Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84793
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖zh_TW
dc.contributor.advisorHoang-Yan Linen
dc.contributor.author許凱翔zh_TW
dc.contributor.authorKai-Siang Hsuen
dc.date.accessioned2023-03-19T22:25:56Z-
dc.date.available2024-04-03-
dc.date.copyright2022-09-08-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationJason Geng. Three-dimensional display technologies. Advances in optics and photonics, 5(4):456–535, 2013.
BG Blundell, AJ Schwarz, and DK Horrell. Volumetric threedimensional display systems: their past present and future. Engineering Science & Education Journal, 2(5):196–200, 1993.
Takanori Okoshi. Three-dimensional imaging techniques. Elsevier, 2012.
David M Hoffman, Ahna R Girshick, Kurt Akeley, and Martin S Banks. Vergence– accommodation conflicts hinder visual performance and cause visual fatigue. Journal of vision, 8(3):33–33, 2008.
Takashi Shibata, Joohwan Kim, David M Hoffman, and Martin S Banks. Visual discomfort with stereo displays: effects of viewing distance and direction of vergenceac-commodation conflict. In Stereoscopic Displays and Applications XXII, volume 7863, pages 222–230. SPIE, 2011.
Gregory Kramida. Resolving the vergence-accommodation conflict in head-mounted displays. IEEE transactions on visualization and computer graphics, 22(7): 1912–1931, 2015.
Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering system. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 39–46, 1995.
James R Bergen and Edward H Adelson. The plenoptic function and the elements of early vision. Computational models of visual processing, 1:8, 1991.
Tien-Tsin Wong, Chi-Wing Fu, Pheng-Arm Heng, and Chi-Sing Leung. The plenoptic illumination function. IEEE Transactions on Multimedia, 4(3):361–371, 2002.
Parry Moon and Domina Eberle Spencer. The photic field. Cambridge, 1981.
Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 31–42, 1996.
Marc Levoy. Display of surfaces from volume data. IEEE Computer graphics and Applications, 8(3):29–37, 1988.
Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam Barth, Andrew Adams, Mark Horowitz, and Marc Levoy. High performance imaging using large camera arrays. In ACM SIGGRAPH 2005 Papers, pages 765– 776. 2005.
Ren Ng, Marc Levoy, Mathieu Bredif, Gene Duval, Mark Horowitz, and Pat Hanrahan. Light field photography with a hand-held plenoptic camera. PhD thesis, Stanford University, 2005.
Brian Curless and Marc Levoy. A volumetric method for building complex models from range images. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pages 303–312, 1996.
Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. Real-time 3d model acquisition. ACM Transactions on Graphics (TOG), 21(3):438–446, 2002.
Marc Levoy. Efficient ray tracing of volume data. ACM Transactions on Graphics (TOG), 9(3):245–261, 1990.
Gabriel Lippmann. Epreuves reversibles donnant la sensation du relief. J. Phys. Theor. Appl., 7(1):821–825, 1908.
Manuel Martínez-Corral and Bahram Javidi. Fundamentals of 3d imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems. Advances in Optics and Photonics, 10(3):512–566, 2018.
Christopher Hahne, Amar Aggoun, Shyqyri Haxha, Vladan Velisavljevic, and Juan Carlos Jácome Fernández. Light field geometry of a standard plenoptic camera. Optics express, 22(22):26659–26673, 2014.
Christopher Hahne. The Standard Plenoptic Camera: Applications of a Geometrical Light Field Model. PhD thesis, Univ. of Bedfordshire, January 2016.
Christopher Hahne and Amar Aggoun. Plenopticam v1.0: A light-field imaging framework. IEEE Transactions on Image Processing, 30:6757–6771, 2021.
Christopher Hahne, Amar Aggoun, Vladan Velisavljevic, Susanne Fiebig, and Matthias Pesch. Baseline and triangulation geometry in a standard plenoptic camera. International Journal of Computer Vision, pages 1–15, 8 2017.
Alexandre Vieira, Helder Duarte, Cristian Perra, Luis Tavora, and Pedro Assuncao. Data formats for high efficiency coding of lytro-illum light fields. In 2015 international conference on image processing theory, tools and applications (IPTA), pages 494–497. IEEE, 2015.
Martin Rerabek and Touradj Ebrahimi. New light field image dataset. In 8th International Conference on Quality of Multimedia Experience (QoMEX), number CONF, 2016.
Ting-Chun Wang, Alexei A Efros, and Ravi Ramamoorthi. Occlusion-aware depth estimation using light-field cameras. In Proceedings of the IEEE international conference on computer vision, pages 3487–3495, 2015.
Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. Learning-based view synthesis for light field cameras. ACM Transactions on Graphics (TOG), 35(6):1–10, 2016.
Laurent Guillo, Xiaoran Jiang, Gauthier Lafruit, and Christine Guillemot. Light field video dataset captured by a R8 Raytrix camera (with disparity maps). PhD thesis, INTERNATIONAL ORGANISATION FOR STANDARDISATION ISO/IEC JTC1/SC29/WG1 & WG11, 2018.
Richard J Marshall, Chris J Meah, Massimo Turola, Ela Claridge, Alex Robinson, Kai Bongs, Steve Gruppetta, and Iain B Styles. Improving depth estimation from a plenoptic camera by patterned illumination. In Videometrics, Range Imaging, and Applications XIII, volume 9528, pages 365–370. SPIE, 2015.
Todor Georgiev and Chintan Intwala. Light field camera design for integral view photography. Adobe System, Inc., Technical Report, page 1, 2006.
Andrew Lumsdaine, Todor Georgiev, et al. Full resolution lightfield rendering. Indiana University and Adobe Systems, Tech. Rep, 91:92, 2008.
Andrew Lumsdaine and Todor Georgiev. The focused plenoptic camera. In 2009 IEEE International Conference on Computational Photography (ICCP), pages 1–8. IEEE, 2009.
Kurt Akeley. Light-field imaging approaches commercial viability. Information Display, 31(6):12–15, 2015.
Vivek Boominathan, Kaushik Mitra, and Ashok Veeraraghavan. Improving resolution and depth-of-field of light field cameras using a hybrid imaging system. In 2014 IEEE International Conference on Computational Photography (ICCP), pages 1–10. IEEE, 2014.
Gaochang Wu, Mandan Zhao, Liangyong Wang, Qionghai Dai, Tianyou Chai, and Yebin Liu. Light field reconstruction using deep convolutional network on epi. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6319–6327, 2017.
Gregg E Favalora. Volumetric 3d displays and application infrastructure. Computer, 38(8):37–44, 2005.
Alan Sullivan. Depthcube solid-state 3d volumetric display. In Stereoscopic displays and virtual reality systems XI, volume 5291, pages 279–284. SPIE, 2004.
K Osmanis, G Valters, R Zabels, U Gertners, I Osmanis, L Kalnins, U Kandere, and A Ozols. Advanced multiplanar volumetric 3d display. In Emerging Liquid Crystal Technologies XIII, volume 10555, pages 116–128. SPIE, 2018.
Yasuhiro Takaki, Hiromitsu Takenaka, Yasuhiro Morimoto, Osamu Konuma, and Kenji Hirabayashi. Multi-view display module employing mems projector array. Optics express, 20(27):28257–28266, 2012.
Yasuhiro Takaki and Nichiyo Nago. Multi-projection of lenticular displays to construct a 256-view super multi-view display. Optics express, 18(9):8824–8835, 2010.
Yasuhiro Takaki. Super multi-view and holographic displays using mems devices. Displays, 37:19–24, 2015.
Xinxing Xia, Xiangyu Zhang, Lei Zhang, Phil Surman, and Yuanjin Zheng. Time-multiplexed multi-view three-dimensional display with projector array and steering screen. Optics Express, 26(12):15528–15538, 2018.
Yun-Suk Kang, Cheon Lee, and Yo-Sung Ho. An efficient rectification algorithm for multi-view images in parallel camera array. In 2008 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, pages 61–64. IEEE, 2008.
Jae-Hyeung Park, Keehoon Hong, and Byoungho Lee. Recent progress in three-dimensional information processing based on integral imaging. Applied optics, 48(34):H77–H94, 2009.
Byoungho Lee, Jae-Hyeung Park, and Sung-Wook Min. Three-dimensional display and information processing based on integral imaging. In Digital Holography and Three-Dimensional Display, pages 333–378. Springer, 2006.
Xiao Xiao, Bahram Javidi, Manuel Martinez-Corral, and Adrian Stern. Advances in three-dimensional integral imaging: sensing, display, and applications. Applied optics, 52(4):546–560, 2013.
Sung-Wook Min, Bahram Javidi, and Byoungho Lee. Enhanced three-dimensional integral imaging system by use of double display devices. Applied optics, 42(20): 4186–4195, 2003.
Hong Hua and Bahram Javidi. A 3d integral imaging optical see-through head-mounted display. Optics express, 22(11):13484–13491, 2014.
Jingang Wang, Xiao Xiao, Hong Hua, and Bahram Javidi. Augmented reality 3d displays with micro integral imaging. Journal of Display Technology, 11(11):889–893, 2015.
Robert Collier. Optical holography. Elsevier, 2013.
Ulf Schnars, Claas Falldorf, John Watson, and Werner Jüptner. Digital holography. In Digital Holography and Wavefront Sensing, pages 39–68. Springer, 2015.
Erdem Sahin, Elena Stoykova, Jani Mäkinen, and Atanas Gotchev. Computergenerated holograms for 3d imaging: a survey. ACM Computing Surveys (CSUR), 53(2):1–35, 2020.
Nobuyuki Masuda, Tomoyoshi Ito, Takashi Tanaka, Atsushi Shiraki, and Takashige Sugie. Computer generated holography using a graphics processing unit. Optics Express, 14(2):603–608, 2006.
Ze-Sheng Liu, Huan Deng, Jiao-Jiao Li, Hui Deng, Guo-Jiao Lv, Jun Fan, and Bai- Chuan Zhao. Light field resampling method for elemental image array generation of integral imaging. Journal of the Society for Information Display, 28(8):705–712, 2020.
Huan Deng, Qiong-Hua Wang, and Da-Hai Li. The realization of computer generated integral imaging based on two step pickup method. In 2010 Symposium on Photonics and Optoelectronics, pages 1–3. IEEE, 2010.
Manuel Martínez-Corral, Adrián Dorado, Héctor Navarro, Genaro Saavedra, and Bahram Javidi. Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus. Applied Optics, 53(22):E19–E25, 2014.
Se-Chan Oh, Ji-Soo Hong, Jae-Hyeung Park, and Byoung-Ho Lee. Efficient algorithms to generate elemental images in integral imaging. Journal of the Optical Society of Korea, 8(3):115–121, 2004.
Yongri Piao, Young-Man Kwon, Miao Zhang, and Joon-Jae Lee. Accelerated generation algorithm for an elemental image array using depth information in computational integral imaging. Journal of information and communication convergence engineering, 11(2):132–138, 2013.
Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international conference on pattern recognition, pages 2366–2369. IEEE, 2010.
Umme Sara, Morium Akter, and Mohammad Shorif Uddin. Image quality assessment through fsim, ssim, mse and psnr—a comparative study. Journal of Computer and Communications, 7(3):8–18, 2019.
Sung-Wook Min, Joohwan Kim, and Byoungho Lee. New characteristic equation of three-dimensional integral imaging system and its applications. Japanese journal of applied physics, 44(1L):L71, 2004.
Tao Ni, Greg S Schmidt, Oliver G Staadt, Mark A Livingston, Robert Ball, and Richard May. A survey of large high-resolution display technologies, techniques, and applications. In IEEE Virtual Reality Conference (VR 2006), pages 223–236. IEEE, 2006.
Yi-Pai Huang. Floating 3d display system by using full-parallax light field technology. https://www.grb.gov.tw/search/planDetail?id=11566792&docId=467400, 2016.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84793-
dc.description.abstract隨著科技的進步,人們對於3D顯示的需求越來越強烈。從利用偏振眼鏡讓左右眼看見其對應影像,腦中產生立體視覺的穿戴式立體顯示(Stereoscopic),進化到利用雙眼視差所產生立體視覺的裸眼立體顯示(Autostereoscopic),最後演化成能在空間中重建光線資訊的光場顯示(Light-Field Display),都是人們對於3D顯示科技的追求。

全光函數包含了七個維度,是光場的數學模型,用來表示空間中任意一道光束。光場科技主要是由採集、顯示與資料處理全光函數組成。相較於傳統3D顯示技術,由於光場顯示技術能在空間中不同深度平面重建不同影像,能達成聚焦模糊,可以解決目前3D顯示技術中最主要的瓶頸-視覺輻輳調節衝突(Vergence-Accommodation Conflict, VAC)。

為了實現只需二維影像與深度圖生成EIs,本論文提出Computer Generated Elemental Image (CGEI) 演算法。與現有的演算法相比差異為增加權重函數與建立三維的離散相對座標,並使用蒙地卡羅光線追跡法進行光場重建影像的模擬與分析。增加權重函數可針對面板出光分佈找出EIs最佳解;建立三維的離散相對座標可自定義重建影像像素、透鏡陣列之各透鏡中心、面板像素的座標,能有更好的自訂性,未來對實際架設、曲面積分成像式光場顯示器、透明積分成像式光場顯示器皆有較高的相容性;使用蒙地卡羅光線追跡法進行光場重建影像的模擬與分析,在重建平面結果部份可提升約10dB的PSNR表現,驗證本系統可達成在空間中重建光線資訊,在模擬結果部份也有更完整的分析與討論。最終本論文實現不需要光場相機且避免視覺輻輳調節衝突的裸眼3D積分成像式光場顯示系統模擬。
zh_TW
dc.description.abstractWith the advancement of technology, people's demand for 3D display is getting stronger and stronger. From the wearable stereoscopic display that uses polarized glasses to allow the left and right eyes to see the corresponding image and the following autostereoscopic display that uses binocular parallax to generate stereoscopic vision, 3D display technology finally evolved into Light-Field Display which reconstructs spacial light information.

The plenoptic function contains seven dimensions, and it is a mathematical model of Light-Field, which is used to represent any light ray in space. Light-Field technology is mainly composed of acquisition, display and data processing of plenoptic functions. Because the Light-Field Display technology can reconstruct different images in different depth planes in space, it can achieve focus blur and solve the main bottleneck in the current 3D display technology, vergence-accommodation conflict (VAC), which is huge advantage comparing to the traditional 3D display technology.

In order to generate EIs with only a 2D image and a depthmap, this paper proposes the Computer Generated Elemental Image (CGEI) algorithm. Compared with the existing algorithms, the differences are that Weight functions are added into it, the 3D discrete relative coordinates are established, and the Monte Carlo ray tracing method is used to simulate and analyze the Light-Field reconstruction image. Adding Weight functions into the algorithm can help us to find the best solution of EIs from the light distribution of the panel. Establishing 3D discrete relative coordinates has a contribution to the customization of the coordinates of the reconstructed image pixels, the center of each lens of the lens array, and the panel pixels. In the future, the proposed algorithm has high compatibility with the actual experimental, curved InIm Light-Field Display, and transparent InIm Light- Field Display. Using the Monte Carlo ray tracing method to simulate and analyze the Light-Field reconstruction image can improve the PSNR performance by about 10dB in the results, which verifies that the system can successfully reconstruct the spacial light information. Moreover, the analysis and discussion in the simulation results are also more complete. Finally, this paper realizes a simulation of naked-eye 3D Integral Imaging based Light-Field Display system that does not require a Light-Field Camera and avoids the VAC in the mean time.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:25:56Z (GMT). No. of bitstreams: 1
U0001-3108202211545100.pdf: 11085641 bytes, checksum: 2717265b2ce9418cd677ea775372b519 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents目錄
Page
口試委員審定書i
致謝ii
摘要iv
Abstract vi
目錄viii
圖目錄xi
表目錄xiv
符號列表xv
第一章緒論1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 立體與3D 視覺原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 心理視覺因子. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 生理視覺因子. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 視覺輻輳調節衝突. . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 光場技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 光場採集技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 光場顯示技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 光場資料計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
第二章光場顯示器之設計原理與方法18
2.1 積分成像式光場顯示器之設計原理. . . . . . . . . . . . . . . . . . 18
2.2 常用照明計量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 光通量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 光強度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 照度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.4 亮度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 光場顯示器的衡量指標. . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 峰值訊噪比. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 結構相似性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 可視角. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 解析度. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
第三章研究方法28
3.1 CGEI 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 CGEI 演算法流程. . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 輸入圖片與深度圖. . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 模型設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.4 CGEI 演算法結果. . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 幾何光學模擬模型設定. . . . . . . . . . . . . . . . . . . . . . . . . 34
第四章研究結果與討論36
4.1 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 改變出光角度限制對PSNR 與SSIM 之影響. . . . . . . . . . . . . 38
4.3 可視角分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 顯示距離極限分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 像素密度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 不同參數Elemental Images 計算. . . . . . . . . . . . . . . . . . . . 41
第五章結論與未來展望57
參考文獻60
-
dc.language.isozh_TW-
dc.subject光場顯示器zh_TW
dc.subject元宇宙zh_TW
dc.subject視覺輻輳調節衝突zh_TW
dc.subject深度zh_TW
dc.subjectElemental Imagezh_TW
dc.subject積分成像zh_TW
dc.subject3Dzh_TW
dc.subjectMetaverseen
dc.subject3Den
dc.subjectLight-Field Displayen
dc.subjectElemental Imageen
dc.subjectIntegral Imagingen
dc.subjectDepthen
dc.subjectVACen
dc.title基於積分成像式3D光場顯示器之設計與分析zh_TW
dc.titleDesign and Analysis of Integral Imaging based 3D Light-Field Displayen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃定洧;蔡朝旭zh_TW
dc.contributor.oralexamcommitteeDing-Wei Huang;Chao-Hsu Tsaien
dc.subject.keyword光場顯示器,3D,積分成像,Elemental Image,深度,視覺輻輳調節衝突,元宇宙,zh_TW
dc.subject.keywordLight-Field Display,3D,Integral Imaging,Elemental Image,Depth,VAC,Metaverse,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202203008-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-08-31-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2027-08-31-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
10.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved