G. Buchheit, M. A. Martinez, and L. P. Montes, 'Evidence for Cu ion formation by dissolution and dealloying the Al2CuMg intermetallic compound in rotating ring-disk collection experiments,' J Electrochem Soc, vol. 147, no. 1, pp. 119-124, Jan 2000, doi: Doi 10.1149/1.1393164. [24] R. G. Buchheit, R. P. Grant, P. F. Hlava, B. Mckenzie, and G. L. Zender, 'Local dissolution phenomena associated with S phase (Al2CuMg) particles in aluminum alloy 2024-T3,' (in English), J Electrochem Soc, vol. 144, no. 8, pp. 2621-2628, Aug 1997, doi: Doi 10.1149/1.1837874. [25] T. Hashimoto, X. Zhang, X. Zhou, P. Skeldon, S. J. Haigh, and G. E. Thompson, 'Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging,' Corrosion Science, vol. 103, pp. 157-164, Feb 2016, doi: 10.1016/j.corsci.2015.11.013. [26] R. G. King, Surface Treatment and Finishing of Aluminium. Oxford, England: Pergamon Press, 1988. [27] A. E. Hughes et al., 'Study of deoxidation of 2024-T3 with various acids,' Mater Sci Tech-Lond, vol. 17, no. 12, pp. 1642-1652, Dec 2001, doi: Doi 10.1179/026708301101509728. [28] O. Gharbi, N. Birbilis, and K. Ogle, 'In-Situ Monitoring of Alloy Dissolution and Residual Film Formation during the Pretreatment of Al-Alloy AA2024-T3,' J Electrochem Soc, vol. 163, no. 5, pp. C240-C251, 2016, doi: 10.1149/2.1121605jes. [29] U. Tiringer, J. Kovac, and I. Milosev, 'Effects of mechanical and chemical pre-treatments on the morphology and composition of surfaces of aluminium alloys 7075-T6 and 2024-T3,' Corrosion Science, vol. 119, pp. 46-59, May 1 2017, doi: 10.1016/j.corsci.2017.02.018. [30] X. Verdalet-Guardiola, B. Fori, J. P. Bonino, S. Duluard, and C. Blanc, 'Nucleation and growth mechanisms of trivalent chromium conversion coatings on 2024-T3 aluminium alloy,' Corrosion Science, vol. 155, pp. 109-120, Jul 15 2019, doi: 10.1016/j.corsci.2019.04.035. [31] Y. Guo and G. S. Frankel, 'Characterization of trivalent chromium process coating on AA2024-T3,' Surf Coat Tech, vol. 206, no. 19-20, pp. 3895-3902, May 25 2012, doi: 10.1016/j.surfcoat.2012.03.046. [32] L. L. Li, A. L. Desouza, and G. M. Swain, 'Effect of Deoxidation Pretreatment on the Corrosion Inhibition Provided by a Trivalent Chromium Process (TCP) Conversion Coating on AA2024-T3,' J Electrochem Soc, vol. 161, no. 5, pp. C246-C253, 2014, doi: 10.1149/2.031405jes. [33] T. G. Harvey et al., 'Non-chromate deoxidation of AA2024-T3: Sodium bromate-nitric acid (20-60 degrees C),' Appl Surf Sci, vol. 254, no. 11, pp. 3562-3575, Mar 30 2008, doi: 10.1016/j.apsusc.2007.11.061. [34] A. E. Hughes, T. G. Harvey, T. Nikpour, T. H. Muster, and S. G. Hardin, 'Non-chromate deoxidation of AA2024-T3 using Fe(III)-HF-HNO3,' Surf Interface Anal, vol. 37, no. 1, pp. 15-23, Jan 2005, doi: 10.1002/sia.1998. [35] Y. Liu et al., 'Influence of nitric acid pre-treatment on Al-Cu alloys,' Electrochim Acta, vol. 53, no. 13, pp. 4454-4460, May 20 2008, doi: 10.1016/j.electacta.2008.01.026. [36] I. V. Gordovskaya, M. Curioni, T. Hashimoto, J. Walton, G. E. Thompson, and P. Skeldon, 'Characterization of 2024 T3 Aluminum Alloy after Rare Earth Desmutting,' J Electrochem Soc, vol. 163, no. 6, pp. C253-C259, 2016, doi: 10.1149/2.0201606jes. [37] P. Campestrini, E. P. M. van Westing, and J. H. W. de Wit, 'Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy Part I: Nucleation and growth,' Electrochim Acta, vol. 46, no. 16, pp. 2553-2571, May 1 2001, doi: Doi 10.1016/S0013-4686(01)00475-3. [38] I. Milosev and G. S. Frankel, 'Review-Conversion Coatings Based on Zirconium and/or Titanium,' J Electrochem Soc, vol. 165, no. 3, pp. C127-C144, 2018, doi: 10.1149/2.0371803jes. [39] M. P. Martinez-Viademonte, S. T. Abrahami, T. Hack, M. Burchardt, and H. Terryn, 'A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection,' Coatings, vol. 10, no. 11, Nov 2020. [40] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, 'Plasma electrolysis for surface engineering,' Surf Coat Tech, vol. 122, no. 2-3, pp. 73-93, Dec 15 1999, doi: Doi 10.1016/S0257-8972(99)00441-7. [41] M. Kendig, S. Jeanjaquet, R. Addison, and J. Waldrop, 'Role of hexavalent chromium in the inhibition of corrosion of aluminum alloys,' Surf Coat Tech, vol. 140, no. 1, pp. 58-66, May 22 2001, doi: Doi 10.1016/S0257-8972(01)01099-4. [42] C. A. Munson, S. A. McFall-Boegeman, and G. M. Swain, 'Cross comparison of TCP conversion coating performance on aluminum alloys during neutral salt-spray and thin-layer mist accelerated degradation testing,' Electrochim Acta, vol. 282, pp. 171-184, Aug 20 2018, doi: 10.1016/j.electacta.2018.04.115. [43] L. L. Li, B. W. Whitman, C. A. Munson, R. Estrada, C. A. Matzdorf, and G. M. Swain, 'Structure and Corrosion Performance of a Non-Chromium Process (NCP) Zr/Zn Pretreatment Conversion Coating on Aluminum Alloys,' J Electrochem Soc, vol. 163, no. 13, pp. C718-C728, 2016, doi: 10.1149/2.0451613jes. [44] T. K. Shruthi and G. M. Swain, 'Communication-Role of Trivalent Chromium on the Anti-Corrosion Properties of a TCP Conversion Coating on Aluminum Alloy 2024-T3,' J Electrochem Soc, vol. 165, no. 2, pp. C103-C105, 2018, doi: 10.1149/2.1301802jes. [45] L. L. Li, G. P. Swain, A. Howell, D. Woodbury, and G. M. Swain, 'The Formation, Structure, Electrochemical Properties and Stability of Trivalent Chrome Process (TCP) Coatings on AA2024,' J Electrochem Soc, vol. 158, no. 9, pp. C274-C283, 2011, doi: 10.1149/1.3607980. [46] J. Qi, T. Hashimoto, J. Walton, X. Zhou, P. Skeldon, and G. E. Thompson, 'Formation of a Trivalent Chromium Conversion Coating on AA2024-T351 Alloy,' J Electrochem Soc, vol. 163, no. 2, pp. C25-C35, 2016, doi: 10.1149/2.0771602jes. [47] B. H. G. T.R. Giles, W.E. Fristad, J. Kroemer, M. Frank, 'An Update of New Conversion Coating for the Automotive Industry,' SAE International Journal of Materials and Manufacturing, vol. 1, pp. 575-581, 2009. [48] L. L. Li, B. W. Whitman, and G. M. Swain, 'Characterization and Performance of a Zr/Ti Pretreatment Conversion Coating on AA2024-T3,' J Electrochem Soc, vol. 162, no. 6, pp. C279-C284, 2015, doi: 10.1149/2.0901506jes. [49] A. S. M. I. H. Committee, Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 9th ed. Materials Park, OH: ASM International, 1990, p. 17. [50] A. M. Glenn, A. E. Hughes, A. Torpy, G. Nolze, and N. Birbilis, 'Defect density associated with constituent particles in AA2024-T3 and its role in corrosion,' (in English), Surf Interface Anal, vol. 48, no. 8, pp. 787-795, Aug 2016, doi: 10.1002/sia.5813. [51] S.-Y. Chen, C.-Y. Huang, and C.-S. Lin, 'Microstructure inhomogeneity of the constituent particles of 7075-T6 aluminum alloy after alkaline cleaning and desmutting,' Corrosion Science, vol. 184, p. 109354, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84866-
dc.description.abstract鋁合金由於密度低、比強度高,為目前工業產品追求輕量化的常用材料。此外,其可回收性也符合現今社會對於環保的要求。一般而言,鋁合金表面存在著原生的緻密氧化層,然而此種合金本身的異質微結構仍然容易使其發生局部腐蝕,因此為了滿足實際應用,必須進行表面處理以提升其抗蝕性。有鑑於以往的六價鉻化成處理存在著具毒性、致癌性,以及對環境有害的疑慮,近年來鋯化成的研究成為一大亮點。 本研究探討2024-T3鋁合金的微米級二次相(或稱為一次析出物)在前處理與鋯化成處理後的變化,並利用動電位極化測試的結果來討論本材料在不同表面處理過後所發生的腐蝕行為差異。 2024-T3鋁合金微結構中的微米級二次相可分為三類,即S相(Al2CuMg)、θ相(Al2Cu),以及Al-Cu-Fe-Mn相。S相與θ相的形狀與尺寸相似,而Al-Cu-Fe-Mn相常以多相型顆粒的形式存在,其尺寸也通常較大。在前處理之後,Al-Cu-Fe-Mn相顆粒的形貌並無明顯變化,而θ相顆粒與鋁基地的交界處則會形成腐蝕壕溝。至於S相則可分為三種形貌,包括蝕坑、海綿狀殘骸與特殊形貌S相。 在化成處理之後,海綿狀殘骸的鋯含量最多,而Al-Cu-Fe-Mn相、θ相與特殊形貌S相顆粒表面也都能發現奈米級顆粒,顯示鋯化成膜亦覆蓋在二次相顆粒之上。在無前處理化成之後,各種二次相表面的鋯含量皆較有前處理化成來得多,其中S相表面的鋯含量是三種二次相中最多的。 動電位極化測試結果顯示,有前處理化成膜具有最好的陽極抑制能力,而無前處理化成膜則具有最佳的陰極抑制效果。然而,這兩種條件的鋯化成膜在2024-T3鋁合金表面的形成機制,仍需進一步的研究。zh_TW
dc.description.abstractBecause of their low density and high specific strength, aluminum alloys are commonly employed materials for industrial products in pursuit of lighter weight. Furthermore, their recyclability lives up to the environmental requirements of today’s society. Generally, there exists a native compact oxide layer on the surface of an aluminum alloy, but the heterogeneous microstructure of this alloy makes it highly susceptible to localized corrosion. In view of the toxicity, carcinogenicity, and environmental concerns brought about by the conventional hexavalent chromium conversion processes, studies on zirconium conversion coatings have gained increasing attention in recent years. This study investigates the changes of micron-sized second-phase particles (or so-called constituent particles) of AA2024-T3 after pretreatment and zirconium conversion processes. Also, the difference in corrosion behavior of this material after different surface treatments is discussed based on the results of potentiodynamic polarization tests. The micron-sized second-phase particles of AA2024-T3 can be classified into three types, namely S phase (Al2CuMg), θ phase (Al2Cu), and Al-Cu-Fe-Mn particles. S-phase and θ-phase particles have similar shapes and sizes, while Al-Cu-Fe-Mn particles usually exist in the form of multiphase particles with larger sizes. After the pretreatment, the shape of Al-Cu-Fe-Mn particles does not alter significantly, while trenching occurs at the periphery of θ-phase particles. At this stage, the S-phase particles observed can be categorized into three types according to their morphologies, including etch pits, sponge-like remnants, and special S-phase particles. After the conversion process, sponge-like remnants show the highest zirconium content, while nanoscale particles can be found on the surfaces of Al-Cu-Fe-Mn particles, θ-phase particles, and special S-phase particles, indicating that the zirconium conversion coating also covers these second-phase particles. After the conversion process without pretreatment, the zirconium content on the surface of each type of second-phase particle is higher than that of the conversion coated counterpart which underwent pretreatment prior to the conversion process. What’s more, the zirconium content on the surface of the S phase is the highest among the three types of second-phase particles under this condition. The results based on the potentiodynamic polarization tests reveal that the conversion coating after pretreatment exhibits the best anodic inhibition, whereas the other coating without pretreatment shows the best cathodic inhibition. However, the formation mechanisms of the zirconium conversion coatings on 2024-T3 aluminum alloy under these two conditions still warrant further investigation.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:29:49Z (GMT). No. of bitstreams: 1
U0001-2508202215075700.pdf: 7963835 bytes, checksum: 89492f299d2a3ed7544f53954a6cf0b9 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 總目錄 v 圖目錄 viii 表目錄 xii 第一章 前言 1 第二章 文獻回顧 2 2.1 鋁合金簡介 2 2.1.1 鋁之簡介 2 2.1.2 鋁合金之分類與命名 3 2.2 鋁合金之製造過程 6 2.2.1 概述 6 2.2.2 固化 6 2.2.3 均質化 6 2.2.4 熱加工 7 2.2.5 固溶處理 7 2.2.6 冷加工 7 2.2.7 時效處理 7 2.3 鋁合金之腐蝕行為 9 2.3.1 腐蝕現象概述 9 2.3.2 鋁之腐蝕行為 10 2.3.3 鋁合金異質微結構之腐蝕行為 11 2.4 2024-T3鋁合金與其二次相 13 2.4.1 2024-T3鋁合金概述 13 2.4.2 2024-T3鋁合金之二次相 14 2.4.3 2024-T3鋁合金二次相之腐蝕行為 18 2.5 2024-T3鋁合金之前處理 23 2.5.1 鋁合金之前處理概述 23 2.5.2 鹼洗處理 23 2.5.3 酸洗處理 25 2.6 2024-T3鋁合金之化成處理 31 第三章 實驗步驟與方法 48 3.1 2024-T3鋁合金試片與其研磨拋光處理 49 3.2 2024-T3鋁合金試片前處理與化成處理 50 3.2.1 前處理 50 3.2.2 化成處理 51 3.3 微結構與化學成分分析 52 3.3.1 光學顯微鏡 52 3.3.2 掃描式電子顯微鏡 52 3.3.3 聚焦離子束與電子束顯微系統 53 3.3.4 穿透式電子顯微鏡 54 3.3.5 能量散布光譜儀 54 3.3.6 感應耦合電漿質譜儀 55 3.4 電化學分析 56 3.4.1 電化學測量方法簡介 56 3.4.2 動電位極化曲線 56 第四章 實驗結果與討論 57 4.1 2024-T3鋁合金之底材分析 57 4.1.1 ICP-MS化學成分分析 57 4.2 2024-T3鋁合金拋光後之分析 59 4.2.1 表面形貌觀察 59 4.3 2024-T3鋁合金前處理後之分析 64 4.3.1 表面形貌觀察 64 4.3.2 橫截面TEM觀察 71 4.4 2024-T3鋁合金化成後之分析 83 4.4.1 化成處理後之表面形貌觀察 83 4.4.2 無前處理化成後之表面形貌觀察 89 4.4.3 動電位極化曲線 94 第五章 結論 98 第六章 未來展望 100 參考文獻 101
dc.language.isozh-TW
dc.subject極化曲線zh_TW
dc.subject2024-T3鋁合金zh_TW
dc.subject二次相zh_TW
dc.subject前處理zh_TW
dc.subject鋯化成膜zh_TW
dc.subject微結構zh_TW
dc.subject2024-T3 aluminum alloy (AA2024-T3)en
dc.subjectpolarization curveen
dc.subjectmicrostructureen
dc.subjectzirconium conversion coatingen
dc.subjectpretreatmenten
dc.subjectsecond phaseen
dc.title2024-T3鋁合金前處理與鋯化成處理之研究zh_TW
dc.titleA Study of Pretreated and Zirconium Conversion Coated 2024-T3 Aluminum Alloyen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡文達(Wen-Ta Tsai),林景崎(Jing-Chie Lin),葛明德(Ming-Der Ger),朱鵬維(Peng-Wei Chu)
dc.subject.keyword2024-T3鋁合金,二次相,前處理,鋯化成膜,微結構,極化曲線,zh_TW
dc.subject.keyword2024-T3 aluminum alloy (AA2024-T3),second phase,pretreatment,zirconium conversion coating,microstructure,polarization curve,en
dc.relation.page105
dc.identifier.doi10.6342/NTU202202810
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-09-26-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2508202215075700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved