請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84816完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林美聆 | zh_TW |
| dc.contributor.advisor | Meei-Ling Lin | en |
| dc.contributor.author | 邱勝煜 | zh_TW |
| dc.contributor.author | Sheng-Yu Chiu | en |
| dc.date.accessioned | 2023-03-19T22:27:08Z | - |
| dc.date.available | 2023-12-29 | - |
| dc.date.copyright | 2022-09-30 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] AllenJ. (1982). Application of the short time Fourier transform to speech processing and spectral analysis. In ICASSP'82 IEEE Internal Conference on Acoutics, Speech and Signal Processing(Vol. 7, pp. 1012-1015). [2] ChenC., M. L. Lin and K. L. WangT. (2014). Landslide seismic signal recognition and mobility for an earthquake-induced rockslide in Tsaoling, Taiwan. Engineering Geology 171: 31-44. [3] Del GaudioCoccia, S., Wasowski, J., Gallipoli, M. R., and Mucciarelli, MV.,. (2008). Detection of directivity in seismic site response from microtremor spectral analysis. Nat. Hazards Earth Syst. Sci., 8, 751–762. [4] FengLo, CM. & Lin, QF.Zy.,. (2017). The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods. Landslides 14, 661–674. [5] HarrisJ.F. (1978). On the use of windows for harmonic analysis with discrete Fourier transform. Proceeding of the IEEE, 66(1), 51-83. [6] Hoekand Bray, JE. (1977). Rock Slope Engineering. 1st edn, IMM, London. [7] Hungr, O., Leroueil, S. & Picarelli, L. (2014). The Varnes classification of landslide type, an update. Landslides 11, 167–194. [8] KramerL.S. (1996). Geotechnical earthquake engineering. Upper Saddle River, N.J: Prentice Hall. [9] PedlyM. (2013). Tilt Sensing Using a Three-Axis Accelerometer. Freescale Semiconductor. [10] SuriñachVilajosana, I., Khazaradze, G., Biescas, B., Furdada, G., and Vilaplana, J. M.E.,. (2005). Seismic detection and characterization of landslides and other mass movements. Nat. Hazards Earth Syst. Sci., 5, 791–798, https://doi.org/10.5194/nhess-5-791-2005. [11] Tien Chien ChenLing Lin, Kuo Lung WangMeei. (2014). Landslide seismic signal recognition and mobility for an earthquake-induced rockslide in Tsaoling, Taiwan. Taiwan. Engineering Geology, 171, p.31-44. [12] U. WeglerSens‐SchönfelderC. (2007). Fault zone monitoring with passive image interferometry. Geophysical Journal International, Volume 168, Issue 3, March 2007, Pages 1029–1033. [13] VarnesD.J. (1978). Slope movement types and process. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, Washington, DC, pp. 11-33. [14] Vincenzo Del GaudioWasowski,Janusz. (2011). Advances and problems in understanding the seismic response of potentially unstable slopes. Engineering Geology, Volume 122, Issues 1–2, Pages 73-83. [15] Vincenzo Del GaudioWasowskiJanusz. (2007). Directivity of slope dynamic response to seismic shaking. Geophysical Research Letters, Vol. 34. [16] WelchThomas Cochran and James W. Cooley and D. L. Favin and Howard D. Helms and Reginald A. Kaenel and W. W. Lang and George C. Maling and D. E. Nelson and Charles M. Rader and Peter D.William. (1967). What is the fast Fourier transform. IEEE Transactions on Audio and Electroacoustics, Vol. 15, 45-55. [17] 王國隆、林美聆、倪春發、陳建志、陳柔妃、陳昭維、郭志禹、張國禎、許雅儒、黃信樺、謝佑明. (2019). 蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書. 行政院農業委員會水土保持局. [18] 王國隆、林美聆、倪春發、陳建志、陳柔妃、陳昭維、郭志禹、張國禎、許雅儒、黃信樺、謝佑明. (2020). 109年蘭台大規模崩塌潛勢示範區觀測科技整合研究期末報告書. 行政院農業委員會水土保持局. [19] 王國隆、林美聆、倪春發、陳建志、陳柔妃、陳昭維、郭志禹、張國禎、許雅儒、黃信樺、謝佑明. (2021). 110年蘭台大規模崩塌潛勢示範區觀測科技整合研究期中報告書. 行政院農業委員會水土保持局. [20] 王煒剴. (2014). 以數位式三軸加速度規建構傾斜儀之設計與評估. 國立台灣科技大學營建工程系碩士論文. [21] 吳旻叡. (2018). 2016年臺灣美濃地震之地震構造研究. 國立臺灣大學地質科學研究所論文. [22] 吳奕廷. (2017). 藉由微機電系統觀測蘭台地區邊坡滑動之情形. 國立臺灣大學土木工程學研究所碩士論文. [23] 李明熹. (2006). 土石流發生降雨警界分析及其應用. 國立成功大學水利及海洋工程研究所博士論文. [24] 勇霖工程顧問有限公司. (2014). 103年宜專一線與翠峰景觀道路地滑與地錨監測委託技術服務《成果報告書》. 林務局羅東林區管理處. [25] 夏國強. (2016). 蘭台地區坡地崩塌演化與破壞機制分析. 國立臺灣大學土木工程學研究所碩士論文. [26] 張竝瑜、姚馨如、吳昱昌、宋家宇、林鼎竣、嚴精明、張良正、陸挽中、賴慈華. (2020). 運用二維地電阻時序觀測方法推估非拘限含地下水層地下水位面變動及區域筆出水率~以濁水溪中游名竹盆地為例. 地工技術,頁31-42. [27] 莊效丞. (2018). 以類神經網路觀察近斷層之地震波方向性. 國立臺灣大學土木工程研究所碩士論文. [28] 郭俊翔、謝宏灝、林哲民、溫國樑. (2014). 微地動場址特性分析與地層波速調查. 財團法人國家實驗研究院國家地震工程研究中心, 國家地震工程研究中心研究成果報告102期, 177-180. [29] 陳志芳、謝明志、張文忠、黃安斌、許智超、周仕勤、趙慶堯、甯敘堯. (2016). 公路邊坡崩塌監測之無線感測網路模組研發. 交通部運輸研究所. [30] 陳振宇、陳均維、陳國威、林詠喬. (2019). 坡地降雨致災熱區警戒模式. 中華水土保持學報, 50(1): 1-10. [31] 陳振宇、劉維則、許家祥. (2017). 使用QPESUMS雨量資料建立崩塌災害預警模式. 中華水土保持學報, 48(1): 44-55. [32] 曾美綺. (2017). 地表地形對地震震波反應影響之數值模擬. 國立臺灣大學土木工程研究所碩士論文. [33] 曾耀賢. (2019). 蘭台地區之演化與破壞機制分析. 國立臺灣大學土木工程研究所碩士論文. [34] 黃至用. (2011). 宜專一線公路蘭台苗圃地區地滑案之研究. 國立宜蘭大學土木工程學系碩士論文. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84816 | - |
| dc.description.abstract | 台灣位於板塊交界且亞熱帶氣候,造山運動盛行且降雨豐沛,高山面積大且地質破碎,又因地震與豪雨發生頻繁,經常引發邊坡災害,造成生命及財產之威脅,為了減少損失發生,如何監測邊坡破壞的課題逐漸被重視,然而無論是何種邊坡破壞,皆會造成地表震動發生,因此若能從邊坡上的加速度計對震動訊號進行分析,並當偵測到滑動訊號時,迅速發起警戒,即可有助於監測與災害應變。 本研究以蘭台大規模崩塌潛勢區為研究區域,並以11筆地震事件、3筆降雨事件和現地監測資料事件做為研究案例,觀測頻率則為0.1~25 Hz。在11筆地震事件中,先以牛鬥測站震度大於三級進行篩選,再來將微機電系統MEMS1的加速度資料進行短時傅立葉轉換得到時頻圖,初步判定邊坡滑動訊號為17 Hz,並將微機電系統中MEMS1與牛鬥測站與MEMS3的頻譜圖進行比較,並依照震源機制去分類各個卓越頻率段和檢驗邊坡地形效應,本研究亦進行愛氏強度分析與儀器傾斜角分析,結果發現其主要能量累積之方向有指向平行崩塌滑動方向之趨勢而儀器傾斜角則較看不出崩塌滑動方向之趨勢。 在降雨案例中,分析了山竹颱風、利奇馬颱風與米塔颱風三筆降雨資料,並在米塔颱風過後發現邊坡滑動之訊號17 Hz,並將該時間的加速度歷時進行愛氏強度分析與儀器傾斜角分析,所得出之結果與地震相近。 在現地監測資料的統整,利用定置型傾斜儀、孔內伸縮計和地電阻比對微機電系統,並在現地監測資料有反應的時候,微機電系統也能偵測到邊坡滑動訊號,且在愛氏強度分析與儀器傾斜角分析中,也與地震、降雨事件分析一致。此外,在豪雨過後,地電阻剖面顯示出地下水位面變厚,整體視電阻率上升,以此交互比對邊坡滑動之發生。 | zh_TW |
| dc.description.abstract | Taiwan is located at the boundaries of tectonic plates and subtropical climate, which lead to orogenic movement and heavy rainfall. Thus, the mountain area is large and the geology is weak. Moreover, earthquakes and heavy rainfall occur frequently, which often cause serious landslide events and threaten casualties and economy loss. To decrease the loss, monitoring and mitigation measure becomes more important. However, no matter what kind of slope movements occur, ground vibration also generate. Hence, analyzing seismic signals from the station located on the slope, identifying landslide signals, and announcing the alter will be helpful for mitigation. This research locates in Lantai area and focuses on eleven earthquake cases, three rainfall cases and field monitoring. The frequency ranges from 0.1 to 25 Hz. In the earthquake cases, first, use seismic intensity exceeding three on Nioudou station to choose the seismic events. Then, moving windowed fast fourier transform gets MEMS1 spectrum and identifying landslide signal happens on 17 Hz. Next step is comparing the spectrum to Nioudou and MEMS3 of spectrum. Use a focal mechanism to classify each dominant frequency and verify the topography effect. In addition, Arias intensity and tilt angle analysis are also conducted. The results show that the main energy cumulating direction is possible to parallel to the sliding direction and that tilt angle is hard to identify the sliding direction. In the heavy rainfall cases, use moving windowed time-frequency spectrum to analyze three typhoon cases including the Mangkhut, Lekima and Mitag. Then the landslide signal 17 Hz is found after the Mitag typhoon. Also, put this section of acceleration to do Arias intensity and tilt angle intensity. The result is similar to the result from the earthquake cases. In the field investigation, use the in-place inclinometer, borehole extensometer, and ground resistance analysis to compare the MEMS signals. When these monitoring systems have responded, landslide signal from MEMS can be detected. Also, the result of Arias intensity and tilt angle analysis has high consistency to the earthquake and heavy rainfall cases. In addition, resistivity image profiles indicate that the groundwater table will rise and overall apparent resistivity increases after heavy rainfall. Hence, the result can be used to cross-validate whether the slope happens to landslide or not. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:27:08Z (GMT). No. of bitstreams: 1 U0001-2401202217151200.pdf: 46484052 bytes, checksum: 9e13821a81f9221ad2cca6368c242084 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法與內容 2 第二章 文獻回顧 5 2.1 邊坡破壞 5 2.1.1 邊坡破壞定義 5 2.1.2 邊坡破壞分類 6 2.1.3 潛在大規模崩塌 7 2.2 微機電系統8 2.3 訊號分析 9 2.3.1 快速傅立葉轉換 9 2.3.2 短時傅立葉轉換 11 2.3.3 卓越頻率 12 2.3.4 崩塌及土石流之振動頻率 13 2.4 邊坡傾斜量測 14 2.5 愛氏強度 16 第三章 研究區概述 26 3.1 研究區域概況26 3.1.1 研究區域地質背景 26 3.1.2 研究區域災害歷史 27 3.1.3 研究區域地層剖面28 3.2 研究區域崩塌判釋及演化時序分析 28 3.2.1 研究區域地形變化探討 30 3.2.2 地形變化與圈繪成果比較 32 3.3 現地監測MEMS測站位置 33 3.4 研究區域監測資料統整 34 第四章 地震事件訊號分析 58 4.1 地震頻譜分析 59 4.2 震源機制之頻譜比較 63 4.3 不同區位MEMS地震頻譜比較 64 4.4 滑動之方向分析 65 4.4.1 愛氏強度分析 65 4.4.2 傾斜角變化之比較 66 4.5 綜合討論 67 第五章 降雨事件訊號分析 105 5.1 雨量資料之蒐集及整理 105 5.2 降雨事件之頻譜分析 107 5.3 降雨滑動之方向分析 108 5.4 綜合討論 108 第六章 MEMS判定事件與其他觀測資料比對驗證 123 6.1 IPI事件與MEMS頻譜分析 123 6.2 孔內伸縮計與MEMS頻譜分析 124 6.3 地電阻驗證傾斜儀(IPI)事件 126 6.4 綜合討論 127 第七章 結論與建議 141 7.1 結論 141 7.2 建議 142 參考文獻 144 附錄A 147 附錄B 170 附錄C 174 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 愛氏強度 | zh_TW |
| dc.subject | 時序頻譜分析 | zh_TW |
| dc.subject | 卓越頻率 | zh_TW |
| dc.subject | 震源機制 | zh_TW |
| dc.subject | 傾斜角 | zh_TW |
| dc.subject | 震動訊號 | zh_TW |
| dc.subject | Arias intensity | en |
| dc.subject | Seismic signal | en |
| dc.subject | Moving windowed time-frequency spectrum analysis | en |
| dc.subject | Dominant frequency | en |
| dc.subject | Focal Mechanism | en |
| dc.subject | Tilt angle | en |
| dc.title | 利用震動訊號特徵偵測邊坡深層滑動行為 | zh_TW |
| dc.title | A Study of Detecting the Deep-seated Landslide Movements from MEMS Seismic Signal Characteristics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王國隆;謝佑明 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Lung Wang;Yo-Ming Hsieh | en |
| dc.subject.keyword | 震動訊號,時序頻譜分析,卓越頻率,震源機制,傾斜角,愛氏強度, | zh_TW |
| dc.subject.keyword | Seismic signal,Moving windowed time-frequency spectrum analysis,Dominant frequency,Focal Mechanism,Tilt angle,Arias intensity, | en |
| dc.relation.page | 177 | - |
| dc.identifier.doi | 10.6342/NTU202200183 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-08-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2022-09-30 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 45.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
