請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84806完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉志文 | zh_TW |
| dc.contributor.advisor | Chih-Wen Liu | en |
| dc.contributor.author | 侯冠哲 | zh_TW |
| dc.contributor.author | Kaung-Che Hou | en |
| dc.date.accessioned | 2023-03-19T22:26:37Z | - |
| dc.date.available | 2024-04-03 | - |
| dc.date.copyright | 2022-09-02 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] G. Ciuti, P. Valdastri, A. Menciassi, and P. Dario, "Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures," Robotica, vol. 28, no. 2, pp. 199-207, 2010.
[2] G.-S. Lien, C.-W. Liu, J.-A. Jiang, C.-L. Chuang, and M.-T. Teng, "Magnetic control system targeted for capsule endoscopic operations in the stomach—design, fabrication, and in vitro and ex vivo evaluations," IEEE Transactions on Biomedical Engineering, vol. 59, no. 7, pp. 2068-2079, 2012. [3] A. W. Mahoney and J. J. Abbott, "Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy," The International Journal of Robotics Research, vol. 35, no. 1-3, pp. 129-147, 2016. [4] P. R. Slawinski, A. Z. Taddese, K. B. Musto, S. Sarker, P. Valdastri, and K. L. Obstein, "Autonomously controlled magnetic flexible endoscope for colon exploration," Gastroenterology, vol. 154, no. 6, pp. 1577-1579. e1, 2018. [5] S. Shah, J. Brooker, C. Thapar, C. Williams, and B. Saunders, "Patient pain during colonoscopy: an analysis using real-time magnetic endoscope imaging," Endoscopy, vol. 34, no. 06, pp. 435-440, 2002. [6] M. Salerno, R. Rizzo, E. Sinibaldi, and A. Menciassi, "Force calculation for localized magnetic driven capsule endoscopes," in 2013 IEEE International Conference on Robotics and Automation, 2013: IEEE, pp. 5354-5359. [7] S.-Y. Yen, H.-E. Huang, H.-C. Chen, F.-W. Huang, F.-M. Suk, G.-S. Lien, and C.-W. Liu, "A Novel Method for Locating a Magnetic-Assisted Capsule Endoscope System," IEEE Transactions on Magnetics, vol. 56, no. 10, pp. 1-6, 2020, doi: 10.1109/tmag.2020.3015409. [8] M. Salerno, G. Ciuti, G. Lucarini, R. Rizzo, P. Valdastri, A. Menciassi, A. Landi, and P. Dario, "A discrete-time localization method for capsule endoscopy based on on-board magnetic sensing," Measurement Science and Technology, vol. 23, no. 1, p. 015701, 2011. [9] C. Di Natali, M. Beccani, and P. Valdastri, "Real-Time Pose Detection for Magnetic Medical Devices," IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 3524-3527, 2013, doi: 10.1109/tmag.2013.2240899. [10] C. Di Natali, M. Beccani, N. Simaan, and P. Valdastri, "Jacobian-based iterative method for magnetic localization in robotic capsule endoscopy," IEEE Transactions on Robotics, vol. 32, no. 2, pp. 327-338, 2016. [11] A. Z. Taddese, P. R. Slawinski, M. Pirotta, E. De Momi, K. L. Obstein, and P. Valdastri, "Enhanced Real-Time Pose Estimation for Closed-Loop Robotic Manipulation of Magnetically Actuated Capsule Endoscopes," Int J Rob Res, vol. 37, no. 8, pp. 890-911, Jul 2018, doi: 10.1177/0278364918779132. [12] D. J. Weber, "What’s new in reprocessing endoscopes: Are we going to ensure “the needs of the patient come first” by shifting from disinfection to sterilization?." [13] P. Saliou, H. Le Bars, C. Payan, V. Narbonne, F. Cholet, J. Jézéquel, V. Scotet, M. Robaszkiewicz, D. Cornec, and G. Héry-Arnaud, "Measures to improve microbial quality surveillance of gastrointestinal endoscopes," Endoscopy, vol. 48, no. 08, pp. 704-710, 2016. [14] J.-N. Lin, C.-B. Wang, C.-H. Yang, C.-H. Lai, and H.-H. Lin, "Risk of infection following colonoscopy and sigmoidoscopy in symptomatic patients," Endoscopy, vol. 49, no. 08, pp. 754-764, 2017. [15] P. Wang, T. Xu, S. Ngamruengphong, M. A. Makary, A. Kalloo, and S. Hutfless, "Rates of infection after colonoscopy and osophagogastroduodenoscopy in ambulatory surgery centres in the USA," Gut, vol. 67, no. 9, pp. 1626-1636, 2018. [16] 黃浩恩, "開發新型力感測磁定位方法與磁控大腸內視鏡自動化牽引技術," Initiate a Novel Magnetic Positioning Method Based on Force Sensing and Develop an Autonomous Navigation Technology of a Magnetic Colonoscope, 國立台灣大學電機工程學研究所, 2022. [17] 褚家灃, "應用於磁控膠囊內視鏡之控制策略及自動牽引技術," Control strategy and automatic traction technology for magnetic controlled capsule endoscopy, 國立臺灣大學電機工程學研究所, 2020. [18] 黃威銘, "基於資料擴增與深度學習的改善磁控膠囊內視鏡辨識腸道之研究," Study on the improvement of intestinal identification by magnetic controlled capsule endoscope based on data augmentation and deep learning, 國立臺灣大學電機工程學研究所, 2020. [19] G. Welch and G. Bishop, "An introduction to the Kalman filter," 1995. [20] K. Levenberg, "A method for the solution of certain non-linear problems in least squares," Quarterly of applied mathematics, vol. 2, no. 2, pp. 164-168, 1944. [21] A. Zolfaghari, M. Hajabbasi, I. Celik, R. Danielson, P. Sutherland, S. Duiker, F. Rhoton, J. Torrent, N. Smeck, and R. Lal, "An algorithm for the least-squares estimation of nonlinear parameters," Int. J. Soil Sci, vol. 3, pp. 270-277, 2005. [22] J. M. Coey, Magnetism and magnetic materials. Cambridge university press, 2010. [23] B. F. Edwards, D. M. Riffe, J.-Y. Ji, and W. A. Booth, "Interactions between uniformly magnetized spheres," American Journal of Physics, vol. 85, no. 2, pp. 130-134, 2017, doi: 10.1119/1.4973409. [24] C. Hu, M. Q.-H. Meng, and M. Mandal, "Efficient magnetic localization and orientation technique for capsule endoscopy," International Journal of Information Acquisition, vol. 2, no. 01, pp. 23-36, 2005 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84806 | - |
| dc.description.abstract | 磁控膠囊內視鏡相較於傳統內視鏡擁有許多優點,例如: 舒適性、低壓迫性、受試者無須麻醉並能透過磁控膠囊內視鏡上的鏡頭來觀察腸道內部的情況。本實驗室致力於研究大腸磁控膠囊內視鏡已有數年的時間,在磁控牽引平台、磁控膠囊內視鏡定位及透過人工智慧來辨識腸道內部的病變等技術都有不錯的成果。
磁控膠囊內視鏡平台所使用的定位技術是需要依靠機械手臂的運動來緩慢地追蹤目標,因此還無法達到立即精準定位的效果。當外部永久磁鐵移動時,膠囊內視鏡也可能會有一些不可預測性的位移,這會導致操作人員無法得知內視鏡在腸道中的實際位置。因此,本研究提出了改善舊有的定位方法,來達到立即精準定位的目標。另外也在膠囊內視鏡中加入慣性量測單元元件,透過此元件我們可以得知磁控膠囊內視鏡於腸道內部的擺姿,進而優化我們的定位系統。 | zh_TW |
| dc.description.abstract | Magnetron Capsule Endoscopy has many advantages over traditional endoscopy, such as comfort, and low compression, subjects do not need anesthesia and can observe the inside of the intestine through the lens of the Magnetron Capsule Endoscope. Our laboratory has been devoted to the research of large intestine magnetic control capsule endoscopy for several years and has achieved good results in technologies such as magnetic control traction platform, magnetic control capsule endoscopy positioning, and identification of intestinal lesions through artificial intelligence.
The positioning technology used by the magnetron capsule endoscope platform needs to rely on the movement of the robotic arm to track the target slowly, so it cannot achieve the effect of immediate and precise positioning. There may also be some unpredictable displacement of the capsule endoscope when the external permanent magnet is moved, which prevents the operator from knowing the actual position of the endoscope in the bowel. Therefore, this study proposes to improve the old localization method to achieve the goal of immediate and accurate localization. In addition, an inertial measurement unit element is added to the capsule endoscope. Through this element, we can know the posture of the magnetron capsule endoscope inside the intestine and then optimize our positioning system. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:26:37Z (GMT). No. of bitstreams: 1 U0001-3008202217542800.pdf: 6477272 bytes, checksum: f0a5bbe7273ca69a09d2752e974b5874 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv 圖目錄 viii 表目錄 xiv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機及研究目的 2 1.3 文獻回顧 3 1.4 章節摘要 8 第二章 磁牽引平台與磁控膠囊內視鏡之介紹 9 2.1 磁輔助控制系統 9 2.1.1 MFN平台 9 2.1.2 磁控膠囊內視鏡之結構 16 2.1.3 磁輔助系統之使用者介面概述 18 2.2 MFN平台驗證之動物實驗 19 2.2.1 動物實驗之前置作業 19 2.2.2 活體實驗 20 第三章 三軸力感測器數值定位演算法 22 3.1 慣性量測單元 22 3.1.1 加速度計 23 3.1.2 陀螺儀 29 3.2 卡爾曼濾波器 31 3.2.1 系統狀態(xk) 33 3.2.2 觀測值(zk) 34 3.2.3 預測與更新 35 3.2.4 代碼實現 37 3.3 Levenberg-Marquardt演算法 41 3.4 磁偶極矩 43 3.5 基於力相互作用的磁體定位公式 46 第四章 實驗結果與成果討論 49 4.1 實驗配置 49 4.1.1 未加入IMU時姿態之假設方式 50 4.1.2 加入IMU後獲取姿態之算法 52 4.2 初始值之假設與資料存取之處理 58 4.3 控制介面 59 4.4 防走失定位之實驗數據 62 4.4.1 90 degree 63 4.4.2 180 degree 70 4.4.3 數據比較 74 第五章 結論與未來工作 76 5.1 結論 76 5.2 未來工作 77 參考文獻 78 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 磁定位 | zh_TW |
| dc.subject | 磁控膠囊內視鏡 | zh_TW |
| dc.subject | 磁控制系統 | zh_TW |
| dc.subject | 卡爾曼濾波器 | zh_TW |
| dc.subject | 慣性量測單元 | zh_TW |
| dc.subject | 單軸力感測器 | zh_TW |
| dc.subject | 三軸力感測器 | zh_TW |
| dc.subject | Load Cell | en |
| dc.subject | Force Sensor | en |
| dc.subject | Magnetic Control System | en |
| dc.subject | Magnetron Capsule Endoscope | en |
| dc.subject | Magnetic Positioning | en |
| dc.subject | Inertial Measurement Unit | en |
| dc.subject | Kalman Filter | en |
| dc.title | 改善磁導航系統定位技術之方法 | zh_TW |
| dc.title | A Force Sensor-based Method for Locating a Magnetic-assisted Colonoscope System | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 連吉時;粟發滿 | zh_TW |
| dc.contributor.oralexamcommittee | Gi-Shih Lien;Fat-Moon Suk | en |
| dc.subject.keyword | 磁控膠囊內視鏡,磁控制系統,單軸力感測器,磁定位,三軸力感測器,慣性量測單元,卡爾曼濾波器, | zh_TW |
| dc.subject.keyword | Magnetron Capsule Endoscope,Load Cell,Magnetic Control System,Force Sensor,Magnetic Positioning,Inertial Measurement Unit,Kalman Filter, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202202982 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-08-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2022-09-02 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
