Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林新智(Hsin-Chih Lin)
dc.contributor.authorYing-Chu Chenen
dc.contributor.author陳映竹zh_TW
dc.date.accessioned2023-03-19T22:26:24Z-
dc.date.copyright2022-09-02
dc.date.issued2022
dc.date.submitted2022-08-31
dc.identifier.citation[1] A.J. Knowles, X. Jiang, M. Galano, F. Audebert, Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles, J. Alloys Compd. 615 (2014) S401-S405. [2] C.S. Rao, G.S. Upadhyaya, 2014 and 6061 aluminum alloy-based powder metallurgy composites containing silicon carbide particles/fibres, Mater. Des. 16(6) (1996) 359-366. [3] S.T. Mavhungu, E.T. Akinlabi, M.A. Onitiri, F.M. Varachia, Aluminum Matrix Composites for Industrial Use: Advances and Trends, Procedia Manuf. 7 (2017) 178-182. [4] M.K. Abbass, K.S. Hassan, A.S. Alwan, Study of Corrosion Resistance of Aluminum Alloy 6061/SiC Composites in 3.5% NaCl Solution, Int. J. Mater. Mech. Manuf. 3(1) (2015) 31-35. [5] G. Wu, Q. Zhang, G. Chen, L. Jiang, Z. Xiu, Properties of high reinforcement-content aluminum matrix composite for electronic packages, J. Mater. Sci.: Mater. Electron. 14 (2003) 9-12. [6] C. Peng, Y.W. Liu, M.X. Guo, T.Z. Gu, C. Wang, Z.Y. Wang, C. Sun, Corrosion and pitting behavior of pure aluminum 1060 exposed to Nansha Islands tropical marine atmosphere, Trans. Nonferrous Met. Soc. China 32(2) (2022) 448-460. [7] S.C. Ferreira, A. Conde, M.A. Arenas, L.A. Rocha, A. Velhinho., Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy, Materials 7(12) (2014) 8151-8167. [8] M.S. Hunter, P. Fowle, Natural and thermally formed oxide films on aluminum, J. Electrochem. Soc. 103 (1956) 482. [9] E. McCafferty, Introduction to Corrosion Science, Springer2010. [10] R.T. Loto, P. Babalola, Corrosion resistance of low SiC particle variation at low weight content on 1060 aluminum matrix composite in sulfate-contaminated seawater, Results Phys. 13 (2019). [11] R. Beri, M.K. Kushwaha, N. Grover, A Review on Studies of Mechanical Properties of Anodized Alumina Oxide, Int. J. Res. Eng. Technol. 4(7) (2017) 778-782. [12] C.A. Grubbs, Anodizing of aluminum, Met. Finish. 97(1) (1999) 476-493. [13] R.L. Puurunen, A Short History of Atomic Layer Deposition: Tuomo Suntola's Atomic Layer Epitaxy, Chem. Vap. Deposition 20(10-11-12) (2014) 332-344. [14] S.M. George, Atomic layer deposition: an overview, Chem. Rev. 110 (2010) 111-131. [15] P.C. Lin, K. Lin, Y.H. Lin, K.C. Yang, V.I. Semenov, H.C. Lin, M.J. Chen, Improvement of Corrosion Resistance and Biocompatibility of Biodegradable Mg–Ca Alloy by ALD HfZrO2 Film, Coatings 12(2) (2022). [16] V. Zardetto, B.L. Williams, A. Perrotta, F.D. Giacomo, M.A. Verheijen, R. Andriessen, W.M.M. Kessels, M. Creatore, Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges, Sustainable Energy Fuels 1(1) (2017) 30-55. [17] V. Cremers, R.L. Puurunen, J. Dendooven, Conformality in atomic layer deposition: Current status overview of analysis and modelling, Appl. Phys. Rev. 6(2) (2019). [18] M. Gutsche, H. Seidl, T. Hecht, S. Kudelka, U. Schroeder, Atomic layer deposition for advanced DRAM applications, Future Fab International (15) (2003). [19] H. Kim, Characteristics and applications of plasma enhanced-atomic layer deposition, Thin Solid Films 519(20) (2011) 6639-6644. [20] H. Kim, C. Cabral, C. Lavoie, S.M. Rossnagel, Diffusion barrier properties of transition metal thin films grown by plasma-enhanced atomic-layer deposition, J. Vac. Sci. Technol., B 20(4) (2002). [21] H. Kim, I. Kwon, Review of plasma-enhanced atomic layer deposition: Technical enabler of nanoscale device fabrication, Jpn. J. Appl. Phys. 53(3S2) (2014). [22] H. Kim, A.J. Kellock, S.M. Rossnagel, Growth of cubic-TaN thin films by plasma-enhanced atomic layer deposition, J. Appl. Phys. 92(12) (2002) 7080-7085. [23] H. Kim, C. Detavenier, O. Straten, S.M. Rossnagel, A.J. Kellock, D.G. Park, Robust TaNx diffusion barrier for Cu-interconnect technology with subnanometer thickness by metal-organic plasma-enhanced atomic layer deposition, J. Appl. Phys. 98(1) (2005). [24] W.J. Maeng, H. Kim, Thermal and Plasma-Enhanced ALD of Ta and Ti Oxide Thin Films from Alkylamide Precursors, Electrochem. Solid-State Lett. 9(6) (2006). [25] J.S. Daubert, G.T. Hill, H.N. Gotsch, A.P. Gremaud, J.S. Ovental, P.S. Williams, C.J. Oldham, G.N. Parsons, Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition, ACS Appl. Mater. Interfaces 9(4) (2017) 4192-4201. [26] I. Stabrawa, A. Kubala-Kukuś, D. Banaś, G. Pepponi, J. Braziewicz, M. Pajek, M. Teodorczyk, Characterization of the morphology of titanium and titanium (IV) oxide nanolayers deposited on different substrates by application of grazing incidence X-ray diffraction and X-ray reflectometry techniques, Thin Solid Films 671 (2019) 103-110. [27] C. Nyby, X. Guo, J.E. Saal, S.C. Chien, A.Y. Gerard, H. Ke, T. Li, P. Lu, C. Oberdorfer, S. Sahu, S. Li, C.D. Taylor, W. Windl, J.R. Scully, G.S. Frankel, Electrochemical metrics for corrosion resistant alloys, Sci. Data 8(1) (2021) 58. [28] M. Krasowska, J. Zawala, K. Malysa, Air at hydrophobic surfaces and kinetics of three phase contact formation, Adv. Colloid Interface Sci. 147-148 (2009) 155-69. [29] Y. Huh, K.J. Hong, K.S. Shin, Amorphization induced by focused ion beam milling in metallic and electronic materials, Microsc. Microanal. 19 Suppl 5 (2013) 33-7. [30] S. Li, Y. Zhang, D. Yang, W. Yang, X. Chen, H. Zhao, J. Hou, P. Yang, Structure and optical properties of HfO2 films on Si (100) substrates prepared by ALD at different temperatures, Phys. B: Condens. Matter 584 (2020). [31] E.P. Gusev, C.C. Cabral, M. Copel, C. D’Emic, M. Gribelyuk, Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications, Microelectron. Eng. 69(2-4) (2003) 145-151. [32] S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange, Nanoscale Res. Lett. 10 (2015) 73. [33] V. Pore, A. Rahtu, M. Leskelä, M. Ritala, T. Sajavaara, J. Keinonen, Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water, Chem. Vap. Deposition 10(3) (2004) 143-148. [34] X. Luo, Y. Li, H. Yang, Y. Liang, K. He, W. Sun, H.H. Lin, S. Yao, X. Lu, L. Wan, Z. Feng, Investigation of HfO2 Thin Films on Si by X-ray Photoelectron Spectroscopy, Rutherford Backscattering, Grazing Incidence X-ray Diffraction and Variable Angle Spectroscopic Ellipsometry, Crystals 8(6) (2018). [35] Y.M. Wang, Y.S. Li, P.C. Wong, K.A.R. Mitchell, XPS studies of the stability and reactivity of thin films of oxidized zirconium., Appl. Surf. Sci. 72 (1993) 237-244. [36] I. Iatsunskyi, M. Kempiński, G. Nowaczyk, M. Jancelewicz, M. Pavlenko, K. Załęski, S. Jurga, Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etching, Appl. Surf. Sci. 347 (2015) 777-783. [37] I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga, V. Smyntyna, Structural and XPS characterization of ALD Al2O3 coated porous silicon, Vacuum 113 (2015) 52-58. [38] A.M.A. Mohamed, A.M. Abdullah, N.A. Younan, Corrosion behavior of superhydrophobic surfaces: A review, Arabian J. Chem. 8(6) (2015) 749-765. [39] T. Liu, S. Chen, S. Cheng, J. Tian, X. Chang, Y. Yin, Corrosion behavior of super-hydrophobic surface on copper in seawater, Electrochim. Acta 52(28) (2007) 8003-8007. [40] R. Sokkalingam, K. Sivaprasad, M. Duraiselvam, V. Muthupandi, K.G. Prashanth, Novel welding of Al0.5CoCrFeNi high-entropy alloy: Corrosion behavior, J. Alloys Compd. 817 (2020). [41] H. Jafari, M.H. Idris, A. Ourdjini, H. Rahimi, B. Ghobadian, EIS study of corrosion behavior of metallic materials in ethanol blended gasoline containing water as a contaminant, Fuel 90(3) (2011) 1181-1187. [42] C. Talbot, Reactivity series, activity series and electrochemical series, School Science Review 100(373) (2019) 9-12. [43] 杜正恭、王凱正、蔡淑月,電子微探儀,科儀新知第三十卷第六期,69-76. [44] C.C. Kao, A study of electrical parameter and electrolyte effect on the cell structure, Microstructure and properties of anodized aluminum oxide, National Taiwan University, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84802-
dc.description.abstract鋁基複合材料(AMC)泛指以鋁合金作為基底而製成的複合材料。其中,陶瓷材料如碳化矽顆粒常被作為AMC的添加相,以製備出具有可調節(tailorable)性能的材料。近十年,關於AMC的文獻數量逐年攀升,AMC也被應用在許多場合當中。有文獻指出,AMC的腐蝕速率比鋁合金高,且孔蝕也是一大隱憂。然而,目前關於AMC腐蝕保護的文獻並不多,也尚未找到適合且有效的腐蝕保護方法。本研究利用原子層沉積(ALD)技術,沉積氧化鉿(HfO2)、氧化鋯(ZrO2)、氧化鈦(TiO2)以及氧化鋁(Al2O3)薄膜於鋁基碳化矽顆粒複合材料上。利用穿透式電子顯微鏡觀察薄膜在AMC上的形貌及均勻性,再以動電位極化法及交流阻抗譜,分析四種薄膜對於AMC在1.5%氯化鈉水溶液中的腐蝕保護性。結果顯示四種薄膜皆有效使得腐蝕電流密度下降,其中以氧化鉿的效果最為顯著。本研究也利用ALD技術沉積了50、100、150及200個循環的氧化鉿薄膜,以探討薄膜的厚度效應。腐蝕電流及阻抗頻譜的結果顯示,氧化鉿薄膜的腐蝕保護性大致上隨著厚度上升而提高,但是呈現趨近飽和的趨勢。這暗示不需要再將厚度提升就能達到十分優異的腐蝕保護性,以減少金錢及時間成本的耗費。 為了探究腐蝕形貌的變化,我們將AMC裸材以及有氧化鉿薄膜保護的AMC (HfO2/AMC) 放入1.5%氯化鈉水溶液中浸泡4小時及8小時後取出,觀察二次電子影像以及元素分布圖。結果顯示浸泡8小時的AMC裸材上出現蝕孔,而HfO2/AMC上產生裂紋。AMC裸材上的蝕孔分布範圍小且深,HfO2/AMC的裂紋則是廣而淺,顯示HfO2薄膜有效降低孔蝕的嚴重程度或延後孔蝕的發生。 本研究是第一個將ALD技術應用於AMC腐蝕保護上的研究。研究成果顯示ALD薄膜能均勻地沉積在AMC上,並且對AMC的抗腐蝕性有非常顯著的提升,以及減緩孔蝕的發生。zh_TW
dc.description.abstractAluminum matrix composites (AMCs) have been used in various applications and the number of journal articles regarding AMCs has been rising yearly. It has been reported that AMCs reinforced with silicon carbide (SiC) particles have a higher corrosion rate than aluminum alloys and are prone to pitting corrosion. However, there has been little study on the corrosion protection of AMCs, and no effective method has been proposed yet. In this work, we revealed that atomic layer deposition (ALD) is a feasible method to provide corrosion protection to AMCs reinforced with SiC particles. Thin films of HfO2, ZrO2, TiO2, and Al2O3 were deposited using ALD on AMC reinforced with 20 vol.% SiC particles. Observation of transmission electron microscope (TEM) images showed that these thin films were grown on AMC well and uniformly. Their corrosion protection properties were measured using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). Analysis showed that HfO2, ZrO2, TiO2, and Al2O3 thin films of 200 cycles provided enhanced corrosion protection to AMC from 1.5% NaCl (aq) solution, with HfO2 providing the highest level of protection. The effect of film thickness on corrosion protection properties was also investigated using AMC covered with HfO2 films of 50, 100, 150, and 200 cycles. Analysis of current density and impedance revealed that corrosion resistance generally increased with increasing film thickness but showed a sign of saturation, indicating that a further increase in film thickness will be unnecessary. To investigate the differences between the corrosion behavior of bare AMC and thin film-protected AMC, bare AMC and AMC covered with HfO2 films of 200 cycles (HfO2/AMC) were immersed in 1.5% NaCl (aq) solution for 4 and 8 hours. After immersion, their corrosion morphologies and corrosion products were compared and contrasted. Scanning electron microscope (SEM) images and elemental mappings from electron probe microanalyzer (EPMA) showed that corrosion pits were found on bare AMC after 8 hours of immersion but only cracks were observed on HfO2/AMC. The corrosion pits on bare AMC were local and deep, while the corrosion cracks on HfO2/AMC propagated outwardly and appeared in a much larger region. This indicates that HfO2 films can lessen the severity or delay the occurrence of pitting corrosion. This is the first reported instance of using oxide thin films fabricated by ALD for the corrosion protection of aluminum matrix composites. We reported improved corrosion resistance and showed the differences in corrosion morphologies between bare AMC and AMC covered with HfO2 thin films.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:26:24Z (GMT). No. of bitstreams: 1
U0001-3008202215034000.pdf: 5816095 bytes, checksum: 5daf34cd9007c0ab0ec25f76b7f82ea8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsCONTENTS 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xv Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Properties of Aluminum Matrix Composites (AMCs) 4 2.1.1 Mechanical and Physical Properties 4 2.1.2 Corrosion Behavior and Properties 6 2.1.3 Corrosion Protection of AMCs 10 2.2 Atomic Layer Deposition (ALD) 11 2.2.1 Process and Mechanism 11 2.2.2 Conformality of ALD 13 2.2.3 Growth Rate 15 2.2.4 Plasma-Enhanced ALD 17 2.2.5 Corrosion Protection of Metal Materials by ALD Thin Films 20 Chapter 3 Experimental Methods 24 3.1 AMC Sample Preparation 24 3.2 ALD Thin Film Deposition 25 3.3 Microstructure Observation and Composition Analysis 30 3.3.1 Scanning Electron Microscope (SEM) 30 3.3.2 X-Ray Diffractometer (XRD) 30 3.3.3 Electron Probe Microanalyzer (EPMA) 31 3.3.4 X-Ray Photoelectron Spectroscopy (XPS) 32 3.3.5 Transmission Electron Microscope (TEM) 32 3.4 Corrosion Property Measurement 33 3.4.1 Open Circuit Potential (OCP) 35 3.4.2 Electrochemical Impedance Spectroscopy (EIS) 35 3.4.3 Potentiodynamic Polarization (PDP) 36 3.4.4 Immersion Test 37 3.4.5 Salt Spray Test 38 3.5 Surface Property 38 3.5.1 Contact Angle System 38 Chapter 4 Results and Discussion 40 4.1. Characterization of AMC 40 4.1.1 Microstructure 40 4.1.2 Crystal Structure 41 4.2 Characterization of ALD Thin Films 43 4.2.1 Microstructure 43 4.2.2 Crystal Structure 51 4.2.3 Valence State and Composition 54 4.2.4 Hydrophilicity 58 4.3 Corrosion Behavior and Properties 63 4.3.1 Corrosion Rate 63 4.3.2 Electrochemical Impedance 68 4.3.3 Corrosion Morphology 74 4.3.4 Corrosion Behavior and Products 76 4.3.5 Salt Spray Test 84 Chapter 5 Conclusions 86 Reference 88   LIST OF FIGURES Fig. 1-1. Number of articles regarding AMCs published in academic journals between 1980 and 2020 according to Web of Science. 2 Fig. 2-1. The electrochemical series and standard reduction potentials [42]. 7 Fig. 2-2. Pourbaix diagram for aluminum at 25℃ [9]. 8 Fig. 2-3. Schematic diagram of one cycle of an ALD process for Al2O3 deposition [16]. 13 Fig. 2-4. Schematic diagrams of a 3D structure with (a) non-conformal coating and (b) conformal coating [17]. 14 Fig. 2-5. SEM image of a DRAM trench with an aspect ratio of 1:60. The trench was covered with Al2O3 film deposited by ALD and showed close to 100% conformality [18]. 15 Fig. 2-6. Growth rates of ALD thin film as a function of growth temperature [19]. 16 Fig. 2-7. Growth rates of HfO2 films deposited by thermal ALD and PE-ALD as a function of growth temperature [19]. 19 Fig. 2-8. The (a) capacitance and (b) leakage current density of MOS capacitors with HfO2 films deposited by thermal ALD and PE-ALD [19]. 20 Fig. 2-9. (a) Polarization curves and (b) Bode plot of HfO2, ZrO2, TiO2, ZnO, and Al2O3 films deposited by ALD on copper [25]. 22 Fig. 2-10. (a) Polarization curves and (b) Bode plot of Al2O3 films of varying thickness on copper with impedance shown as closed squares and phase angle shown as open circles [25]. 22 Fig. 2-11. (a) Impedance spectrum and (b) phase angle spectrum of HZO films of varying thickness on Mg-Ca alloy [15]. 23 Fig. 3-1. The as-received AMC sample, which was reinforced by SiC particles. 25 Fig. 3-2. The ALD system used in this study (Fiji, Cambridge Nanotech). 26 Fig. 3-3. Schematic diagram showing the process of growing HfO2, ZrO2, and TiO2 films by PE-ALD. 26 Fig. 3-4. Schematic diagram showing the process of growing Al2O3 films by PE-ALD. 27 Fig. 3-5. Schematic representation of (a) typical XRD and (b) GIXRD [26]. 31 Fig. 3-6. Schematic diagram showing the operating principle of WDS [43]. 32 Fig. 3-7. The three-electrode electrochemical cell used in this study. 34 Fig. 3-8. A typical cyclic PDP curve. Tafel extrapolation is done as shown with dotted lines for icorr [27]. 37 Fig. 3-9. Schematic diagram showing the relations between contact angle and surface hydrophobicity [28]. 39 Fig. 4-1. Secondary electron image of AMC showing its surface morphology. 41 Fig. 4-2. (a) Secondary electron image of AMC and its corresponding elemental mappings showing the distribution of (b) Al, (c) Si, (d) O, (e) Mg, and (f) C. 41 Fig. 4-3 XRD pattern of AMC. 42 Fig. 4-4. (a) TEM bright field image, (b) HRTEM image, (c) and (d) FFT patterns of HfO2/AMC. (c) and (d) correspond to region I and II in (b) respectively. 44 Fig. 4-5. TEM elemental mappings of HfO2/AMC showing the distribution of (a) Hf, (b) O, (c) Pt, (d) Al, (e) Si, and (f) C. 45 Fig. 4-6. (a) TEM bright field image, (b) HRTEM image, (c) and (d) FFT patterns of ZrO2/AMC. (c) and (d) correspond to region I and II in (b) respectively. 46 Fig. 4-7. TEM elemental mappings of ZrO2/AMC showing the distribution of (a) Zr, (b) O, (c) Pt, (d) Al, (e) Si, and (f) C. 47 Fig. 4-8. (a) TEM bright field image, (b) HRTEM image, (c) and (d) FFT patterns of TiO2/AMC. (c) and (d) correspond to region I and II in (b) respectively. 48 Fig. 4-9. TEM elemental mappings of TiO2/AMC showing the distribution of (a) Ti, (b) O, (c) Pt, (d) Al, (e) Si, and (f) C. 49 Fig. 4-10. (a) TEM bright field image, (b) HRTEM image, (c) and (d) FFT patterns of Al2O3/AMC, corresponding to region I and II in (b) respectively. 27.73 nm might include the thickness of the oxide films naturally formed on aluminum alloys. 50 Fig. 4-11. TEM elemental mappings of Al2O3/AMC showing the distribution of (a) Al, (b) O, (c) Pt, (d) Si, and (e) C. 51 Fig. 4-12. GIXRD pattern of HfO2/AMC. XRD pattern of bare AMC is also shown. 53 Fig. 4-13. GIXRD pattern of ZrO2/AMC. XRD pattern of bare AMC is also shown. 53 Fig. 4-14. GIXRD pattern of TiO2/AMC. XRD pattern of bare AMC is also shown. 54 Fig. 4-15. GIXRD pattern of Al2O3/AMC. XRD pattern of bare AMC is also shown. 54 Fig. 4-16. High-resolution XPS scans of (a) HfO2, (b) ZrO2, (c) TiO2, and (d) Al2O3. 56 Fig. 4-17. Depth profiles of (a) HfO2, (b) ZrO2, (c) TiO2, and (d) Al2O3 from XPS. 58 Fig. 4-18. Images of water drop on the surface of (a) HfO2/AMC (b) ZrO2/AMC (c) TiO2/AMC (d) Al2O3/AMC, and (e) bare AMC. 60 Fig. 4-19. Contact angles on varying types of surface. 60 Fig. 4-20. Images of water drop on HfO2 films of (a) 50 nm (b) 100 nm (c) 150 nm, and (d) 200 nm on AMC. 62 Fig. 4-21. Contact angles on HfO2 of varying thickness on AMC. 62 Fig. 4-22. PDP curve of bare AMC. 65 Fig. 4-23. PDP curves of AMC covered with varying types of thin films and bare AMC. 65 Fig. 4-24. PDP curves of AMC covered with HfO2 films of varying thickness and bare AMC. 67 Fig. 4-25. Corrosion current density as a function of HfO2 thickness (characterized by number of cycles). 68 Fig. 4-26. (a) Nyquist plot of AMC covered with HfO2, ZrO2, TiO2, and Al2O3 thin films and (b) enlargement of the part marked with a blue rectangle in (a). 70 Fig. 4-27. Equivalent circuit used to model the results in Fig. 4-26. 70 Fig. 4-28. Bode plots showing the (a) impedance and (b) phase angle of AMC covered with HfO2, ZrO2, TiO2, and Al2O3 thin films. 71 Fig. 4-29. (a) Nyquist plot of AMC covered with HfO2 films of varying thickness and (b) enlargement of the part marked with a gray rectangle in (a). 73 Fig. 4-30. Bode plots showing the (a) impedance and (b) phase angle of AMC covered with HfO2 films of varying thickness. 73 Fig. 4-31. (a) Impedance and (b) phase angle at 0.01 Hz as a function of HfO2 film thickness. 74 Fig. 4-32. SEM images showing corrosion pits on different sites of AMC after 8 hours of immersion in 1.5% NaCl (aq) solution. 75 Fig. 4-33. SEM images showing the corrosion morphology of HfO2/AMC after 8 hours of immersion in 1.5% NaCl (aq) solution. (b) was taken from the region marked with a pink square in (a). (c) and (d) were taken from the region marked with a green and a blue rectangle in (b), respectively. 76 Fig. 4-34. (a) secondary electron image and (b)-(f) elemental mappings of bare AMC after 8 hours of immersion in 1.5% NaCl (aq) solution, showing the distribution of (b) O, (c) Cl, (d) Al, (e) Si, and (f) Mg. 77 Fig. 4-35. (a) secondary electron image and (b)-(f) elemental mappings of bare AMC after 4 hours of immersion in 1.5% NaCl (aq) solution, showing the distribution of (b) O, (c) Cl, (d) Al, (e) Si, and (f) C. 79 Fig. 4-36. (a) secondary electron image and (b)-(f) elemental mappings of a corrosion pit on bare AMC after 8 hours of immersion in 1.5% NaCl (aq) solution, showing the distribution of (b) O, (c) Cl, (d) Al, (e) Si, and (f) C. 79 Fig. 4-37. (a) secondary electron image and (b)-(g) elemental mappings of HfO2/AMC after 4 hours of immersion in 1.5% NaCl (aq) solution, showing the distribution of (b) Hf, (c) O, (d) Cl, (e) Al, (f) Si, and (g) C. 81 Fig. 4-38. (a) Secondary electron image and (b)-(g) elemental mappings of HfO2/AMC after 8 hours of immersion in 1.5% NaCl (aq) solution, showing the distribution of (b) Hf, (c) O, (d) Cl, (e) Al, (f) Si, and (g) C. 82 Fig. 4-39. (a) Secondary electron image and (b)-(g) elemental mappings of HfO2/AMC after 8 hours of immersion in 1.5% NaCl (aq) solution, showing the distribution of (b) Hf, (c) O, (d) Cl, (e) Al, (f) Si, and (g) C under a higher magnification. 83 Fig. 4-40. (a) Secondary electron image and (b)-(g) elemental mappings of another site on HfO2/AMC after 8 hours of immersion in 1.5% NaCl (aq) solution, showing the distribution of (b) Hf, (c) O, (d) Cl, (e) Al, (f) Si, and (g) C. 84   LIST OF TABLES Table 2-1. Properties of conventional packing materials and AMCs [5]. 5 Table 3-1. Deposition parameters of Al2O3 thin films. 28 Table 3-2. Deposition parameters of ZrO2 thin films. 28 Table 3-3. Deposition parameters of TiO2 thin films. 29 Table 3-4. Deposition parameters of HfO2 thin films. 29 Table 3-5. Gradings for salt spray tests. 38 Table 4-1. Corrosion potential and corrosion current density of AMC covered with varying types of thin films. 66 Table 4-2. Corrosion potential and corrosion current density of AMC covered with HfO2 films with varying thickness. ‘0 cycles’ represents bare AMC. 67 Table 4-3. Fitted equivalent circuit model parameters of AMC covered with varying types of thin films. 71 Table 4-4. Results from salt spray tests. 85
dc.language.isoen
dc.title以原子層沉積技術提升鋁基碳化矽複合材料之抗腐蝕性zh_TW
dc.titleImprovement of Corrosion Resistance of Aluminum Matrix Composites by Atomic Layer Depositionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林昆明(Kun-Ming Lin),楊木榮(Mu-Rong Yang),洪衛朋(Wei-Peng Hong)
dc.subject.keyword原子層沉積,腐蝕保護,鋁基複合材料,極化曲線,交流阻抗譜,zh_TW
dc.subject.keywordatomic layer deposition,corrosion protection,aluminum matrix composites,potentiodynamic polarization,electrochemical impedance spectroscopy,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202202973
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-08-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-09-02-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-3008202215034000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.68 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved