Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84862
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方啓泰(Chi-Tai Fang)
dc.contributor.authorYu-Shan Chenen
dc.contributor.author陳郁姍zh_TW
dc.date.accessioned2023-03-19T22:29:36Z-
dc.date.copyright2022-10-05
dc.date.issued2022
dc.date.submitted2022-08-25
dc.identifier.citation1. Worldometer. COVID-19 CORONAVIRUS PANDEMIC. Available from: https://www.worldometers.info/coronavirus/ 2. Data OWi. Coronavirus Pandemic (COVID-19). Available from: https://ourworldindata.org/coronavirus 3. Nextstrain. Genomic epidemiology of SARS-CoV-2 with subsampling focused globally over the past 6 months. Available from: https://nextstrain.org/ncov/gisaid/global/6m 4. Control ECfDPa. SARS-CoV-2 variants of concern as of 17 February 2022. 02/21, 2022. Available from: https://www.ecdc.europa.eu/en/covid-19/variants-concern 5. Chen J, Wang R, Gilby NB, Wei GW. Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance. J Chem Inf Model. Jan 24 2022;62(2):412-422. doi:10.1021/acs.jcim.1c01451 6. Ito K, Piantham C, Nishiura H. Relative instantaneous reproduction number of Omicron SARS-CoV-2 variant with respect to the Delta variant in Denmark. J Med Virol. Dec 30 2021;doi:10.1002/jmv.27560 7. Nishiura H, Ito K, Anzai A, Kobayashi T, Piantham C, Rodriguez-Morales AJ. Relative Reproduction Number of SARS-CoV-2 Omicron (B.1.1.529) Compared with Delta Variant in South Africa. J Clin Med. Dec 23 2021;11(1)doi:10.3390/jcm11010030 8. Lyngse FP, Mortensen LH, Denwood MJ, et al. SARS-CoV-2 Omicron VOC Transmission in Danish Households. Cold Spring Harbor Laboratory; 2021. 9. Altarawneh H, Chemaitelly H, Tang P, et al. Protection afforded by prior infection against SARS-CoV-2 reinfection with the Omicron variant. Cold Spring Harbor Laboratory; 2022. 10. World Health Organization. Key considerations for repatriation and quarantine of travellers in relation to the outbreak of novel coronavirus 2019-nCoV. Available from: https://www.who.int/news-room/articles-detail/key-considerations-for-repatriation-and-quarantine-of-travellers-in-relation-to-the-outbreak-of-novel-coronavirus-2019-ncov 11. Anurag Kotoky AW. Airlines Face Desolate Future as Attempts to Reopen Crumble. Available from: https://www.bloomberg.com/news/articles/2020-09-23/coronavirus-pandemic-airlines-face-empty-future-as-crisis-continues#xj4y7vzkg 12. Iceland Go. Information for travellers arriving in Iceland from 15 June 2020. Available from: https://www.government.is/diplomatic-missions/embassy-article/2020/06/08/Information-for-travellers-arriving-in-Iceland-from-15-June-2020 13. 衛生福利部疾病管制署. 主要國家入境規定彙整表. Available from: https://www.cdc.gov.tw/Uploads//archives/d8fee9a8-1f47-4247-ba9a-be4d04c8a367.pdf 14. 行政院新聞傳播處. 因應疫情現況 蘇揆:調整放寬管制 建立「經濟與防疫並存」新模式. Available from: https://www.ey.gov.tw/Page/9277F759E41CCD91/3b92b0d6-f83e-4d71-be9b-bfced97b0709 15. 衛生福利部疾病管制署. 自3月7日零時起,入境居家檢疫天數縮短為10天. Available from: https://www.cdc.gov.tw/Bulletin/Detail/IdC18RauX3qPj9bo4RiY5g?typeid=9 16. 衛生福利部疾病管制署. Available from: https://www.cdc.gov.tw/Bulletin/List/MmgtpeidAR5Ooai4-fgHzQ 17. 衛生福利部疾病管制署. 自6月15日零時起,逐步開放邊境、縮短檢疫天數、調控入境總量. Available from: https://www.cdc.gov.tw/Bulletin/Detail/7FzQvk4W0PpC7hOvygqO3Q?typeid=9 18. 衛生福利部疾病管制署. 即日起調增入境總人數為每週4萬人次,另自7月14日起,國人、持有效居留證及來臺轉機者,搭機前得免持2日內PCR報告. Available from: https://www.cdc.gov.tw/Bulletin/Detail/VIB6Z-L9ZkA8YmlS5Qztag?typeid=9 19. Dickens BL, Koo JR, Lim JT, et al. Determining quarantine length and testing frequency for international border opening during the COVID-19 pandemic. Journal of Travel Medicine. 2021;doi:10.1093/jtm/taab088 20. Linka K, Rahman P, Goriely A, Kuhl E. Is it safe to lift COVID-19 travel bans? The Newfoundland story. Computational Mechanics. 2020;66(5):1081-1092. doi:10.1007/s00466-020-01899-x 21. Hossain MP, Junus A, Zhu X, et al. The effects of border control and quarantine measures on the spread of COVID-19. Epidemics. Sep 2020;32:100397. doi:10.1016/j.epidem.2020.100397 22. Zhu Z, Weber E, Strohsal T, Serhan D. Sustainable border control policy in the COVID-19 pandemic: A math modeling study. Travel Medicine and Infectious Disease. 2021;41:102044. doi:10.1016/j.tmaid.2021.102044 23. 魏欣怡. 應用傳染病數理模型SEIR模擬冰島以檢驗取代檢疫之邊境管理對台灣之本土感染COVID-19病例和人群擴散之影響. National Taiwan University; 2021. 24. Lewis D. Superspreading drives the COVID pandemic - and could help to tame it. Nature. Feb 2021;590(7847):544-546. doi:10.1038/d41586-021-00460-x 25. Chen YH, Fang CT, Huang YL. Effect of Non-lockdown Social Distancing and Testing-Contact Tracing During a COVID-19 Outbreak in Daegu, South Korea, February to April 2020: A Modeling Study. Int J Infect Dis. Sep 2021;110:213-221. doi:10.1016/j.ijid.2021.07.058 26. Lim J-S, Noh E, Shim E, Ryu S. Temporal Changes in the Risk of Superspreading Events of Coronavirus Disease 2019. Open Forum Infectious Diseases. 2021;8(7)doi:10.1093/ofid/ofab350 27. Wallinga J, Teunis P, Kretzschmar M. Using Data on Social Contacts to Estimate Age-specific Transmission Parameters for Respiratory-spread Infectious Agents. American Journal of Epidemiology. 2006;164(10):936-944. doi:10.1093/aje/kwj317 28. Xia F, Yang X, Cheke RA, Xiao Y. Quantifying competitive advantages of mutant strains in a population involving importation and mass vaccination rollout. Infect Dis Model. 2021;6:988-996. doi:10.1016/j.idm.2021.08.001 29. Lyngse FP, Kirkeby CT, Denwood M, et al. Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: Evidence from Danish Households. Cold Spring Harbor Laboratory; 2022. 30. Keeling MJ RP. Modeling Infectious Diseases in Humans and Animals. Princeton University Press; 2008. 31. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. The Lancet. 2020;395(10242):1973-1987. doi:10.1016/s0140-6736(20)31142-9 32. 衛生福利部疾病管制署. COVID-19疫苗統計資料. Available from: https://www.cdc.gov.tw/Category/Page/9jFXNbCe-sFK9EImRRi2Og 33. 內政部移民署. 各機場、港口入出境人數統計資料. 內政部資料開放平台. Available from: https://data.moi.gov.tw/moiod/Data/DataDetail.aspx?oid=905908DA-0EF6-4B24-87B0-35B7EDA4CFD2 34. 衛生福利部疾病管制署. 自5月9日零時起,入境居家檢疫天數縮短為7天,並維持第8天起接續自主健康管理7天. Available from: https://www.cdc.gov.tw/Bulletin/Detail/x3qV52F-jwv1-mkNZ0l02A?typeid=9 35. 王朝鈺. 基隆2警隱瞞足跡造成防疫破口 市警局:從重究責. 中央通訊社. Available from: https://www.cna.com.tw/news/ahel/202203300033.aspx 36. 衛生福利部疾病管制署. 即日起調整居家隔離及居家檢疫期滿之檢測改以快篩方式執行. Available from: https://www.cdc.gov.tw/Bulletin/Detail/-VynhmhvYgLBfQlfQC2r3A?typeid=9 37. 衛生福利部疾病管制署. 指揮中心宣布,4月25日起實施重點疫調、自4月26日起縮短居家隔離天數為3+4天,另回溯目前已居隔超過三天者,自4月27日開始解除隔離. Available from: https://www.cdc.gov.tw/Bulletin/Detail/T7IJNzwPlGdvTa1wUuXXvA?typeid=9 38. Kang M, Xin H, Yuan J, et al. Transmission dynamics and epidemiological characteristics of Delta variant infections in China. Cold Spring Harbor Laboratory; 2021. 39. Del Aguila-Mejia J, Wallmann R, Calvo-Montes J, Rodriguez-Lozano J, Valle-Madrazo T, Aginagalde-Llorente A. Secondary Attack Rate, Transmission and Incubation Periods, and Serial Interval of SARS-CoV-2 Omicron Variant, Spain. Emerg Infect Dis. Jun 2022;28(6):1224-1228. doi:10.3201/eid2806.220158 40. Park Y, Huh IS, Lee J, et al. Application of Testing-Tracing-Treatment Strategy in Response to the COVID-19 Outbreak in Seoul, Korea. Journal of Korean Medical Science. 2020;35(45)doi:10.3346/jkms.2020.35.e396 41. Boucau J, Marino C, Regan J, et al. Duration of Shedding of Culturable Virus in SARS-CoV-2 Omicron (BA.1) Infection. New England Journal of Medicine. 2022;doi:10.1056/nejmc2202092 42. 張尹瑄. SARS-CoV-2 Omicron BA.2變異株群體免疫:數理模式研究. 2022. 43. Kirsebom FCM, Andrews N, Stowe J, et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. The Lancet Infectious Diseases. 2022;22(7):931-933. doi:10.1016/s1473-3099(22)00309-7 44. Agency UHS. COVID-19 vaccine surveillance report. 2022. Available from: https://www.gov.uk/government/publications/covid-19-vaccine-weekly-surveillance-reports 45. Computing RotNCfH-p. 臺灣 COVID-19疫苗 各劑次覆蓋率統計表. Available from: https://covid-19.nchc.org.tw/dt_002-csse_covid_19_daily_reports_vaccine_city2.php 46. 中央流行疫情指揮中心. Omicron境外移入確定病例共874例分析. 2022. 47. 交通部. 來臺旅客人數按居住地分. Available from: https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a7101 48. 陳怡諠. 臺灣萬華疫情分析. 2021. unpulished data 49. Jassat W, Abdool Karim SS, Mudara C, et al. Clinical severity of COVID-19 in patients admitted to hospital during the omicron wave in South Africa: a retrospective observational study. Lancet Glob Health. Jul 2022;10(7):e961-e969. doi:10.1016/S2214-109X(22)00114-0 50. 陳心瑜. 陳時中拋縮短檢疫「753」 旅行業者喊「369」盼9月可出國. 自由時報. Available from: https://news.ltn.com.tw/news/life/breakingnews/3860629 51. Misinformation that Omicron is ‘the last COVID-19 variant’ fuelling uptick worldwide: WHO. US News. Available from: https://news.un.org/en/story/2022/03/1114062 52. 劉曉霞. 防疫保單慘賠600億 4金控重傷獲利大縮水. 鏡周刊. Available from: https://www.mirrormedia.mg/story/20220718fin001/ 53. 衛生福利部疾病管制署. 自3月7日零時起,確定病例之密切接觸者居家隔離天數縮短為10天. Available from: https://www.cdc.gov.tw/Bulletin/Detail/xOJ6ha_gD6pQvt4poiUP2Q?typeid=9 54. 經濟部統計處. 三級警戒急凍餐飲業營收,加速外送及宅配減緩衝擊. Available from: https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=9072 55. Saito A, Tamura T, Zahradnik J, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2.75. Cold Spring Harbor Laboratory; 2022. 56. 外交部領事務局. 旅外安全資訊. Available from: https://www.boca.gov.tw/np-50-1.html 57. 黃心瑩. 落地陽性率高,買PCR假證明? 指揮中心回應. 健康醫療網. Available from: https://www.healthnews.com.tw/article/52554 58. 葉臻. 確診台商持假陰性證明入境 判刑5月還得付30萬. 中央通訊社. Available from: https://www.cna.com.tw/news/asoc/202203260098.aspx 59. bank Tw. Life expectancy at birth, total (years) - United States. Available from: https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=US 60. Shang W, Kang L, Cao G, et al. Percentage of Asymptomatic Infections among SARS-CoV-2 Omicron Variant-Positive Individuals: A Systematic Review and Meta-Analysis. Vaccines. 2022;10(7):1049. doi:10.3390/vaccines10071049 61. Chaw L, Koh WC, Jamaludin SA, Naing L, Alikhan MF, Wong J. Analysis of SARS-CoV-2 Transmission in Different Settings, Brunei. Emerg Infect Dis. Nov 2020;26(11):2598-2606. doi:10.3201/eid2611.202263 62. Hu S, Wang W, Wang Y, et al. Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China. Nat Commun. Mar 9 2021;12(1):1533. doi:10.1038/s41467-021-21710-6 63. 衛生福利部疾病管制署. 新增27,146例COVID-19確定病例,分別為26,779例本土個案及367例境外移入. Available from: https://www.cdc.gov.tw/Bulletin/Detail/p46Dp1jbMQz9-poDnqOcPQ?typeid=9
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84862-
dc.description.abstract背景與研究目標:邊境管制為防堵COVID-19疫情跨國擴散的重要公共衛生措施,但也會干擾維持社會經濟活力所需跨境商務及觀光人流。臺灣自2022年3月1日起調整防疫政策為「經濟與防疫並存」,並自2022年3月7日起將入境檢疫時間由14天縮短至10天。但3月底隨即在基隆爆發疫情並擴散至全臺灣,截至6月10日止累積染疫數達2,738,582人、死亡數達2,944人。此波疫情起因是否由縮短入境檢疫期所導致,目前仍缺乏嚴謹的流行病學研究;而當未來全民COVID-19疫苗接種率達理想水準,是否能進一步放寬邊境管制措施,開放更多旅客入境 (觀光客入境) 或免除入境檢疫期,而不危害本土疫情控制,目前亦未有數理模式研究。本研究擬以數理模式分析邊境檢疫期縮短與此波境內疫情爆發之關聯性,並進一步分析當境內COVID-19疫苗接種率達理想水準時,在放寬邊境管制時仍能將本土疫情控制在低度流行的必要條件。 方法:本研究建立考慮超級傳播者、SARS-CoV-2 Omicron BA.2變異株流行病學傳播參數、COVID-19疫苗保護力效果的SEIRS數理傳播模式。本研究分為兩部分:第一部分透過擬合臺灣真實疫情驗證模型正確性並估計本土流行病學參數 (境內口罩/社交距離比例),進一步分析導致臺灣2022年疫情大規模爆發的因素。第二部分模擬當疫苗接種率達理想水準 (追加劑接種率達95%、第二劑接種為97.5%、第一劑接種率為99%),在目前的3天入境檢疫期,仍然可將疫情控制在低度流行 (單日新確診人數小於1,000) 的必要條件,並模擬免除檢疫期的可行性。分析時考慮不同入境人數 (商務客方案:6,000人/天;觀光客方案:15,000人/天) 與不同旅客來源國風險等級 (中度風險國家旅客帶原率:2.5%;高度風險國家旅客帶原率:10%)。敏感度分析考慮更高傳播力的新Omicron亞型變異株對研究結果的影響 (基本再生數為Omicron BA.2變異株的1.34倍)。 結果:擬合真實疫情可計算出:2022年3月7日邊境檢疫期縮短至10天後,臺灣民眾口罩/社交距離比例由原本的75%下降至僅50%。若是接觸者追蹤及口罩/社交距離比例能維持在3月以前的高水準 (75%接觸者追蹤率、75%口罩/社交距離),本土疫情可望仍被控制在低度流行 (新確診個案數在6月10日前均低於85人),口罩/社交距離比例下降實為2022年上半年疫情大爆發之主要原因。第二部份模擬結果顯示:即使疫苗接種率達到理想水準,在6月15後入境檢疫期縮短至3天的情況下,口罩/社交距離比例必須持續維持在90%,才能將開放商務/觀光客入境後境外移入導致的本土疫情控制在低度流行 (單日新確診數高峰介於65至722)。敏感度分析顯示,若出現傳播力更高的新Omicron亞型變異株,口罩/社交距離比例需持續維持在95%以上。若完全取消邊境檢疫,則無法防止新變異株造成本土疫情大爆發。 結論:2022年3月7日邊境檢疫期縮短至10天後,理論上仍可將本土疫情控制在低度流行。境內口罩/社交距離比例下降實為2022年上半年疫情大爆發之主要原因。在目前入境檢疫期縮短至3天的情境下,即使疫苗接種率達理想水準,仍需持續維持95%以上口罩/社交距離,才能避免新Omicron亞型變異株境外移入造成新一波大規模本土疫情。zh_TW
dc.description.abstractBackground and Aims: Border control is a crucial public health measure which prevents the cross-countries spread of the COVID-19 pandemic. However, it may also disrupt the international exchange of commerce and tourism. From March 01, 2022, the Taiwan government adjusted the policy of COVID-19 prevention to “Prevent COVID-19 epidemic and maintain economically”, and then shortened border quarantine duration to 10 days after March 7, 2022. After that, a domestic outbreak happened in Keelung city at the end of March and spread throughout Taiwan. There was a lack of epidemiological study that analyzed the relationship between relaxing border quarantine and the onset of this epidemic. Also, whether the border control can be further relaxed without jeopardizing domestic epidemic control, when the COVID-19 vaccination rate reaches the ideal level, was lacking modeling study analysis. This study aims to analyze the role of relaxing border quarantine in the onset of the current SARS-CoV-2 Omicron BA.2 outbreak in Taiwan; and to examine whether border control can be relaxed when the national vaccination rate reaches the ideal level, using mathematical modeling. Methods: We established an SEIRS model which considered the superspreading event, the epidemiological transmission parameters of SARS-CoV-2 Omicron BA.2 as well as the effectiveness of the COVID-19 vaccine. There were two parts in this study: In part 1, we validated the model and estimated domestic epidemiological parameters by fitting the real-world epidemic in Taiwan, and then analyzed the factors causing the outbreak in 2022. In part 2, we simulated the necessary conditions which still controlled the domestic epidemic at a low level (< 1,000 daily new confirmed cases) under current 3 day border quarantine when vaccination rate reached ideal level (3rd dose= 95%, 2nd dose= 97.5%, 1st dose= 99%), and simulated the feasibility of lifting border quarantine. Considered the different number of imported travelers (business project: 3,000/day; Tourism project: 15,000/day) and the SARS-CoV-2 infection rate of travelers (from moderate-risk countries: 2.5%; from high-risk countries: 10%). Sensitivity analyses simulated the effect of higher transmissibility Omicron variants (the basic reproduction number was 1.34 times than that of Omicron BA.2). Results: According to the results of epidemic trajectory fitting, the average proportion of mask-wearing/social-distancing had gradually decreased from 75% to only 50% after shortening border quarantine on March 07. Further analysis showed that if contact tracing rate, mask-wearing/social-distancing were maintained at the high level before March 2022, the domestic epidemic could still be controlled at a low level when the border quarantine was shortened to 10 days. Therefore, the relaxing of mask-wearing/social-distancing after shortening border quarantine was the main reason for the domestic outbreak in Taiwan. The results of part 2 showed: even when vaccination rate reached ideal level, the proportion of mask-wearing/social distancing needed to maintain at least 90% to control the domestic epidemic at a low level (the peak of the daily new confirmed cases was ranged 65 to 722). Sensitivity analysis showed that the proportion mask-wearing/social distancing needed to be maintained above 95% when new Omicron variants emerged. If border quarantine was lifted, it would not be possible to prevent new Omicron variants from causing local outbreaks. Conclusion: If the mask and social distancing are kept at a high level, the SARS-CoV-2 Omicron BA.2 outbreak in Taiwan 2022 can be kept at a low level after relaxing border control. To avoid a new wave of a new variant epidemic, it is necessary to maintain greater than 95% mask-wearing/social-distancing under the current 3+4 border quarantine policy.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:29:36Z (GMT). No. of bitstreams: 1
U0001-2408202212240500.pdf: 3102559 bytes, checksum: e9f6e31a42ca8ad47a86a22208fbc7fd (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 ii Abstract iv 第一章 緒論 1 第一節 背景與文獻回顧 1 第二節 研究缺口 4 第三節 研究目標 4 第二章 方法 6 第一節 研究設計 6 一、 研究倫理 6 二、 研究設計 6 三、 Omicron BA.2 變異株基礎再生數與傳播機率的估計 7 四、 模型公式 8 第二節 臺灣2022年疫情擬合設定 10 一、 真實世界可取得資料 10 二、 疫情擬合分析設定 11 第三節 模型參數設定 12 一、 傳播相關參數 12 二、 疫苗相關參數 13 三、 入境相關參數 16 四、 境內控制措施參數 17 第四節 敏感度分析 18 第五節 邊境控制可行性評估標準 19 第三章 結果 20 第一節 臺灣2022年疫情與邊境檢疫期鬆綁之關聯性分析 20 一、 基線口罩/社交距離比例 (baseline Mask&SD%) 20 二、 臺灣疫情擬合結果 20 三、 臺灣疫情分析 21 第二節 疫苗接種率達理想水準時,放寬邊境控制可行性 22 第四章 討論 24 第一節 主要發現 24 第二節 臺灣2022年上半年疫情解讀 24 第三節 2022年下半年國內疫情應對建議 26 第四節 2022年下半年各國邊境管制措施 27 第五節 與先前研究之比較 27 第六節 研究優勢與限制 28 一、 研究優勢 28 二、 研究限制 28 第六節 結論 29 Acknowledgement 31 參考文獻 32
dc.language.isozh-TW
dc.subjectOmicron BA.2zh_TW
dc.subject邊境管制措施zh_TW
dc.subject傳染病數理模型zh_TW
dc.subjectSEIRSzh_TW
dc.subjectSARS-CoV-2zh_TW
dc.subjectOmicron BA.2en
dc.subjectborder controlen
dc.subjectSEIRSen
dc.subjectmodeling studyen
dc.subjectSARS-CoV-2en
dc.titleSARS-CoV-2 Omicron BA.2變異株全球大流行時代的邊境管制:數理模式分析zh_TW
dc.titleBorder Control in the SARS-CoV-2 Omicron BA.2 Pandemic: A Modeling Studyen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李文宗(Wen-Chung Lee),溫在弘(Tzai-Hung Wen)
dc.subject.keywordSARS-CoV-2,傳染病數理模型,SEIRS,邊境管制措施,Omicron BA.2,zh_TW
dc.subject.keywordSARS-CoV-2,modeling study,SEIRS,border control,Omicron BA.2,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202202747
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-29
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
dc.date.embargo-lift2022-10-05-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-2408202212240500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved