Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84779
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃正雅(Cheng-Ya Huang)
dc.contributor.authorChing-Lin Changen
dc.contributor.author張靜琳zh_TW
dc.date.accessioned2023-03-19T22:25:15Z-
dc.date.copyright2022-10-05
dc.date.issued2022
dc.date.submitted2022-08-31
dc.identifier.citation1. Litvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012;27:349-356. 2. Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia--meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119:252-65. 3. Li Z, Yu Z, Zhang J, Wang J, Sun C, Wang P, et al. Impact of rivastigmine on cognitive dysfunction and falling in Parkinson's disease patients. Eur Neurol. 2015;74:86-91. 4. Fang C, Lv L, Mao S, Dong H, Liu B. Cognition deficits in Parkinson's disease: mechanisms and treatment. Parkinsons Dis. 2020;2020:2076942. 5. Burns A, Iliffe S. Alzheimer's disease. BMJ. 2009;338:b158. 6. Koepsell TD, Monsell SE. Reversion from mild cognitive impairment to normal or near-normal cognition: risk factors and prognosis. Neurology. 2012;79:1591-8. 7. Roberts RO, Knopman DS, Mielke MM, Cha RH, Pankratz VS, Christianson TJ, et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology. 2014;82:317-25. 8. Jones JD, Kuhn TP, Szymkowicz SM. Reverters from PD-MCI to cognitively intact are at risk for future cognitive impairment: Analysis of the PPMI cohort. Parkinsonism Relat Disord. 2018;47:3-7. 9. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairement. Lancet. 2006;367:1262-70. 10. Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, et al. MDS Task Force on mild cognitive impairment in Parkinson's disease: critical review of PD-MCI. Mov Disord. 2011;26:1814-24. 11. Goldman JG, Litvan I. Mild cognitive impairment in Parkinson's disease. Minerva Med. 2011;102:441-459. 12. Mitra S, Fraizer EV. Effects of explicit sway-minimization on postural-suprapostural dual-task performance. Hum Mov Sci. 2004;23:1-20. 13. Schenkman M, Cutson TM, Zhu CW, Whetten-Goldstein K. A longitudinal evaluation of patients' perceptions of Parkinson's disease. Gerontologist. 2002;42:790-8. 14. Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson's disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis. 2012;2012:918719. 15. Montero-Odasso M, Muir SW, Speechley M. Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Arch Phys Med Rehabil. 2012a;93:293-9. 16. Muir SW, Speechley M, Wells J, Borrie M, Gopaul K, Montero-Odasso M. Gait assessment in mild cognitive impairment and Alzheimer’s disease: the effect of dual-task challenges across the cognitive spectrum. Gait Posture. 2012;35:96-100. 17. Lamoth CJ, van Deudekom FJ, van Campen JP, Appels BA, de Vries OJ, Pijnappels M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J Neuroeng Rehabil. 2011;8:2. 18. Doi T, Shimada H, Makizako H, Tsutsumimoto K, Uemura K, Anan Y, et al. Cognitive function and gait speed under normal and dual-task walking among older adults with mild cognitive impairment. BMC Neurol. 2014;14:67. 19. Bloem BR, Valkenburg VV, Slabbekoorn M, Willemsen MD. The Multiple Tasks Test: development and normal strategies. Gait Posture. 2001;14:191-202. 20. Heinzel S, Maechtel M, Hasmann SE, Hobert MA, Heger T, Berg D, et al. Motor dual-tasking deficits predict falls in Parkinson's disease: A prospective study. Parkinsonism Relat Disord. 2016;26:73-77. 21. Montero-Odasso M, Speechley M. Falls in cognitively impaired older adults: implications for risk assessment and prevention. J Am Geriatr Soc. 2018;66: 367-75. 22. Amboni M, Barone P, Iuppariello L, Lista I, Tranfaglia R, Fasano A, et al. Gait patterns in Parkinsonian patients with or without mild cognitive impairment. Mov Disord. 2012;27:1536-43. 23. Wu T, Hallett M. Dual task interference in Parkinson's disease. US Neurology, 2009;5:30-33. 24. Donzuso G, Monastero R, Cicero CE, Luca A, Mostile G, Giuliano L, et al. Neuroanatomical changes in early Parkinson's disease with mild cognitive impairment: a VBM study; the Parkinson's Disease Cognitive Impairment Study (PaCoS). Neurol Sci. 2021. 25. Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, et al. Grey matter atrophy in cognitively impaired Parkinson's disease. J Neurol Neurosurg Psychiatry. 2012;83:188-94. 26. Wang Z, Jia X, Chen H, Feng T, Wang H. Abnormal spontaneous brain activity in early Parkinson's disease with mild cognitive impairment: A resting-state fMRI study. Front Physiol. 2018;9:1093. 27. Mostile G, Giuliano L, Monastero R, Luca A, Cicero CE, Donzuso G, et al. Electrocortical networks in Parkinson's disease patients with Mild Cognitive Impairment. The PaCoS study. Parkinsonism Relat Disord. 2019;64:156-162. 28. Mathewson KJ, Hashemi A, Sheng B, Sekuler AB, Bennett PJ, Schmidt LA. Regional electroencephalogram (EEG) alpha power and asymmetry in older adults: a study of short-term test-retest reliability. Front Aging Neurosci. 2015;7:177. 29. Engel AK, Fries P. Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol. 2010;20:156-65. 30. Strouwen C, Molenaar EALM, Münks L, Keus SHJ, Zijlmans JCM, Vandenberghe W, et al. Training dual tasks together or apart in Parkinson's disease: Results from the DUALITY trial. Mov Disord. 2017;32:1201-1210. 31. Boisgontier MP, Beets IA, Duysens J, Nieuwboer A, Krampe RT, Swinnen SP. Age-related differences in attentional cost associated with postural dual tasks: increased recruitment of generic cognitive resources in older adults. Neurosci Biobehav Rev. 2013;37:1824-37. 32. Clark DJ. Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies. Front Hum Neurosci. 2015;9:246. 33. Schaafsma JD, Giladi N, Balash Y, Bartels AL, Gurevich T, Hausdorff JM. Gait dynamics in Parkinson's disease: relationship to Parkinsonian features, falls and response to levodopa. J Neurol Sci. 2003;212:47-53. 34. Güntekin B, Hanoğlu L, Güner D, Yılmaz NH, Çadırcı F, Mantar N, et al. Cognitive impairment in Parkinson's Disease is reflected with gradual decrease of EEG delta responses during auditory discrimination. Front Psychol. 2018;9:170. 35. Işoğlu-alkaç U, Kedzior K, Karamürsel S, Ermutlu N. Event-related potentials during auditory oddball, and combined auditory oddball-visual paradigms. Int J Neurosci. 2007;117:487-506. 36. Plotnik M, Dagan Y, Gurevich T, Giladi N, Hausdorff JM. Effects of cognitive function on gait and dual tasking abilities in patients with Parkinson's disease suffering from motor response fluctuations. Exp Brain Res. 2011;208:169-79. 37. Petkus AJ, Filoteo JV, Schiehser DM, Gomez ME, Hui JS, Jarrahi B, et al. Mild cognitive impairment, psychiatric symptoms, and executive functioning in patients with Parkinson's disease. Int J Geriatr Psychiatry. 2020;35:396-404. 38. Johansson H, Ekman U, Rennie L, Peterson DS, Leavy B, Franzén E. Dual-task effects during a motor-cognitive task in Parkinson's disease: patterns of prioritization and the influence of cognitive status. Neurorehabil Neural Repair. 2021;35:356-366. 39. Bloem BR, Grimbergen YA, van Dijk JG, Munneke M. The 'posture second' strategy: a review of wrong priorities in Parkinson's disease. J Neurol Sci. 2006;248:196-204. 40. Hubbard IJ, Parsons MW, Neilson C, Carey LM. Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16:175-89. 41. Theill N, Schumacher V, Adelsberger R, Martin M, Jäncke L. Effects of simultaneously performed cognitive and physical training in older adults. BMC Neurosci. 2013;14:103. 42. Fritz NE, Cheek FM, Nichols-Larsen DS. Motor-Cognitive Dual-Task Training in Persons With Neurologic Disorders: A Systematic Review. J Neurol Phys Ther. 2015;39:142-53. 43. De Freitas TB, Leite PHW, Doná F, Pompeu JE, Swarowsky A, Torriani-Pasin C. The effects of dual task gait and balance training in Parkinson's disease: a systematic review. Physiother Theory Pract. 2020;36:1088-1096. 44. Yang YR, Cheng SJ, Lee YJ, Liu YC, Wang RY. Cognitive and motor dual task gait training exerted specific training effects on dual task gait performance in individuals with Parkinson's disease: a randomized controlled pilot study. PLoS One. 2019;14:e0218180. 45. Hagovská M, Olekszyová Z. Impact of the combination of cognitive and balance training on gait, fear and risk of falling and quality of life in seniors with mild cognitive impairment. Geriatr Gerontol Int. 2016;16:1043-50. 46. Fogarty JN, Murphy KJ, McFarlane B, Montero-Odasso M, Wells J, Troyer AK, et al. Taoist Tai Chi® and memory intervention for individuals with mild cognitive impairment. J Aging Phys Act. 2016;24:169-80. 47. Makizako H, Doi T, Shimada H, Yoshida D, Tsutsumimoto K, Uemura K, et al. Does a multicomponent exercise program improve dual-task performance in amnestic mild cognitive impairment? A randomized controlled trial. Aging Clin Exp Res. 2012;24:640-6. 48. Azadian E, Torbati HR, Kakhki AR, Farahpour N. The effect of dual task and executive training on pattern of gait in older adults with balance impairment: a Randomized controlled trial. Arch Gerontol Geriatr. 2016;62:83-9. 49. Holtzer R, Izzetoglu M. Mild cognitive impairments atenuate prefrontal cortex activations during walking in older adults. Brain Sci. 2020;10:415. 50. Rosenfeldt AB, Penko AL, Streicher MC, Zimmerman NM, Koop MM, Alberts JL. Improvements in temporal and postural aspects of gait vary following single- and multi-modal training in individuals with Parkinson's disease. Parkinsonism Relat Disord. 2019;64:280-285. 51. Strouwen C, Molenaar EALM, Münks L, Broeder S, Ginis P, Bloem BR, et al. Determinants of dual-task training effect size in Parkinson disease: who will benefit most? J Neurol Phys Ther. 2019;43:3-11. 52. Hindle JV, Petrelli A, Clare L, Kalbe E. Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. Mov Disord. 2013;28:1034-49. 53. Domingos JM, Godinho C, Dean J, Coelho M, Pinto A, Bloem BR, et al. Cognitive impairment in fall-related studies in Parkinson's disease. J Parkinsons Dis. 2015;5:453-69. 54. Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75:1717-25. 55. Zirek E, Ersoz Huseyinsinoglu B, Tufekcioglu Z, Bilgic B, Hanagasi H. Which cognitive dual-task walking causes most interference on the Timed Up and Go test in Parkinson's disease: a controlled study. Neurol Sci. 2018;39:2151-2157. 56. Vance RC, Healy DG, Galvin R, French HP. Dual tasking with the timed 'up & go' test improves detection of risk of falls in people with Parkinson disease. Phys Ther. 2015;95:95-102. 57. Sinha SR, Sullivan L, Sabau D, San-Juan D, Dombrowski KE, Halford JJ, et al. American Clinical Neurophysiology Society Guideline 1: Minimum Technical Requirements for Performing Clinical Electroencephalography. J Clin Neurophysiol. 2016;33:303-7. 58. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374:20150202. 59. Williams AJ, Peterson DS, Earhart GM. Gait coordination in Parkinson disease: effects of step length and cadence manipulations. Gait Posture. 2013;38:340-4. 60. Iansek R, Huxham F, McGinley J. The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Mov Disord. 2006;21:1419-24. 61. Nonnekes J, Giladi N, Guha A, Fietzek UM, Bloem BR, Růžička E. Gait festination in parkinsonism: introduction of two phenotypes. J Neurol. 2019;266:426-430. 62. Engel AK, Fries P. Beta-band oscillations--signalling the status quo? Curr Opin Neurobiol. 2010;20:156-65. 63. Tatti E, Ferraioli F, Peter J, Alalade T, Nelson AB, Ricci S, et al. Frontal increase of beta modulation during the practice of a motor task is enhanced by visuomotor learning. Sci Rep. 2021;11:17441. 64. Tan H, Jenkinson N, Brown P. Dynamic neural correlates of motor error monitoring and adaptation during trial-to-trial learning. J Neurosci. 2014;34:5678-88. 65. Meissner SN, Krause V, Südmeyer M, Hartmann CJ, Pollok B. The significance of brain oscillations in motor sequence learning: Insights from Parkinson's disease. Neuroimage Clin. 2018;20:448-457. 66. Ko YG, Challis JH, Newell KM. Learning to coordinate redundant degrees of freedom in a dynamic balance task. Hum Mov Sci. 2003;22:47-66. 67. Hwang IS, Huang CT, Cherng RJ, Huang CC. Postural fluctuations during pointing from a unilateral or bilateral stance. Hum Mov Sci. 2006;25:275-91. 68. Bulea TC, Prasad S, Kilicarslan A, Contreras-Vidal JL. Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution. Front Neurosci. 2014;8:376. 69. Gwin JT, Gramann K, Makeig S, Ferris DP. Removal of movement artifact from high-density EEG recorded during walking and running. J Neurophysiol. 2010;103:3526-34. 70. Harmony T, Fernández T, Silva J, Bernal J, Díaz-Comas L, Reyes A, et al. EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. Int J Psychophysiol. 1996;24:161-71. 71. Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci Biobehav Rev. 2007;31:377-95. 72. Knyazev GG, Slobodskoj-Plusnin JY, Bocharov AV. Event-related delta and theta synchronization during explicit and implicit emotion processing. Neuroscience. 2009;164:1588-600. 73. Fernández T, Harmony T, Rodríguez M, Bernal J, Silva J, Reyes A, et al. EEG activation patterns during the performance of tasks involving different components of mental calculation. Electroencephalogr Clin Neurophysiol. 1995;94:175-82. 74. Gevins A, Smith ME, McEvoy L, Yu D. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex. 1997;7:374-85. 75. Hülsdünker T, Mierau A, Neeb C, Kleinöder H, Strüder HK. Cortical processes associated with continuous balance control as revealed by EEG spectral power. Neurosci Lett. 2015;592:1-5. 76. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18:414-21. 77. Archambault PS, Ferrari-Toniolo S, Caminiti R, Battaglia-Mayer A. Visually-guided correction of hand reaching movements: The neurophysiological bases in the cerebral cortex. Vision Res. 2015;110:244-56. 78. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci. 2011;12:154-67. 79. Whitham EM, Pope KJ, Fitzgibbon SP, Lewis T, Clark CR, Loveless S, et al. Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin Neurophysiol. 2007;118:1877-88. 80. Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2011;35:715-28. 81. Galna B, Lord S, Burn DJ, Rochester L. Progression of gait dysfunction in incident Parkinson's disease: impact of medication and phenotype. Mov Disord. 2015;30:359-367. 82. Morris R, Lord S, Lawson RA, Coleman S, Galna B, Duncan GW, et al. Gait rather than cognition predicts decline in specific cognitive domains in early Parkinson's disease. J Gerontol A Biol Sci Med Sci. 2017;72:1656-1662. 83. Brach JS, Studenski S, Perera S, VanSwearingen JM, Newman AB. Stance time and step width variability have unique contributing impairments in older persons. Gait Posture. 2008;27:431-9. 84. Hausdorff JM, Mitchell SL, Firtion R, Peng CK, Cudkowicz ME, Wei JY, et al. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. J Appl Physiol. 1997;82:262-9. 85. Maki BE. Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc. 1997;45:313-20. 86. Ma L, Mi TM, Jia Q, Han C, Chhetri JK, Chan P. Gait variability is sensitive to detect Parkinson's disease patients at high fall risk. Int J Neurosci. 2020:1-13. 87. Horváth K, Aschermann Z, Ács P, Deli G, Janszky J, Komoly S, et al. Minimal clinically important difference on the Motor Examination part of MDS-UPDRS. Parkinsonism Relat Disord. 2015;21:1421-6. 88. Lim LI, van Wegen EE, de Goede CJ, Jones D, Rochester L, Hetherington V, et al. Measuring gait and gait-related activities in Parkinson's patients own home environment: a reliability, responsiveness and feasibility study. Parkinsonism Relat Disord. 2005;11:19-24. 89. Russell MA, Hill KD, Blackberry I, Day LM, Dharmage SC. The reliability and predictive accuracy of the falls risk for older people in the community assessment (FROP-Com) tool. Age Ageing. 2008;37:634-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84779-
dc.description.abstract研究背景與目的:雙重作業行走為行走時同時進行另一項動作或認知作業,是維持日常生活的重要功能。雙重作業行走能力下降與跌倒風險增加息息相關。巴金森輕度認知障礙患者行走能力受損伴隨認知功能下降,因此相較於認知功能正常的巴金森患者,有更嚴重的雙重作業行走困難。雙重作業行走訓練為改善老化與神經疾病患者雙重作業行走困難的有效方法之一,但巴金森輕度認知障礙患者由於認知功能下降,可能造成雙重作業行走訓練成效下降。考量大腦注意力資源與認知功能的限制,雙重作業訓練模式對巴金森輕度認知障礙患者而言,可能非改善雙重作業行走控制的最佳訓練方式。因此,本研究目的為探討雙重作業模式與單一作業模式之姿勢-認知訓練,何者更能有效促進巴金森輕度認知障礙患者的雙重作業行走表現,並配合腦波分析,探討不同訓練模式對大腦可塑性的影響。 研究方法:本研究共22名巴金森輕度認知障礙患者完成評估測試,雙重作業模式組與單一作業模式組各11人。受試者接受每週2次、總共6週的姿勢-認知訓練。訓練時,雙重作業模式組需同時執行平衡、行走作業與認知作業,單一作業模式組則分開執行兩項作業。本研究於訓練前、訓練後、後測結束8週後進行雙重作業行走評估。評估項目包含雙重作業步態參數、上姿勢作業表現、腦波各頻帶相對強度(delta (1-4 Hz)、theta (4-8 Hz)、alpha (8-12 Hz)、beta (12-30 Hz)、low gamma (30-50 Hz))、以及臨床量表分數。另外,本研究評估受試者自參與實驗第一週起,連續20週的跌倒發生次數。 結果:在進行六週姿勢-認知訓練之後,雙重作業模式組與單一作業模式組在單一作業行走、動作雙重作業行走、以及認知雙重作業行走情境時的行走速度與步長皆顯著增加。然而,僅有單一作業模式組在三種行走情境下,步幅時間變異性皆顯著下降。在腦波頻帶相對強度變化上,單一作業模式組在三種行走情境下theta 頻帶強度上升,而雙重作業模式組僅於額葉區呈現theta頻帶上升。於單一作業行走與動作雙重作業行走情境時,僅有單一作業模式組呈現beta頻帶上升以及delta頻帶下降。臨床量表評估顯示,雙重作業模式組與單一作業模式組經訓練後,巴金森病綜合評量表第三部分以及福康量表分數降低、伯格式平衡量表分數增加。另外,兩組於巴金森病綜合評量表第三部分以及福康量表之進步皆可延續至追蹤測試。 重要性與預估貢獻:本研究探討不同作業模式之姿勢-認知訓練對於雙重作業行走表現及大腦神經可塑性的影響。研究顯示雖然雙重作業、單一作業訓練模式皆能促進雙重作業行走速度與步長,但單一作業訓練模式對降低步幅時間變異性的效果更加顯著。另外,相較於雙重作業模式組,單一作業模式組經訓練後可以較少大腦注意力資源達到較佳的行走控制。考量巴金森輕度認知障礙患者大腦注意力資源之限制,於臨床上建議以單一作業模式進行姿勢-認知訓練,可有效改善患者的雙重作業行走控制,進而降低患者潛在的跌倒風險。zh_TW
dc.description.abstractBackground and Purpose: Dual-task walking indicates walking and performing a concurrent motor/cognitive task, which is a critical ability in daily life. Decreased dual-task walking control is associated with high risk of falling. Due to more impaired gait control and cognitive function, patients affected by Parkinson’s disease (PD) with mild cognitive impairment (MCI) often have more severe dual-task walking deficits than PD patients without MCI. Dual-task walking paradigm has been proved as an effective treatment to improve dual-task walking control in patients with PD. However, the benefits of dual-task walking training may be affected by the cognitive function of patients with PD. Due to insufficient brain attentional resources and cognitive function, dual-task paradigm may be not the optimal model to improve dual-task walking ability in patients with PD-MCI. Therefore, this study aimed to investigate the effects of integrated and consecutive postural-cognitive training on dual-task walking and related brain activity in patients with PD-MCI. Methods: Twenty-two patients with PD-MCI were randomly allocated to the integrated training group or the consecutive training group. All participants completed a 6-week postural-cognitive training, with 2 training sessions per week. In training sessions, the integrated training group were trained with dual-task paradigms by performing a postural task and a cognitive task simultaneously, while the consecutive training group performed a postural task and a cognitive task separately. Walking assessments (e.g. single-task walking, motor dual-task walking, and cognitive dual-task walking) with electroencephalogram (EEG) recordings and clinical evaluations were conducted at baseline (pre-test), after training (post-test), and 8 weeks after post-test (follow-up test). The EEG relative power was calculated in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and low gamma band (30-50 Hz). Clinical evaluations included the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III, Berg Balance Scale (BBS), Falls Risk for Older People Community setting (FROP-Com), and the falling events recorded for 20 consecutive weeks from the first week of the experiment. Results: Both consecutive and integrated training groups increased gait velocity and step length in single-task walking, motor dual-task walking, and cognitive dual-task walking after a 6-week postural-cognitive training. However, only the consecutive training group showed smaller stride time variability in the three walking conditions. Theta power generally decreased in the consecutive training group at post-test, while the theta power increased at frontal area for all walking conditions in the integrated training group. In addition, increased beta power and decreased delta power at post-test for single-task walking and motor dual-task walking conditions were observed only in the consecutive training group. In terms of clinical evaluations, both consecutive and integrated training groups showed increased scores of BBS and reduced scores of MDS-UPDRS Part III and FROP-Com after intervention. Moreover, the improvements of MDS-UPDRS Part III and FROP-Com maintained to follow-up test for both groups. Significance and Contribution: This study investigated the effects of integrated and consecutive postural-cognitive training on dual-task walking performance and the related neural plasticity. Although both integrated and consecutive postural-cognitive training could improve walking performance in patients with PD-MCI, consecutive paradigm led to superior training effect on gait variability in single-task and motor dual-task walking conditions. Besides, the consecutive training group might need less attentional resources for gait control and had higher motor flexibility after training. Therefore, we suggest that consecutive postural-cognitive training model is a more appropriate strategy to enhance gait control for PD-MCI in clinical practice.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:25:15Z (GMT). No. of bitstreams: 1
U0001-3108202216105300.pdf: 1565741 bytes, checksum: 7b85a1cff0d6f1773cdcc027b7a10ba4 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書----------------------------------------------------------- i 誌謝-------------------------------------------------------------------- ii 摘要-------------------------------------------------------------------- iii Abstract---------------------------------------------------------------- v Contents---------------------------------------------------------------- viii Chapter 1. Introduction------------------------------------------------- 1 1.1 Overview of Parkinson’s Disease with Mild Cognitive Impairment-- 1 1.2 Dual-task Walking Deficits and Related Mechanism in PD-MCI------ 2 1.3 Dual-task Training in Patients with PD or MCI------------------- 5 1.4 Limitations in Previous Studies--------------------------------- 7 1.5 Purposes and Hypotheses----------------------------------------- 9 Chapter 2. Methods------------------------------------------------------ 11 2.1 Participants---------------------------------------------------- 11 2.2 Study Design---------------------------------------------------- 12 2.2.1 Assessment Session--------------------------------------- 12 2.2.2 Intervention Programs------------------------------------ 13 2.3 Instrument and Data Recording----------------------------------- 14 2.4 Data Analysis--------------------------------------------------- 14 2.4.1 Behavioral Data------------------------------------------ 15 2.4.2 Brain Activity Data-------------------------------------- 15 2.5 Statistical Analysis-------------------------------------------- 16 Chapter 3. Results------------------------------------------------------ 17 3.1 Behavioral performance------------------------------------------ 17 3.1.1 Single-task walking------------------------------------- 17 3.1.2 Motor dual-task walking--------------------------------- 18 3.1.3 Cognitive dual-task walking----------------------------- 19 3.1.4 Suprapostural task in sitting position and walking------ 20 3.2 Relative power of EEG------------------------------------------- 21 3.2.1 Single-task walking------------------------------------- 21 3.2.2 Motor dual-task walking--------------------------------- 22 3.2.3 Cognitive dual-task walking----------------------------- 24 3.3 Clinical evaluations-------------------------------------------- 25 3.4 Falling events-------------------------------------------------- 26 Chapter 4. Discussion--------------------------------------------------- 27 4.1 Training effects on walking performance and related changes in brain activity----------------------------------------------- 27 4.2 Difference in improvements between single-task and dual-task walking conditions---------------------------------------------- 30 4.3 Improvement on clinical evaluations after training-------------- 32 4.4 Study limitations and methodology concerns---------------------- 34 Chapter 5. Conclusion--------------------------------------------------- 36 Tables------------------------------------------------------------------ 37 Figures----------------------------------------------------------------- 46 References-------------------------------------------------------------- 78
dc.language.isoen
dc.title雙重作業與單一作業模式之姿勢-認知訓練對巴金森輕度認知障礙患者於雙重作業行走表現及大腦活動的影響zh_TW
dc.titleThe Effects of Integrated and Consecutive Postural-Cognitive Training on Dual-task Walking and Related Brain Activity in Parkinson’s Disease with Mild Cognitive Impairmenten
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞美(Ruey-Meei Wu),周立偉(Li-Wei Chou),李亞芸(Ya-Yun Lee)
dc.subject.keyword雙重作業行走訓練,巴金森氏症,輕度認知障礙,腦波圖,zh_TW
dc.subject.keywordDual-task walking training,Parkinson’s disease,Mild cognitive impairment,Electroencephalography,en
dc.relation.page88
dc.identifier.doi10.6342/NTU202203030
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
dc.date.embargo-lift2025-08-31-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
U0001-3108202216105300.pdf
  目前未授權公開取用
1.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved