請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84863
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱靜雯(Ching-Wen Chiu) | |
dc.contributor.author | Hsi-Ching Tseng | en |
dc.contributor.author | 曾喜青 | zh_TW |
dc.date.accessioned | 2023-03-19T22:29:39Z | - |
dc.date.copyright | 2022-09-30 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-29 | |
dc.identifier.citation | 1. (a) Chase, P. A.; Jurca, T.; Stephan, D. W. Lewis Acid-Catalyzed Hydrogenation: B(C6F5)3-Mediated Reduction of Imines and Nitriles with H2. Chem. Commun. 2008, 1701-1703; (b) Chatterjee, I.; Oestreich, M. B(C6F5)3- Catalyzed Transfer Hydrogenation of Imines and Related Heteroarenes Using Cyclohexa-1,4-dienes as a Dihydrogen Source. Angew. Chem. Int. Ed. 2015, 54, 1965-1968; (c) Piers, W. E.; Marwitz, A. J. V.; Mercier, L. G. Mechanistic Aspects of Bond Activation with Perfluoroarylboranes. Inorg. Chem. 2011, 50, 12252-12262. 2. Fleige, M.; Möbus, J.; vom Stein, T.; Glorius, F.; Stephan, D. W. Lewis Acid Catalysis: Catalytic Hydroboration of Alkynes Initiated by Piers' Borane. Chem. Commun. 2016, 52, 10830-10833. 3. Adduci, L. L.; McLaughlin, M. P.; Bender, T. A.; Becker, J. J.; Gagné, M. R. Metal-Free Deoxygenation of Carbohydrates. Angew. Chem. Int. Ed. 2014, 53, 1646-1649. 4. Ma, Y.; Wang, B.; Zhang, L.; Hou, Z. Boron-Catalyzed Aromatic C–H Bond Silylation with Hydrosilanes. J. Am. Chem. Soc. 2016, 138, 3663-3666. 5. Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W. E. B(C6F5)3-Catalyzed Silation of Alcohols: A Mild, General Method for Synthesis of Silyl Ethers. J. Org. Chem. 1999, 64, 4887-4892. 6. Blackwell, J. M.; Sonmor, E. R.; Scoccitti, T.; Piers, W. E. B(C6F5)3-Catalyzed Hydrosilation of Imines via Silyliminium Intermediates. Org. Lett. 2000, 2, 3921-3923. 7. (a) Parks, D. J.; Piers, W. E. Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters. J. Am. Chem. Soc. 1996, 118, 9440-9441; (b) Sakata, K.; Fujimoto, H. Quantum Chemical Study of B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Group. J. Org. Chem. 2013, 78, 12505-12512. 8. (a) Rubin, M.; Schwier, T.; Gevorgyan, V. Highly Efficient B(C6F5)3-Catalyzed Hydrosilylation of Olefins. J. Org. Chem. 2002, 67, 1936-1940; (b) Simonneau, A.; Oestreich, M. 3‐Silylated Cyclohexa‐1,4‐dienes as Precursors for Gaseous Hydrosilanes: The B(C6F5)3‐Catalyzed Transfer Hydrosilylation of Alkenes. Angew. Chem. Int. Ed. 2013, 52, 11905-11907. 9. (a) Chase, P. A.; Stephan, D. W. Hydrogen and Amine Activation by a Frustrated Lewis Pair of a Bulky N-Heterocyclic Carbene and B(C6F5)3. Angew. Chem. Int. Ed. 2008, 47, 7433-7437; (b) Sumerin, V.; Schulz, F.; Nieger, M.;Leskelä, M.; Repo, T.; Rieger, B. Facile Heterolytic H2 Activation by Amines and B(C6F5)3. Angew. Chem. Int. Ed. 2008, 47, 6001-6003. 10. Geier, S. J.; Stephan, D. W. Lutidine/B(C6F5)3: At the Boundary of Classical and Frustrated Lewis Pair Reactivity. J. Am. Chem. Soc. 2009, 131, 3476-3477. 11. (a) Piers, W. E.; Bourke, S. C.; Conroy, K. D. Borinium, Borenium, and Boronium Ions: Synthesis, Reactivity, and Applications. Angew. Chem. Int. Ed. 2005, 44, 5016-5036; (b) Kölle, P.; Nöth, H. The Chemistry of Borinium and Borenium Ions. Chem, Rev, 1985, 85, 399-418. 12. Denmark, S. E.; Ueki, Y. Lewis Base Activation of Lewis Acids: Group 13. In Situ Generation and Reaction of Borenium Ions. Organometallics 2013, 32, 6631-6634. 13. (a) Higashi, J.; Eastman, A. D.; Parry, R. W. Synthesis and Characterization of Salts of the Bis(diisopropylamido)boron (III) Cation and Attempted Reactions To Make the Corresponding Bis(dimethylamido)boron (III) Cation. Inorg. Chem. 1982, 21, 716-720; (b) Nöth, H.; Staudigl, R.; Wagner, H. U. Contributions to the Chemistry of Boron. 121. Dicoordinate Amidoboron Cations. Inorg. Chem. 1982, 21, 706-716; (c) Courtenay, S.; Mutus, J. Y.; Schurko, R. W.; Stephan, D. W. The extended borinium cation:[(tBu3PN)2B]+. Angew. Chem. Int. Ed. 2002, 41, 498-501; (d) Nöth, H.; Weber, S. Beiträge zur Chemie des Bors, 154. Addition von Trimethylsily‐Verbindungen und von anderen Elektrophilen an (tert‐Butylimino)(tetramethylpiperidino)boran. Chem. Ber. 1985, 118, 2144-2146; (e) Kölle, P.; Nöth, H. Beiträge zur Chemie des Bors, 164. Über (Benzyl‐tert‐butylamino)borane und Bis (benzyl‐tert‐ butylamino)bor (1+)‐Salze. Chem. Ber. 1986, 119, 313-324; (f) Kölle, P.; Nöth, H. Beiträge zur Chemie des Bors, 180. Zur Kenntnis von [(Trimethylsilyl)amino]borinium‐Kationen. Chem. Ber. 1986, 119, 3849-3855. 14. Major, C. J.; Bamford, K. L.; Qu, Z.-W.; Stephan, D. W. Hydroboration without a B–H Bond: Reactions of the Borinium Cation [(iPr2N)2B]+ with Alkyne, Nitrile, Ketone and Diazomethane. Chem. Commun. 2019, 55, 5155-5158. 15. Chen, P.-H.; Hsu, C.-P.; Tseng, H.-C.; Liu, Y.-H.; Chiu, C.-W. [Mes-B-TMP]+ borinium cation initiated cyanosilylation and catalysed hydrosilylation of ketones and aldehydes. Chem. Commun. 2021, 57, 13732-13735. 16. (a) Shoji, Y.; Tanaka, N.; Mikami, K.; Uchiyama, M.; Fukushima, T. A Two- Coordinate Boron Cation Featuring C–B+–C bonding. Nat. Chem. 2014, 6, 498- 503; (b) Shoji, Y.; Tanaka, N.; Hashizume, D.; Fukushima, T. The Molecular and Electronic Structures of a Thioaroyl Cation Formed by Borinium Ion- mediated C=S Double Bond Cleavage of CS2. Chem. Commun. 2015, 51, 13342-13345; (c) Tanaka, N.; Shoji, Y.; Hashizume, D.; Sugimoto, M.;Fukushima, T. Formation of an Isolable Divinylborinium Ion through Twofold 1,2-Carboboration between a Diarylborinium Ion and Diphenylacetylene. Angew. Chem. Int. Ed. 2017, 56, 5312-5316; (d) Bamford, K. L.; Qu, Z.-W.; Stephan, D. W. Activation of H2 and Et3SiH by the Borinium Cation [Mes2B]+: Avenues to Cations [MesB(μ-H)2(μ-Mes)BMes]+ and [H2B(μ-H)(μ-Mes)B(μ- Mes)(μ-H)BH2]+. J. Am. Chem. Soc. 2019, 141, 6180-6184. 17. Franz, D.; Szilvási, T.; Pöthig, A.; Inoue, S. Isolation of an N‐Heterocyclic Carbene Complex of a Borasilene. J Chemistry–A European Journal 2019, 25, 11036-11041. 18. (a) Mirabelli, M. G. L.; Sneddon, L. G. Transition-Metal-Promoted Reactions of Boron Hydrides. 9. Cp*Ir-Catalyzed Reactions of Polyhedral Boranes and Acetylenes. J. Am. Chem. Soc. 1988, 110, 449-453; (b) Casey, C. P.; Hallenbeck, S. L.; Pollock, D. W.; Landis, C. R. Synthesis and Spectroscopic Characterization of the d0 Transition Metal-Alkyl-Alkene Complex Cp*2YCH2CH2C(CH3)2CH=CH2. J. Am. Chem. Soc. 1995, 117, 9770-9771; (c) Kawano, Y.; Yasue, T.; Shimoi, M. BH Bond Activation of Trimethylphosphineborane by Transition Metal Complexes: Synthesis of Metal Complexes Bearing Nonsubstituted Boryl−Trimethylphosphine, Cp*M(CO)3(BH2·PMe3)(M = Mo, W). J. Am. Chem. Soc. 1999, 121, 11744- 11750; (d) Bustelo, E.; Carbó, J. J.; Lledós, A.; Mereiter, K.; Puerta, M. C.; Valerga, P. First X-ray Characterization and Theoretical Study of π-Alkyne, Alkynyl-Hydride, and Vinylidene Isomers for the Same Transition Metal Fragment [Cp*Ru(PEt3)2]+. J. Am. Chem. Soc. 2003, 125, 3311-3321; (e) Rais, D.; Bergman, R. G. Synthesis and Reactivity of the Monomeric Late-Transition- Metal Parent Amido Complex [Ir(Cp*)(PMe3)(Ph)(NH2)]. Chem. Eur. J. 2004, 10, 3970-3978. 19. Tseng, H.-C.; Shen, C.-T.; Matsumoto, K.; Shih, D.-N.; Liu, Y.-H.; Peng, S.- M.; Yamaguchi, S.; Lin, Y.-F.; Chiu, C.-W. [η5-Cp*B-Mes]+: A Masked Potent Boron Lewis Acid. Organometallics 2019, 38, 4516-4521. 20. (a) Mayer, U.; Gutmann, V.; Gerger, W. The Acceptor Number—A Quantitative Empirical Parameter for the Electrophilic Properties of Solvents. Monatsh. Chem. 1975, 106, 1235-1257; (b) Beckett, M. A.; Strickland, G. C.; Holland, J. R.; Varma, K. S. A Convenient N.M.R. Method for the Measurement of Lewis Acidity at Boron Centres: Correlation of Reaction Rates of Lewis Acid Initiated Epoxide Polymerizations with Lewis Acidity. Polymer 1996, 37, 4629- 4631; (c) Sivaev, I. B.; Bregadze, V. I. Lewis Acidity of Boron Compounds. Coord. Chem. Rev. 2014, 270, 75-88. 21. Dohmeier, C.; Köppe, R.; Robl, C.; Schnöckel, H. Kristallstruktur von [Cp*BBr][AlBr4]. J. Organomet. Chem. 1995, 487, 127-130. 22. (a) Lin, Y.-F.; Shen, C.-T.; Hsiao, Y.-T.; Liu, Y.-H.; Peng, S.-M.; Chiu, C.-W. Mechanistic Studies on the Rearrangement of a Boron Cation: From a nido- Carborane to a Planar Boracycle. Organometallics 2016, 35, 1464-1471; (b) Inoue, S.; Leszczyńska, K. An Acyclic Imino‐Substituted Silylene: Synthesis, Isolation, and its Facile Conversion into a Zwitterionic Silaimine. Angew. Chem. Int. Ed. 2012, 51, 8589-8593. 23. Perez, M.; Qu, Z. W.; Caputo, C. B.; Podgorny, V.; Hounjet, L. J.; Hansen, A.; Dobrovetsky, R.; Grimme, S.; Stephan, D. W. Hydrosilylation of Ketones, Imines and Nitriles Catalysed by Electrophilic Phosphonium Cations: Functional Group Selectivity and Mechanistic Considerations. Chem. Eur. J. 2015, 21, 6491-6500. 24. (a) Kira, M.; Hino, T.; Sakurai, H. Siloxycarbenium Tetrakis [3,5- bis(trifluoromethyl)phenyl]borates and Their Role in Reactions of Ketones with Nucleophiles. Chem. Lett. 1992, 21, 555-558; (b) Parks, D. J.; Blackwell, J. M.; Piers, W. E. Studies on the Mechanism of B(C6F5)3-Catalyzed Hydrosilation of Carbonyl Functions. J. Org. Chem. 2000, 65, 3090-3098; (c) Müther, K.; Oestreich, M. Self-Regeneration of a Silylium Ion Catalyst in Carbonyl Reduction. Chem. Commun. 2011, 47, 334-336; (d) Wilkins, L. C.; Howard, J. L.; Burger, S.; Frentzel‐Beyme, L.; Browne, D. L.; Melen, R. L. Exploring Multistep Continuous‐Flow Hydrosilylation Reactions Catalyzed by Tris(pentafluorophenyl)borane. Adv. Synth. Catal. 2017, 359, 2580-2584; (e) Mehta, M.; Holthausen, M. H.; Mallov, I.; Perez, M.; Qu, Z. W.; Grimme, S.; Stephan, D. W. Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations. Angew. Chem. Int. Ed. 2015, 54, 8250- 8254; (f) Möbus, J.; Vom Stein, T.; Stephan, D. W. Cooperative Lewis Acidity in Borane-Substituted Fluorophosphonium Cations. Chem. Commun. 2016, 52, 6387-6390; (g) Postle, S.; Podgorny, V.; Stephan, D. W. Electrophilic Phosphonium Cations (EPCs) with Perchlorinated-Aryl Substituents: towards Air-Stable Phosphorus-Based Lewis Acid Catalysts. Dalton Trans. 2016, 45, 14651-14657; (h) Gevorgyan, V.; Rubin, M.; Liu, J.-X.; Yamamoto, Y. A Direct Reduction of Aliphatic Aldehyde, Acyl Chloride, Ester, and Carboxylic Functions into a Methyl Group. J. Org. Chem. 2001, 66, 1672-1675; (i) Bezier, D.; Park, S.; Brookhart, M. Selective Reduction of Carboxylic Acids to Aldehydes Catalyzed by B(C6F5)3. Org. Lett. 2013, 15, 496-499; (j) Mahdi, T.; Stephan, D. W. Facile Protocol for Catalytic Frustrated Lewis Pair Hydrogenation and Reductive Deoxygenation of Ketones and Aldehydes. Angew. Chem. Int. Ed. 2015, 54, 8511-8514. 25. Farrell, J. M.; Hatnean, J. A.; Stephan, D. W. Activation of Hydrogen and Hydrogenation Catalysis by a Borenium Cation. J. Am. Chem. Soc. 2012, 134, 15728-15731. 26. Wang, W.; Luo, M.; Yao, W.; Ma, M.; Pullarkat, S. A.; Xu, L.; Leung, P.-H.; Engineering. Catalyst-free and Solvent-free Cyanosilylation and Knoevenagel Condensation of Aldehydes. ACS Sustainable Chem. Eng. 2018, 7, 1718-1722. 27. (a) George, S. C.; Kim, S. S.; Rajagopal, G. Cyanosilylation of Carbonyl Compounds Catalyzed by Sodium L‐Histidine. Appl. Organometal. Chem. 2007, 21, 798-803; (b) Bisai, M. K.; Das, T.; Vanka, K.; Sen, S. S. Easily Accessible Lithium Compound Catalyzed Mild and Facile Hydroboration and Cyanosilylation of Aldehydes and Ketones. Chem. Commun. 2018, 54, 6843- 6846; (c) Harinath, A.; Bhattacharjee, J.; Nayek, H. P.; Panda, T. K. Alkali Metal Complexes as Efficient Catalysts for Hydroboration and Cyanosilylation of Carbonyl Compounds. Dalton Trans. 2018, 47, 12613-12622; (d) Higuchi, K.; Onaka, M.; Izumi, Y. Efficient and Regioselective Cyanosilylation of Cyclohex-2-enone and Other Unsaturated Ketones over Solid Acid and Base Catalysts. J. Chem. Soc., Chem. Commun. 1991, 1035-1036; (e) Corey, E.; Zhe, W. Enantioselective conversion of Aldehydes to Cyanohydrins by a Catalytic System with Separate Chiral Binding Sites for Aldehyde and Cyanide Components. Tetrahydron Lett. 1993, 34, 4001-4004; (f) Wang, W.; Luo, M.; Li, J.; Pullarkat, S. A.; Ma, M. Low-valent Magnesium(I)-catalyzed Cyanosilylation of Ketones. Chem. Commun. 2018, 54, 3042-3044; (g) Yadav, S.; Dixit, R.; Vanka, K.; Sen, S. S. Beyond Hydrofunctionalisation: A Well‐ Defined Calcium Compound Catalysed Mild and Efficient Carbonyl Cyanosilylation. Chem. Eur. J. 2018, 24, 1269-1273; (h) Kadam, S. T.; Kim, S. S. Metal and Solvent‐free Cyanosilylation of Carbonyl Compounds with Tris(pentafluorophenyl)borane. Appl. Organometal. Chem. 2009, 23, 119-123; (i) Ryu, D. H.; Corey, E. J. Highly Enantioselective Cyanosilylation of Aldehydes Catalyzed by a Chiral Oxazaborolidinium Ion. J. Am. Chem. Soc. 2004, 126, 8106-8107; (j) Hamashima, Y.; Sawada, D.; Kanai, M.; Shibasaki, M. A New Bifunctional Asymmetric Catalysis: an Efficient Catalytic Asymmetric Cyanosilylation of Aldehydes. J. Am. Chem. Soc. 1999, 121, 2641- 2642; (k) Deng, H.; Isler, M. P.; Snapper, M. L.; Hoveyda, A. H. Aluminum- Catalyzed Asymmetric Addition of TMSCN to Aromatic and Aliphatic Ketones Promoted by an Easily Accessible and Recyclable Peptide Ligand. Angew. Chem. Int. Ed. 2002, 41, 1009-1012; (l) Yang, Z.; Zhong, M.; Ma, X.; De, S.;Anusha, C.; Parameswaran, P.; Roesky, H. W. An Aluminum Hydride That Functions like a Transition-Metal Catalyst. Angew. Chem. Int. Ed. 2015, 54, 10225-10229; (m) Yang, Z.; Yi, Y.; Zhong, M.; De, S.; Mondal, T.; Koley, D.; Ma, X.; Zhang, D.; Roesky, H. W. Addition Reactions of Me3SiCN with Aldehydes Catalyzed by Aluminum Complexes Containing in their Coordination Sphere O, S, and N Ligands. Chem. Eur. J. 2016, 22, 6932-6938; (n) Sharma, M. K.; Sinhababu, S.; Mukherjee, G.; Rajaraman, G.; Nagendran, S. A Cationic Aluminium Complex: an Efficient Mononuclear Main-group Catalyst for the Cyanosilylation of Carbonyl Compounds. Dalton Trans. 2017, 46, 7672-7676; (o) Song, J. J.; Gallou, F.; Reeves, J. T.; Tan, Z.; Yee, N. K.; Senanayake, C. H. Activation of TMSCN by N-Heterocyclic Carbenes for Facile Cyanosilylation of Carbonyl Compounds. J. Org. Chem. 2006, 71, 1273- 1276; (p) Liberman-Martin, A. L.; Bergman, R. G.; Tilley, T. D. Lewis Acidity of Bis(perfluorocatecholato)silane: Aldehyde Hydrosilylation Catalyzed by a Neutral Silicon Compound. J. Am. Chem. Soc. 2015, 137, 5328-5331; (q) Swamy, V.; Bisai, M. K.; Das, T.; Sen, S. S. Metal Free Mild and Selective Aldehyde Cyanosilylation by a Neutral Penta-coordinate Silicon Compound. Chem. Commun. 2017, 53, 6910-6913; (r) Siwatch, R. K.; Nagendran, S. Germylene Cyanide Complex: A Reagent for the Activation of Aldehydes with Catalytic Significance. Chem. Eur. J. 2014, 20, 13551-13556; (s) Dasgupta, R.; Das, S.; Hiwase, S.; Pati, S. K.; Khan, S. N-Heterocyclic Germylene and Stannylene Catalyzed Cyanosilylation and Hydroboration of Aldehydes. Organometallics 2019, 38, 1429-1435; (t) Kobayashi, S.; Tsuchiya, Y.; Mukaiyama, T. A Facile Synthesis of Cyanohydrin Trimethylsilyl Ethers by the Addition Reaction of Trimethylsilyl Cyanide with Aldehydes under Basic Condition. Chem. Lett. 1991, 20, 537-540; (u) Baeza, A.; Najera, C.; de Gracia Retamosa, M.; Sansano, J. M. Solvent-free synthesis of cyanohydrin derivatives catalysed by triethylamine. Synthesis 2005, 2005, 2787-2797; (v) Fetterly, B. M.; Verkade, J. G. P(RNCH2CH2)N: Efficient Catalysts for the Cyanosilylation of Aldehydes and Ketones. Tetrahydron Lett. 2005, 46, 8061-8066; (w) Kruchok, I. S.; Gerus, I. I.; Kukhar, V. P. Regioselective Addition of Trimethylsilyl Cyanide to β-Alkoxyvinyl Alkyl Ketones. Tetrahedron 2000, 56, 6533-6539; (x) Ishikawa, T.; Isobe, T. Modified Guanidines as Chiral Auxiliaries. Chem. Eur. J. 2002, 8, 552-557; (y) Matsukawa, S.; Fujikawa, S. Polystyrene-supported TBD as an Efficient and Reusable Organocatalyst for Cyanosilylation of Aldehydes, Ketones, and Imines. Tetrahydron Lett. 2012, 53, 1075-1077; (z) Fuerst, D. E.; Jacobsen, E. N. Thiourea-catalyzed Enantioselective Cyanosilylation of Ketones. J. Am. Chem. Soc. 2005, 127, 8964-8965; (aa) Zhang, Z.; Bae, H. Y.; Guin, J.; Rabalakos, C.; Van Gemmeren, M.; Leutzsch, M.; Klussmann, M.; List, B. Asymmetric Counteranion-Directed Lewis Acid organocatalysis for the Scalable Cyanosilylation of Aldehydes. Nat. Commun. 2016, 7, 1-8. 28. Chiu, C.-W.; Gabba, F. P. Diarylborenium Cations: Synthesis, Structure, and Electrochemistry. Organometallics 2008, 27, 1657-1659. 29. (a) Mori, Y.; Kobayashi, J.; Manabe, K.; Kobayashi, S. Use of Boron Enolates in Water. The First Boron Enolate-mediated Diastereoselective Aldol Reactions using Catalytic Boron Sources. Tetrahydron Lett. 2002, 58, 8263-8268; (b) Lee, D.; Taylor, M. S. Regioselective silylation of pyranosides using a boronic acid/Lewis base co-catalyst system. Org. Biomol. Chem. 2013, 11, 5409-5412; (c) Debache, A.; Boumoud, B.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. Phenylboronic Acid as a Mild and Efficient Catalyst for Biginelli Reaction. Tetrahydron Lett. 2006, 47, 5697-5699; (d) Zheng, H.; Lejkowski, M.; Hall, D. G. Mild and Selective Boronic Acid Catalyzed 1, 3-Transposition of Allylic Alcohols and Meyer–Schuster Rearrangement of Propargylic Alcohols. Chemical Science 2011, 2, 1305-1310; (e) Zheng, H.; Hall, D. G. Mild and Efficient Boronic Acid Catalysis of Diels–Alder Cycloadditions to 2-Alkynoic Acids. Tetrahydron Lett. 2010, 51, 3561-3564; (f) Cao, K.-S.; Bian, H.-X.; Zheng, W.-H. Mild arylboronic Acid Catalyzed Selective [4+3] Cycloadditions: Access to Cyclohepta[b]benzofurans and Cyclohepta[b]indoles. Org. Biomol. Chem. 2015, 13, 6449-6452; (g) Bender, T. A.; Payne, P. R.; Gagné, M. R. Late- stage Chemoselective Functional-group Manipulation of Bioactive Natural Products with Super-electrophilic Silylium Ions. Nat. Chem. 2018, 10, 85-90; (h) El Dine, T. M.; Rouden, J.; Blanchet, J. Borinic Acid Catalysed Peptide Synthesis. Chem. Commun. 2015, 51, 16084-16087; (i) Das, A.; Watanabe, K.; Morimoto, H.; Ohshima, T. Boronic Acid Accelerated Three-Component Reaction for the Synthesis of α-Sulfanyl-Substituted Indole-3-acetic Acids. Org. Lett. 2017, 19, 5794-5797; (j) Zheng, H.; Ghanbari, S.; Nakamura, S.; Hall, D. G. Boronic Acid Catalysis as a Mild and Versatile Strategy for Direct Carbo- and Heterocyclizations of Free Allylic Alcohols. Angew. Chem. Int. Ed. 2012, 51, 6187-6190; (k) Morgan, M. M.; Marwitz, A. J.; Piers, W. E.; Parvez, M. Comparative Lewis Acidity in Fluoroarylboranes: B(o-HC6F4)3, B(p-HC6F4)3, and B(C6F5)3. Organometallics 2013, 32, 317-322; (l) Stephan, D. W.; Erker, G. Frustrated Lewis Pair Chemistry: Development and Perspectives. Angew. Chem. Int. Ed. 2015, 54, 6400-6441; (m) Chernichenko, K.; Madarász, Á .; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. A Frustrated-Lewis-Pair Approach to Catalytic Reduction of Alkynes to cis-Alkenes. Nat. Chem. 2013, 5, 718-723. 30. Bornschein, C.; Werkmeister, S.; Junge, K.; Beller, M. TBAF-catalyzed Hydrosilylation for the Reduction of Aromatic Nitriles. NewJ. Chem. 2013, 37, 2061-2065. 31. Augurusa, A.; Mehta, M.; Perez, M.; Zhu, J.; Stephan, D. W. Catalytic Reduction of Amides to Amines by Electrophilic Phosphonium Cations via FLP Hydrosilylation. Chem. Commun. 2016, 52, 12195-12198. 32. Gandhamsetty, N.; Jeong, J.; Park, J.; Park, S.; Chang, S. Boron-catalyzed Silylative Reduction of Nitriles in Accessing Primary Amines and Imines. J. Org. Chem. 2015, 80, 7281-7287. 33. Tan, M.; Zhang, Y. An Efficient Metal-free Reduction using Diphenylsilane with (Tris–perfluorophenyl)borane as Catalyst. Tetrahydron Lett. 2009, 50, 4912-4915. 34. Blondiaux, E.; Cantat, T. Efficient Metal-free Hydrosilylation of Tertiary, Secondary and Primary Amides to Amines. Chem. Commun. 2014, 50, 9349- 9352. 35. Chadwick, R. C.; Kardelis, V.; Lim, P.; Adronov, A. Metal-free Reduction of Secondary and Tertiary N-Phenyl Amides by Tris(pentafluorophenyl)boron- catalyzed Hydrosilylation. J. Org. Chem. 2014, 79, 7728-7733. 36. Ni, J.; Oguro, T.; Sawazaki, T.; Sohma, Y.; Kanai, M. Hydroxy Group Directed Catalytic Hydrosilylation of Amides. Org. Lett. 2018, 20, 7371-7374. 37. Jeong, H.; Han, N.; Hwang, D. W.; Ko, H. M. B(C6F5)3-Catalyzed Highly Chemoselective Reduction of Isatins: Synthesis of Indolin-3-ones and Indolines. Org. Lett. 2020, 22, 8150-8155. 38. Huang, P.-Q.; Lang, Q.-W.; Wang, Y.-R. Mild Metal-free Hydrosilylation of Secondary Amides to Amines. J. Org. Chem. 2016, 81, 4235-4243. 39. Mukherjee, D.; Shirase, S.; Mashima, K.; Okuda, J. Chemoselective Reduction of Tertiary Amides to Amines Catalyzed by Triphenylborane. Angew. Chem. Int. Ed. 2016, 55, 13326-13329. 40. (a) Corriu, R.; Moreau, J.; Pataud-Sat, M. Reactions de l'ortho- Bis(dimethylsilyl) Benzene avec les Nitriles Catalysees par des Complexes du Rhodium. J. Organomet. Chem. 1982, 228, 301-308; (b) Cabrita, I.; Fernandes, A. C. A Novel Efficient and Chemoselective Method for the Reduction of Nitriles using the System Silane/oxo-rhenium Complexes. Tetrahydron Lett. 2011, 67, 8183-8186. 41. Chardon, A.; Mohy El Dine, T.; Legay, R.; De Paolis, M.; Rouden, J.; Blanchet, J. Borinic Acid Catalysed Reduction of Tertiary Amides with Hydrosilanes: A Mild and Chemoselective Synthesis of Amines. Chem. Eur. J. 2017, 23, 2005- 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84863 | - |
dc.description.abstract | 在過去幾十年,具有強路易斯酸性的中性硼化合物和三配位硼陽離子已經被 廣泛地應用於催化反應上,例如:醛、酮類化合物的矽氫及矽氰加成反應。雙配 位硼陽離子由於反應性過高,所以至今沒有有效的催化應用。為了有效保護雙配 位硼陽離子上的兩個空軌域,我們提出具有五甲基茂取代基 (Cp*) 的超配位硼 陽離子,可藉由 Cp* 與硼中心在 η5 與 η1 之間的切換來達到高反應性及高穩 定性,因此可以視為一種被保護的雙配位硼陽離子 (maskedborinium)。在此基礎 上,我們合成了一系列[Cp*-B-R]+超配位硼陽離子,並將 [Cp*-B-R]+ 應用於路 易士酸催化反應中,包括矽氫及矽氰還原反應。在催化矽氫反應上,[Cp*-B-Mes]+ 是第一個能催化酮類去氧反應的硼陽離子,而藉由調控催化劑的推拉電子性,可 以選擇性的生成矽氫化產物或去氧化產物。[Cp*-B-Mes]+ 在矽氰反應表現也非 常優異,其動力學研究表明,[Cp*-B-Mes]+ 與三甲基氰矽烷 (TMSCN) 作用形 成的三配位硼陽離子是反應中真正的催化劑。透過實驗結果與理論計算得知, Cp* 在矽氰化醛酮反應中,能藉由穩定酸性的三配位硼陽離子,使得催化劑免於 受到親核攻擊而分解。[Cp*-B-Mes]+ 在矽氫還原腈類以及氮,氮-二甲基苯甲醯胺 類表現也非常優異。此研究顯示出藉由引入 Cp* 形成的超配位硼陽離子,可以 穩定硼陽離子中心,並可以被應用在催化反應上。 | zh_TW |
dc.description.abstract | In the past decades, boron species including neutral boranes and tri-coordinate borenium cations have been widely applied in catalysis, such as hydrosilylation and cyanosilylation. However, two-coordinated boron cation, borinium, has never been utilized for catalytic application due to the high reactivity of the four-electron boron species. We hypothesize that the introduction of electronically and coordinatively flexible ligand, like pentamethylcyclopentadienyl (Cp*), might be the solution to realize catalytically active borinium ion. Hypercoordinated boron cation, stabilized by Cp*, can be viewed as masked borinium with high reactivity and high stability due to the feasible hapticity change of Cp* between η5 and η1. In this study, we have prepared a series of hypercoordinate boron cations, [Cp*-B-R]+, and explored their catalytic applications, including hydrosilylation and cyanosilylation. For hydrosilylation, [Cp*BMes]+ ([1]+) is the first boron cation capable of catalyzing hydrodeoxygenation of ketone. By tuning the electronic property of [Cp*-B-R]+, selective generation of hydrosilylation and hydrodeoxygenation products can be achieved. [1]+ also turned out to be an excellent catalyst in cyanosilylation of ketones. Mechanistic investigation of the process revealed that [1-TMSCN]+ resulted from complexation of [1]+ and TMSCN is the real catalyst. Computational study suggested that the coordination of Cp* on the boron center could prevent the electron deficient B+ center from nucleophilic attack, v resulting in the decomposition of the catalyst. [1]+ also has high catalytic performance in hydrosilylation of nitriles and N,N-dimethyl benzamides. This study showed that the incorporation of a coordinatively flexible substituent at boron is critical in achieving catalytic activity of borinium cations. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T22:29:39Z (GMT). No. of bitstreams: 1 U0001-1006202222031700.pdf: 20110768 bytes, checksum: 71e27875101f84671d1286eb0742dfad (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 論文口試委員審定書......i 謝辭......ii Abstract......v Contents......vii List of Figures......x List of Tables......xiii Chapter 1. Introduction......1 1.1 Neutral Boron Compounds......1 1.2 Boron Cations......3 1.3 Molecular Design: Cp*-Substituted Boron Cations......9 Chapter 2. Syntheses and Characterizations of [Cp*BMes]+......10 2.1 Introduction......10 2.2 Syntheses and Characterizations of [Cp*BMes]+......11 2.2.1 Synthesis and characterization of [Cp*BMes][B(C6F5)4]......11 2.2.2 Reactivity, stability and water tolerance of [1][B(C6F5)4]......12 2.2.3 Synthesis and characterization of [Cp*BMes][OTf] ([1][OTf])......15 2.2.4 Stability and water tolerance test of [1][OTf] ......18 2.4.5 Acidity measurement: Gumann−Beckett method......19 2.4.6 Crystal structure analysis......20 2.4.7 Density functional theory (DFT) calculation......23 2.3 Conclusion......25 Chapter 3. Hydrosilylation of Aldehyde/Ketone/Ester by [1][B(C6F5)4]......26 3.1 Introduction of Hydrosilylation......26 3.2 Result and Discussion......28 3.2.1 Hydrosilylation of aldehyde by [1][B(C6F5)4]......28 3.2.2 Mechanism study-silylether with additional silane......30 3.2.3 Hydrodeoxygenation of ketone by [1][B(C6F5)4]......33 3.2.4 Hydrosilylation of ester by [1][B(C6F5)4]......39 3.3 Conclusion......40 Chapter 4. Cyanosilylation of Aldehyde/Ketone by Boron Cations......41 4.1 Introduction of Cyanosilylation......41 4.2 Synthesis and characterizations......43 4.2.1 Syntheses of boron cation......43 4.3 Cyanosilylation of Aldehyde/Ketone by Boron Cations......44 4.3.1 Cyanosilylation of aldehyde/ketone by [1][B(C6F5)4]......44 4.3.2 Cyanosilylation of 5h by [12][B(C6F5)4], [13][B(C6F5)4] and [14][B(C6F5)4] at – 30 oC......49 4.3.3 Cyanosilylation of 5h by [12][OTf] and [13][OTf]......52 4.4 Theoretical Calculation of [17]+ and [18]+......53 4.4.1 Natural population analysis (NPA) of [17]+ and [18]+......53 4.4.2 LUMO of [17]+ and [18]+......55 4.5 Conclusion......61 Chapter 5. Tunable Lewis Acidity of Hypercoordinated Boron Cations......62 5.1 Introduction......62 5.2 Syntheses and characterizations......63 5.2.1 Synthesis of [Cp*-B-PhNMe2][B(C6F5)4] ([19][B(C6F5)4]) and [Cp*-B-C6F5][B(C6F5)4] ([20][B(C6F5)4])......63 5.2.2 Crystal structure determination......65 5.3 Acidity Measurement......69 5.3.1 Gutmann−Beckett method......69 5.4 Hydrosilylation of Aldehyde/Ketones/Esters by Hypercoordinate Boron Cations......70 5.4.1 Hydrosilylation of aldehydes......70 5.4.2 Hydrosilylation of ketones......73 5.4.3 Reduction of esters......75 5.5 Mechanism Study......77 Chapter 6. Hydrosilylation of Nitrile and Amide by [1][B(C6F5)4]......79 6.1 Introduction......79 6.2.1 Hydrosilylation of nitrile by [1][B(C6F5)4]......80 6.2.2 Hydrosilylation of amide by [1][B(C6F5)4]......85 6.3 Conclusion......92 Chapter 7. Experimental Section......93 7.1 Synthesis and Characterization......94 7.1.1 [Cp*BMes][B(C6F5)4] ([1][B(C6F5)4])......94 7.1.2 [Cp*BMes][OTf] ([1][OTf])......96 7.1.3 [Cp*BMes(DMAP)][B(C6F5)4] ([12][B(C6F5)4])......97 7.1.4 [Cp*BMes(DMAP)][OTf] ([12][OTf])......99 7.1.5 [MesBMes(DMAP)][B(C6F5)4] ([13][B(C6F5)4])......100 7.1.6 [MesBMes(DMAP)][OTf] ([13][OTf])......102 7.1.7 [Cp*BMes(TMSCN)2][B(C6F5)4] ([14][B(C6F5)4])......103 7.1.8 Synthesis of [Cp*-B-PhNMe2][B(C6F5)4] ([19][B(C6F5)4])......105 7.1.9 Synthesis of [Cp*-B-C6F5][B(C6F5)4] ([20][B(C6F5)4])......107 7.1.10 [TMSCNTMS][B(C6F5)4] comes from [Mes2B][B(C6F5)4] reacting with TMSCN......109 Chapter 8 Appendix......167 8.1 Crystal Structure Determination......167 8.1.1 Crystal structure of [Cp*BMes][B(C6F5)4] ([1][B(C6F5)4])......168 8.1.2 Crystal structure of [1-Et3PO][B(C6F5)4]......170 8.1.3 Crystal structure of hydrolysis of [1][B(C6F5)4]......172 8.1.4 [MesBMes(DMAP)][OTf] ([12][OTf]) from proposed literature......173 8.1.5 [MesBMes(DMAP)][B(C6F5)4] ([13][B(C6F5)4])......174 8.1.6 [Cp*BMes(DMAP)][OTf] ([13][OTf])......176 8.1.7 [Cp*BMes(TMSCN)2][B(C6F5)4] ([14][B(C6F5)4])......178 8.1.8 [TMSCNTMS)][B(C6F5)4]......180 8.1.9 Crystal structure of [Cp*BPhNMe2][B(C6F5)4] ([19][B(C6F5)4])......182 8.1.10 Crystal structure of [Cp*BC6F5][B(C6F5)4] ([20][B(C6F5)4]).......184 8.2 NMR Spectrum......186 8.3 DFT Calculations......318 8.3.1 Hydride Ion Affinity......319 8.3.2 DFT calculation of boron cations......320 8.4 Reference......326 | |
dc.language.iso | en | |
dc.title | 五甲基茂取代基硼陽離子的合成與反應性探討 | zh_TW |
dc.title | Syntheses and Reactivity Studies of Cp*-Substituted Boron Cations | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡蘊明(Yeun-Min Tsai),詹益慈(YI-TSU CHAN),陳喧應(Hsuan-Ying Chen),陳榮傑(Rong-Jie Chein) | |
dc.subject.keyword | 中性硼化合物,三配位硼陽離子,超配位,雙配位硼陽離子,五甲基茂取代基, | zh_TW |
dc.subject.keyword | hydrosilylation,neutral boranes,borenium,borinium,hypercoordinate,silyl ether,Frustrated Lewis Pairs, | en |
dc.relation.page | 334 | |
dc.identifier.doi | 10.6342/NTU202200913 | |
dc.rights.note | 同意授權(限校園內公開) | |
dc.date.accepted | 2022-09-29 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-30 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1006202222031700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 19.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。