請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84768完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王翰聰(Han-Tsung Wang) | |
| dc.contributor.author | You-Jing Wu | en |
| dc.contributor.author | 吳宥靚 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:24:42Z | - |
| dc.date.copyright | 2022-09-07 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-02 | |
| dc.identifier.citation | 何基瑋。2020。 圈養食葉性哺乳類動物腸道健康監控及糞源乳酸菌篩選之研究。 臺灣大學動物科學技術學研究所學位論文。 A.O.A.C. 2020. Officail methods of analysis, 21st edition. Association of Official Analytical Chemistry. Arlington, VA. Alfano, N., A. Courtiol, H. Vielgrader, P. Timms, A. L. Roca and A. D. Greenwood. 2015. Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Sci. Rep. 5:10189. doi: 10.1038P./srep10189. Amato, K. R., C. J. Yeoman, A. Kent, N. Righini, F. Carbonero, A. Estrada, H. R. Gaskins, R. M. Stumpf, S. Yildirim, M. Torralba and M. Gillis. 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7:1344–1353. doi: 10.1038/ismej.2013.16. Argenzio, R.A. and M. Southworth. 1974. Sites of organic acid production and absorption in the gastrointestinal tract of the pig. Am J Physiol. 228:454-460. Argenzio, R.A., M. Southworth and C.E. Stevens. 1974. Sites of organic acid production and absorption in the equine gastrointestinal tract. Am J Physiol 226:1043-1050. Barelli, C., D. Albanese, C. Donati, M. Pindo, C. Dallago, F. Rovero, D. Cavalieri, K. M. Tuohy, H. C. Hauffe and C. De Filippo. 2015. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Sci. Rep. 5(14862):14862. doi: 10.1038/srep14862. Barker, C. J., A. Gillett, A. Polkinghorne and P. Timms. 2013. Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing. Vet Microbiol. 167(3–4):554–564. doi: 10.1016/j.vetmic.2013.08.025. Barron, P. H. J. and D. M. Gordon. 2016. Effects of dispersal limitation in the face of intense selection via dietary intervention on the faecal microbiota of rats. Environ Microbiol Rep. 8:187–95. Blyton, M. D. J., R. M. Soo, D. Whisson, K. J. Marsh, J. Pascoe, M. L. Pla, W. Foley, P. Hugenholtz and B. D. Moore. 2019. Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala. Anim microbiome. 1:6 https://doi.org/10.1186/s42523-019-0008-0 Brice, K. 2017. Bugs in “bears” are mismatches between diets and gut microbial communities a bugbear for koalas (Phascolarctos cinereus)? Western Sydney University, Hawkesbury Institute for the Environment. Brice, K. L., P. Trivedi, T. C. Jeffries, M. Blyton, C.Mitchell, B. K. Singh, and B. D. Moore. 2019. The Koala (Phascolarctos cinereus) faecal microbiome differs with diet in a wild population. PeerJ, 7, e6534. doi:0.7717/peerj.6534. Brooker, M. I. H. and D. A. Kleinig. 2006. Field Guide to Eucalyptus. Vol.1. South-eastern Australia. Third edition. Bloomings; Melbourne, Australia. Shipley LA, Chilcott, M. J. 1982. The nutrition and digestive physiology of the ringtail possum (Pseudocheirus peregrinus, Boddaert). M.Sc. thesis, University of New England, Armidale, NSW, Australia. Clarke, S. F., E. F. Murphy, K. Nilaweera, P. R. Ross, F. Shanahan, P. W. O’Toole and P. D. Cotter. 2012. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes. 3(3):186–202. doi: 10.4161/gmic.20168. Cork, S. J. and A. Warner. 1983. The passage of digesta markers through the gut of a folivorous marsupial, the koala Phascolarctos cinereus. J Comp Physiol. 152(1):43–51. doi: 10.1007/BF00689726. Cork, S. J., I. Hume and T. Dawson. 1983. Digestion and metabolism of a natural foliar diet (Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cinereus). J Comp Physiol. 153:181–90. Cork, S. J. and I. D. Hume. 1983. Microbial digestion in the koala (Phascolarctos cinereus, Marsupialia), an arboreal folivore. J Comp Physiol B 152:131–135. DOI:10.1007/BF00689737 Cork, S.J. and I.D. Hume. 1978. Volatile fatty acid production rates in the caecum of the greater glider. Bull Aust Mammal Soc. 5:24-25. Dai, X., M. Han, Q. Liu, G. Shang, Y. Baofa, A. Wang, B. Dean, W. Wei and Y. Sheng-Mei. 2014. Seasonal changes in the concentrations of plant secondary metabolites and their effects on food selection by Microtus oeconomus. Mamm. Biol. 79(3). doi:10.1016/j.mambio.2014.01.002. David, L. A., C. F. Maurice, R. N. Carmody, D. B. Gootenberg, J. E. Button, B. E. Wolfe, A. V. Ling, A. S. Devlin, Y. Varma, M. A. Fischbach and S. B. Biddinger. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559–563. doi: 10.1038/nature12820. DeGabriel, J. L., B. D. Moore, L. A. Shipley, A. K. Krockenberger, I. R. Wallis, C. N. Johnson and W. J. Foley. 2009b. Inter-population differences in the tolerance of a marsupial folivore to plant secondary metabolites. Oecologia. 161(3):539–548. doi: 10.1007/s00442-009-1407-9. Degabriel, J. L., B. D. Moore, W. J. Foley and C. N. Johnson. 2009. The effects of plant defensive chemistry on nutrient availability predict reproductive success in amammal. Ecology. 90:711–719. Degabriele, R. and T. Dawson. 1979.Metabolism and heat balance in an arboreal marsupial, the koala (Phascolarctos cinereus). J. Comp. Physiol. B. 134:293–301 Demas, G. E., V. Chefer, M. I. Talan and R. J. Nelson. 1997. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 273:R1631–R1637 Dill-McFarland, K. A., P. J. Weimer, J. N. Pauli, M. Z. Peery and G. Suen. 2016. Diet specialization selects for an unusual and simplified gut microbiota in two- and three-toed sloths. Environ. Microbiol. 18(5):1391–1402. Ebel, J. and K. Hahlbrock 1982. The Flavonoids: Advances in Research. Chapman and Hall, London. 641–679 Eberhard, I.H. 1978. Ecology of the koala, Phascolarctos cinereus (Goldfuss) Marsupialia: Phascolarctidae, in Australia. The ecology of arboreal folivores. Washington, DC: Smithsonian Institution Press. 315–327. Ellis, W. A. H., A. Melzer, F. N. Carrick and M. Hasegawa. 2002. Tree use, diet and home range of the koala (Phascolarctos cinereus) at Blair Athol, central Queensland. Wildl Res. 29:303–311. Ellis, W., A. Melzer, I. Clifton, and F. Carrick. 2010. Climate change and the koala Phascolarctos cinereus: water and energy. Aust. Zool. 35, 369-337. Evans, E. and D. S. Miller. 1968. Comparative nutrition, growth and longevity. Proc. Nutr. Soc. 27:121–129.https://doi.org/10.1079/PNS19680036 Faichney, G.J. 1969. Production of volatile fatty acids in the sheep caecum. Aust J Agric Res. 20:491-498 Farrell, D. J. and K.A. Johnson. 1970. Utilization of cellulose by pigs and its effects on caecal function. Anita Prod. 14:209-217. Feeny, P. 1976. Plant apparency and chemical defense. Biological Interactions Between Plants and Insects. Recent Adv. Phytochem. 10:1–40. Feeny, P. P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581. Foley, W. J. and S. J. Cork . 1992. Use of fibrous diets by small herbivores: how far can the rules be ‘bent’? Trends Ecol. Evol. 7(5):159–162. doi: 10.1016/0169-5347(92)90210-3. Foley, W. J., E. V. Lassak and J. Brophy. 1987. Digestion and absorption of Eucalytpus essential oils in greater glider (Petauroides volans) and brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 13(11):2115–2130. doi:10.1007/BF01012875. Forbey, J. S. and B. D. Moore. 2009. Revisiting the dietary niche: when is a mammalian herbivore a specialist? Integr. Comp. Biol. 49(3):274–290. doi: 10.1093/icb/icp051. George, G.G. 1977. Food preference of koalas at Healesville. Bull Zoo Manag 8:30–33. Glinsky, M. J., R. M. Smith, H. R. Spires and C. L. Davis. 1976. Measurement of volatile fatty acid production rates in the cecum of the pony. J Anim Sci. 42:1469-1470. Green, M. J. B. 1985. Aspects of the ecology of the. Himalayan musk deer. Ph.D. Thesis, Univ. Cam- bridge, Cambridge, U.K. 280pp. Gras, E. K., R. Jennifer, T. M. Chantal, S. Gordon, J. C. Fiona. 2005. Herbivore damage, resource richness and putative defences in juvenile versus adult Eucalyptus leaves. Aust. J. Bot. 53(1):33-44. DOI: 10.1071/BT040494 Hagerman, A. E., C. T. Robbins and T. C. Willson. 1992. Tannin chemistry in relation to digestion. J. Range Manage. 45: 57–62 Harrop, C. J. F. and R. Degabriele. 1976. Digestion and nitrogen metabolism in the koala Phascolarctos cinereus. Aust J Zool. 24:201-215. Higgins, A. L., F. B. Bercovitch., J. R. Tobey. And C. H. Andrus. 2011. Dietary specialization and Eucalyptus species preferences in Queensland koalas (Phascolarctos cinereus). Zoo biology. 30(1):52-58. DOI: 10.1002/zoo.20312. Hill, W.C.O. and R.E. Rewell. 1954. The caecum of monotremes and marsupials. Trans Zool Soc (Lond). 28:185-240. Hindell, M. A. and A, K. Lee. 1990. Tree preferences of the koala. Biology of the koala. Chipping Norton, NSW: Surrey Beatty and Sons. 117–121. Hindell, M. A., K. A. Handasyde and A. K. Lee. 1985. Tree species selection by free-ranging koala populations in Victoria. Aust Wildl Res. 12:137–144. Hoover, W. H. and R. N. Heitmann. 1972. Effects of dietary fiber levels on weight gain, cecal volume and volatile fatty acid production in rabbits. J Nutr. 102:375-380. Huiying, W., M. Clive and S. Leonie. 2012. The dietary preferences of koalas, Phascolarctos cinereus, in southwest Queensland under wet winter conditions preceded by a severe drought. Aust. Zool. 36 (1): 93–102. https://doi.org/10.7882/AZ.2012.009 Hulbert, A. and T. Dawson. 1974. Thermoregulation in perameloid marsupials from different environments. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 47:591–616. Hume I. D., editor. 2005. Concepts of digestive efficiency. Science Publishers Inc; Enfield NH: 2005. Hume, I. D. 1984. Microbial Fermentation in Herbivorous Marsupials. BioScience, 34(7):435–440. https://doi.org/10.2307/1309633 Hume, I. D. 2002. Digestive strategies of mammals. Acta Zool Sin. 48:1–19. Hume, I. D. and C. Esson. Nutrients, antinutrients and leaf selection by captive koalas (Phascolarctos cinereus). 1993. Aust. J. Zool. 41(4):379–392. doi: 10.1071/ZO9930379. Hume, I.D. 1977. Production of volatile fatty acids in two species of wallaby and in sheep. Comp Biochem Physiol. 56 [A] : 299-304 Hungate, R.E. 1966. The rumen and its microbes. Academic Press, New York Iason, G. R. and A. J. Hester. 1993. The response of heather (Calluna vulgaris) to shade and nutrients predictions of the carbon nutrient balance hypothesis. J. Ecol. 81:75–80. Imoto, S. and S. Namioka. 1978. VFA production in the pig large intestine. J Anita Sci. 47:467-478. Johnson, J.L. and R.H. McBee. 1967. The porcupine cecal fermentation. J Nutr. 9: 540-546. Jones, R. and R. Megarrity. 1986. Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust Vet J. 63:259–62. Kusuda, S., H. Hashikawa, M. Takeda, H. Ito, A. Goto, J. Oguchi and O. Doi. 2013. Season- and age-related reproductive changes based on fecal androgen concentrations in male koalas, Phascolarctos cinereus. J. Reprod. Dev. 59(3): 308-13. doi:10.1262/jrd.2012-188. Knezevic, P., V. Aleksic, N. Simin, E. Svircev, A. Petrovic and N. Mimica-Dukic. 2016. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J. Ethnopharmacol. 178:125–136.doi:10.1016/jjep.2015.12.008. Kohl, K.D., R. B. Weiss, J. Cox, C. Dale, D. M. Denise. 2014d. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecology Letters. 17(10):1238–1246. doi: 10.1111/ele.12329. Koricheva, J. and K. E. Barton. 2012. Temporal changes in plant secondary metabolite production: patterns causes and consequences. The Ecology of Plant Secondary Metabolites: From Genes to Global Processes. Cambridge University Press, Cambridge. Krockenberger, A. K. and I. D. Hume. 2007. A flexible digestive strategy accommodates the nutritional demands of reproduction in a free-living folivore, the Koala (Phascolarctos cinereus). Funct. Ecol. 21:748–756. doi: 10.1111/j.1365-2435.2007.01279x. Lee, A. and R. Martin. 1988. The koala, a natural history. Kensington: New South Wales University Press. Lee, A. K. and F. N. Carrick. 1989. The Phascolarctidae. Chapter 31. Fauna of Australia: mammalia volume 1B. Canberra: Australian Government Publishing Service. p 740–754. Lee, K. A. 2006. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46:1000–1015,https://doi.org/10.1093/icb/icl049 Lichtman, J. S., J. L. Sonnenburg and J. E. Elias. 2015. Monitoring host responses to the gut microbiota. ISME J. 9:1908–1915. doi: 10.1038/ismej.2015.93. London, C. J. 1981. The microflora associated with the caecum of the koala (Phasco- larctos cinereus). M.Sc. thesis, La Trobe University, Melbourne, Victoria, Australia Mackenzie, W.C. 1918. The Gastro-intestinal Tract in Monotremes and Marsupials. Parker, Melbourne Michael J. B. Green. 1987. Diet Composition and Quality in Himalayan Musk Deer Based on Fecal Analysis. J. Wildl. Manag. 51(4): 880-892 Magne, F., M. Gotteland, L. Gauthier, A. Zazueta, S. Pesoa, P. Navarrete, and R. Balamurugan. 2020. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?. Nutrients. 12(5):1474. doi:10.3390/nu12051474 Manh, N.S., M. Wanapat, S. Uriyapongson, P. Khejornsart and V. Chanthakhoun. 2012. Effect of eucalyptus (Camaldulensis) leaf meal powder on rumen fermentation characteristics in cattle fed on rice straw. Afr J Agric Res. 7(13):1997–2003. Marschner, C., M. B. Krockenberger and D. P. Higgins. 2019. Effects of Eucalypt Plant Monoterpenes on Koala (Phascolarctos Cinereus) Cytokine Expression In Vitro. Sci Rep. 9:16545 https://doi.org/10.1038/s41598-019-52713-5 Marsh, K. J., B. Yin, I. P. Singh, I. Saraf, A. Choudhary, J. Au, D. J. Tucker and W. J. Foley. 2015. From leaf metabolome to in vivo testing: identifying antifeedant compounds for ecological studies of marsupial diets. J. Chem. Ecol.41(6):513–519. doi: 10.1007/s10886-015-0589-3. Marsh, K. J., C. Kulheim, S. P. Blomberg, A. H. Thornhill, J. T. Miller, I. R. Wallis, D. Nicolle, J. P. Salminen and W. J. Foley. 2017. Genus-wide variation in foliar polyphenolics in eucalypts. Phytochemistry.144:197–207. doi:10.1016/j.phytochem.2017.09.014. Marsh, K. J., I. R. Wallis and W. J. Foley. 2007. Behavioural contributions to the regulated intake of plant secondary metabolites in koalas. Oecologia 154:283–290. Marsh, K.J., W. J. Foley, A. Cowling and I. R. Wallis. 2003. Differential susceptibility to Eucalyptus secondary compounds explains feeding by the common ringtail (Pseudocheirus peregrinus) and common brushtail possum (Thichosurus vulpecula). J. Comp. Physiol. B 173:69–78. Martin, L. B., A. Scheuerlein and M. Wikelski. 2003.Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc. R. Soc. B: Biol. Sci. 270:153–158. https://doi.org/10.1098/rspb.2002.2185 Martin, R., K. A. Handasyde, S. Simpson and A. Lee. 1999. The koala : natural history, conservation and management. Kensington, N.S.W : UNSW Press Martin, R.W. and K. A. Handasyde. 1999. The koala: natural history, conservation, and management. Malabar, FL: University of New South Wales Press and Krieger Publishing Company. McAlpine, C. A., J. R. Rhodes, J. G. Callaghan, M. E. Bowen, D. Lunney, D. L. Mitchell, D. V. Pullar, H. P. Possingham. 2006. The importance of forest areas and configuration relative to local habitat factors for conserving forest mammals: a case study of koalas in Queensland, Australia. Biol Conserv 132:153–165. McKenzie, R. A. 1978. The caecum of the koala, Phascolarctos cinereus. Light, scan- ning and transmission electron microscopic observations on its epithelium and flora. Aust. J. Zool. 26: 249-256. Moeller, A. H., T. A. Suzuki, M. Phifer-Rixey, M. W. Nachman. 2018. Transmission modes of the mammalian gut microbiota. Science. 362:453–7. Moore, B. D. and W. J. Foley. 2005b Tree use by koalas in a chemically complex landscape. Nature. 435:488–490. doi: 10.1038/nature03551. Moore, B. D., I. R. Wallis, J. Palá-Paúl, J. J. Brophy, R. H. Willis and W. J. Foley. 2004b. Antiherbivore chemistry of Eucalyptus cues and deterrents for marsupial folivores. J. Chem. Ecol. 30(9):1743–1769. doi:10.1023/B:JOEC.0000042399.06553.c6. Moore, B. D., I. R. Wallis, J. T. Wood and W. J. Foley. 2004c. Foliar nutrition, site quality, and temperature influence foliar chemistry of tallowood (Eucalyptus microcorys) Ecol. Monogr.4(4):553–568. doi: 10.1890/03-4038. Moore, B. D., I. R. Wallis, K. J. Marsh and W. J. Foley. 2004a. The role of nutrition in the conservation of the marsupial folivores of eucalypt forests. Royal Zoological Society of New South Wales; Mosman. Moore, B.D. and W. J. Foley. 2000. A review of feeding and diet selection in koalas (Phascolarctos cinereus). Aust J Zool. 48:317–333. Moore, B.D., I. R. Wallis, K. J. Marsh, W. J. Foley. 2004. The role of nutrition in the conservation of the marsupial folivores of eucalypt forests. Conservation of Australia's forest fauna, 2nd ed. Mosman: Royal Zoological Society of New South Wales. p 549–575. Osawa, R., W. Blanshard and P. Ocallaghan. 1993. Microbiological studies of the intestinal microflora of the koala, Phascolarctos-cinereus. 2. Pap, a special maternal feces consumed by juvenile koalas. Aust J Zool. 41:611–20. Pahl, L. I. and I. D. Hume. 1990. Preferences for Eucalyptus species of the New England Tablelands and initial development of an artificial diet for koalas. Biology of the koala. Chipping Norton, NSW: Surrey Beatty and Sons. 123–128. Parker, D.S. and R.T. McMillan. 1976. The determination of volatile fatty acids in the caecum of the conscious rabbit. Br J Nutr. 35:365-371. Parra, R. 1978. Comparison of foregut and hindgut fermentation in herbivores. GG Montgomery, ed. The ecology of arboreal folivores. Smithsonian Institution Press, Washington, DC. 205-229. Phillips, S. and J. Callaghan. 2000. Tree species preferences of koalas (Phascolarctos cinereus) in the Campbelltown area south-west of Sydney, New South Wales. Wildl Res. 27:509–516. Provenza, F. D. 2006. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. Journal of Range Management. 48(1):2–17. doi: 10.2307/4002498. Rauw, W. M. 2012.Immune response from a resource allocation perspective. Should we aim for genetic improvement in host resistance or tolerance to infectious disease? 48 Raymond, V., C. Barbehenn and C. Peter. 2011. Tannins in plant–herbivore interactions. Phytochemistry. 72:1551–1565. Robbins, C. T. 1983. Wildlife feeding and nutrition. Academic Press. Robbins, C.T., A. E. Hagerman and P. J. Austin. 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implications. J. Mammal. 72:480–486. Robbins, C.T., S. Mole, A. E. Hagerman and T. A. Hanley. 1987. Role of tannins in defend-ing plants against ruminants: reduction in dry matter digestion? Ecology. 68:1606–1615. Rozema, J., A. Chardonnents, M. Tosserams, R. Hafkenscheid and S.Bruijnzeel. 1997. Leaf thickness and UV-B absorbing pigments of plants in relation to an elevational gradient along the Blue Mountains, Jamaica. Plant Ecol. 128:151–159. Sallam, S. M. A., I. C. S. Bueno, M. E. A. Nasser and A. L. Abdalla. 2010. Effect of eucalyptus (Eucalyptus citriodora) fresh or residue leaves on methane emission in vitro. Ital J Anim Sci. 9:e58. Shiffman, M. E., R. M. Soo, P. G. Dennis, M. Morrison, G. W. Tyson and P. Hugenholtz. 2017. Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for Eucalyptus digestion. PeerJ. 5:e4075.doi:10.7717/peerj.4075. Smith, C. C., L. K. Snowberg, J. G. Caporaso, R. Knight, D. I. Bolnick. 2015. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9:2515. Snipes, R. L., H. Snipes and F. N. Carrick. 1993. Surface enlargement in the large-intestine of the Koala (Phascolarctos cinereus)-morphometric parameters. Aust. J. Zool. 41(4):393–397. doi: 10.1071/ZO9930393. Soni, U., S. Brar and V. Gauttam. 2015. Effect of seasonal variation on secondary metabolites of medicinal plants. Int J Pharm Sci Res. 6:3654-3662. Stearns, J. C., M. D. Lynch, D. B. Senadheera, H. C. Tenenbaum, M. B. Goldberg, D. G. Cvitkovitch, K. Croitoru , G. Moreno-Hagelsieb and J. D. Neufeld. 2011. Bacterial biogeography of the human digestive tract. Sci. Rep. 1:170. Stevens, C.E. and B. K. Stettler. 1966. Transport of fatty acid mixtures across rumen epithelium. Am J Physiot. 211:R264-271 Sun, Y., X. Cai, J. Cao, Z. Wu and D. Pan. 2018. Effects of 1, 8-cineole on carbohydrate metabolism related cell structure changes of Salmonella. Front. Microbiol 9:1078. doi: 10.3389/fmicb.2018.01078. Swain, T.. 1979. Tannins and lignins. Herbi-vores: Their Interaction with Secondary Plant Metabolites. Academic Press, NewYork, pp. 657–682. Scoma, A., W. C. Khor, M. Coma, R. Heyer, R. Props, J.Schoelynck, T. Bouts, D. Benndorf, D. Li, H. Zhang, and K. Rabaey. 2020. Substrate-Dependent Fermentation of Bamboo in Giant Panda Gut Microbiomes: Leaf Primarily to Ethanol and Pith to Lactate. Front Microbiol. 11:530. doi:10.3389/fmicb.2020.00530 Thao, N.T., M. Wanapat., S. Kang. and A. Cherdthong. 2015. Effects of Supplementation of Eucalyptus (E. Camaldulensis) Leaf Meal on Feed Intake and Rumen Fermentation Efficiency in Swamp Buffaloes. Asian-Australas J Anim Sci. 28(7):951-957. doi:10.5713/ajas.14.0878 Tucker, G., A. Melzer and W. Ellis. 2007. The development of habitat selection by subadult koalas. Aust J Zool. 55:285–289. Tupans, I., B. Jones, R. A. McKinnon. 2001. Xenobiotic metabolism in Australian marsupials. Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol.128(3):367–376. doi: 10.1016/S1532-0456(00)00211-8. Turnbaugh, P. J., M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan, R. E. Ley, M. L. Sogin, W. J. Jones, B. A. Roe, J. P. Affourtit and M. Egholm. 2009a. A core gut microbiome in obese and lean twins. Nature. 457:480–U487. doi:10.1038/nature07540. Tyndale-Biscoe, Hugh. & CSIRO Publishing. 2005. Life of marsupials. Collingwood, Vic : CSIRO Publishing Ullrey, D.E., P.T. Robinson and P.A. Whetter. 1981. Composition of preferred and rejected Eucalyptus browse offered to captive koalas, Phascolarctos cinereus (Marsupialia). Aust J Zool. 29:839–846. Utsumia, S. A., A. F. Cibilsa, R. E. Estellb, S. A. Soto-Navarroa, D. V. Leeuwenc. 2009. Seasonal changes in one seed juniper intake by sheep and goats in relation to dietary protein and plant secondary metabolites. Small Rumin. Res. 81:152–162. Viney, M. E., E. M. Riley and K. L. Buchanan. 2005.Optimal immune responses:immunocompetence revisited. Trends Ecol. Evol. 20:665–669 Wallis, I.R., M. L. Watson and W. J. Foley. 2002. Secondary metabolites in Eucalyptus melliodora: field distribution and laboratory feeding choices by a generalist herbivore, the common brushtail possum. Aust. J. Zool. 50:507–519. Williams, B.A., M.W. Bosch, H. Boer, M.W. Verstegen and S. Tamminga. 2005. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 123-124:445-462. Wiggins, N. L., K. J. Marsh, I. R. Wallis, W. J. Foley, C. McArthur. 2006. Sideroxylonal in Eucalyptus foliage influences foraging behaviour of an arboreal folivore. Oecologia. Mar.147(2):272-9. doi: 10.1007/s00442-005-0268-0. Zoidis, A. M. and H. Markowitz. 1992. Findings from a feeding study of the koala (Phascolarctos cinereus) at the San Francisco Zoo. Zoo Biol. 11:417–431. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84768 | - |
| dc.description.abstract | 本研究以臺北市立動物園圈養之無尾熊研究對象,探討一年四季所採食之桉樹葉成分的變化,對無尾熊採食偏好與其糞便菌相的影響。透過菌相的監測並以體外模式模擬無尾熊的後腸發酵,以了解無尾熊的腸道發酵特性狀況。 第一部分試驗採用6公6母共12隻無尾熊,採集一年度內(2021年5月至2022年3月)四個季節的各種新鮮桉樹葉,記錄無尾熊的採食評分並進行各桉樹葉之成分分析,同時進行無尾熊糞便菌相與發酵能力評估。成分分析的結果顯示,主食桉中的大葉桉(Eucalyptus.robusta)、細葉桉(E.tereticornis)、赤桉(E. camaldulensis)、脂桉(E.microcorys)與副食桉中的樹膠桉(E.viminalis)與白桉(E.alba)的採食評分及化學組成,在涼季暖季之間有顯著差異(p<0.05),在涼、暖季呈現不同的特性。但副食桉中的檸檬桉(E.citriodora)、小果灰桉(E.microcarpa)、斑桉(E.punctata)與玫瑰桉(E.rhodantha),於四季間成分變動性不大,且無尾熊並沒有在任何季節特別偏好此四種桉樹葉。雄性無尾熊偏好夏季的大葉桉與廣葉桉(E.amplifolia),秋季的大葉桉、脂桉、白桉,冬季的細葉桉、白桉。雌性無尾熊偏好夏季的大葉桉,秋季的細葉桉與樹膠桉。雄性無尾熊對同種桉樹葉在不同季節間的偏好性比起雌性來得較明顯。夏季的大葉桉與廣葉桉、秋季的樹膠桉與冬季細葉桉、白桉為無尾熊顯著偏好的五種葉子,分析桉樹葉中之水分、中洗纖維(Neutral detergent fiber,NDF)、粗蛋白(Crude protein,CP)、總酚(Total phenols,TP)、單寧酸(Tannic acid,TA)與可溶性碳水化合物(Water soluble carbohydrates,WSC)等成分後,採食營養成分如CP、WSC顯著較高者,無尾熊的採食評分也顯著較高,但抗營養因子TP、TA卻不一定較低,而在無尾熊不偏好的葉子如夏季的脂桉,出現WSC高但TP、TA卻低的現象,可見無尾熊偏好的葉子並不一定同時符合高營養成分且低抗營養因子的條件。 糞便細菌計數的結果顯示,各種細菌的比例在雄性與雌性無尾熊之間並無顯著差異,一年四季中無尾熊糞便菌相整體而言都是穩定的。年齡與性別也影響也不大,菌相的變化趨勢不如成分分析在涼季、暖季變換時有顯著的分別,即使葉片組成分有差異,無尾熊可能仍可透過靈活的採食策略來使腸道的環境維持穩定。 第二部分試驗以體外模式模擬無尾熊後腸發酵,分析後腸發酵特性並對照新鮮糞便中揮發性脂肪酸的組成。體外發酵的揮發性脂肪酸分析結果顯示,乳酸的比例在夏季顯著高於冬季,乙酸是冬季顯著高於夏季,丙酸是冬季顯著高於夏季與秋季,丁酸則是在秋季顯著高於冬季與春季。而揮發性脂肪酸結果也發現涼季與暖季呈現不同的特徵。雖然四季之間比例有些浮動,但是[乳酸+乙酸]與[丙酸+丁酸]的比例大致介於7:3至6:4,發酵狀況維持穩定。糞便揮發性脂肪酸分析結果顯示,性別與季節的不同不影響揮發性脂肪酸的組成,無尾熊即使在季節間對於桉樹葉產生不同的採食偏好,腸道發酵的環境還是能保持穩定。 綜上所述,無尾熊在四季的採食選擇的因素不同,而不同性別間選擇標準也不同,雖然無尾熊對於葉子的選擇標準不一,從發酵產物的角度來看,無尾熊可能透過其適應力能在面對眾多品種桉樹葉之下,權衡營養攝取與次級代謝物的危害,穩定其腸道菌相以及後腸發酵產生的揮發性脂肪酸的比例。 | zh_TW |
| dc.description.abstract | This study attempted to investigate the effects of variation in the composition of eucalyptus leaves throughout the year on the intake preferences and fecal flora. The flora assay and in vitro intestinal fermentation simulation were applied to evaluate the fermentation characteristics and of the koalas. In the first part of the experiment, twelve koalas (six males and six females) were involved in the experiment. Over the four seasons, fresh eucalyptus leaves were collected and analyzed.Dietary scores of koalas were recorded, the fecal flora and fermentation ability were examinated.The results showed significant differences (p<0.05) in dietary scores and chemical composition between the cool (winter and spring) and warm (summer and autumn) seasons for the main intake eucalyptus species (E.robusta, E.tereticornis, E.camaldulensis and E.microcorys) and two of subordinary intake species (E.viminalis and E.alba). However the other four subordinary intake species(E. microcarpa, E. citriodora, E. punctata, E. rhodantha) had no significant differences whether in dietary scores or chemical composition among four seasons. Male koalas preferred to intake E. robusta and E. amplifolia in summer, E.robusta, E.microcorys and E. alba in autumn, E.tereticornis and E.alba in winter. Female koalas preferred to intake E. robusta in summer, and E.tereticornis and E.viminalis in autumn. Males exhibited a greater preference for the same species of eucalyptus leaves between seasons than females. The chemical composition of five preferring intake eucalyptus species included E. robusta and E. amplifolia in summer, E. viminalis in autumn, E. tereticornis and E. alba in winter were assayed. The assay results of water content, neutral detergent fiber (NDF), crude protein (CP), total phenols (TP), tannic acid (TA), water soluble carbohydrates (WSC) indicated that the leaves preferred by koalas were not necessarily higher in nutrients (CP, WSC) and lower in anti-nutritional factors (NDF, TP, TA). Fecal bacteria count result showed no significant differences in the ratios of different types of microbe between whether genders or ages. Although eucalyptus leaves' composition varies from cool to warm season, the stable microflora indicated that koalas adopt a flexible dietary strategy to maintain a stable intestinal environment. In the second part of the experiment, in vitro hindgut fermentation was applied to simulate hindgut fermentation of koalas for fermentation characteristics evaluation and comparing the composition of VFAs in fresh feces. Results of in vitro fermentation showed different characteristics between the cool and warm seasons, the proportion of lactate was significantly higher in summer than in winter, acetate was significantly higher in winter than in summer, propionate was significantly higher in winter than in summer and autumn, and butyrate was significantly higher in autumn than in winter and spring. However, the ratio of [lactic acid + acetic acid] to [propionic acid + butyric acid] maintains a steady state varying from 7:3 to 6:4. Coupled with the results of fresh fecal VFA composition that showed no significant differences between whether genders or ages, while there are preferences for various species of eucalyptus leaves, the environment for intestinal fermentation is still stabilized. Although the selection criteria of eucalyptus leave varied among the four seasons, the strong adaptability of eucalyptus koalas was able to balance nutritional intake with the risk of secondary metabolites and stabilize their intestinal microflora and the proportion of volatile fatty acids produced by hindgut fermentation in the face of many species of eucalyptus leaves. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:24:42Z (GMT). No. of bitstreams: 1 U0001-3108202215481200.pdf: 3527012 bytes, checksum: 5cfb07e7e5386618609826d7b196bc3f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 摘要 i Abstract iii 目錄 v 圖次 viii 表次 ix 前言 1 壹、 文獻檢討 3 一、 無尾熊背景介紹 3 (一) 無尾熊的食性 3 (二) 無尾熊的採食偏好 3 (三) 影響無尾熊採食偏好的因素 4 (四) 無尾熊的消化生理 5 (五) 腸道微生物與採食偏好的關係 5 二、 桉樹葉背景介紹 7 (一) 桉樹葉特性 7 (二) 桉樹葉成分與植物PSM四季的變化 8 三、 無尾熊對於桉樹葉的生理適應與消化利用 10 (一) 糞便菌相分析腸道微生物組成 10 (二) 無尾熊消化生理上的適應 10 (三) PSM對於無尾熊生理的影響 13 (四) 次級代謝物PSM與腸道微生物的交互作用 14 四、 無尾熊的後腸發酵 15 (一) 體外模擬後腸發酵 15 (二) 無尾熊腸道內VFA 濃度 17 (三) 無尾熊每日VFA總產量與其他哺乳動物之比較 18 貳、 材料與方法 21 一、 試驗設計 21 二、 樣品收集與前處理 22 (一) 桉樹葉樣本收集 22 (二) 桉樹葉採食評分 22 (三) 糞便樣本收集 23 三、 糞便菌相測定 24 (一) 平板培養 24 (二) 測試片培養 24 四、 體外模擬消化與體外發酵 25 (一) 體外消化緩衝液配製 25 (二) 體外發酵糞便接種之厭氧稀釋液 26 (三) 體外模擬消化 29 (四) 糞便接種模擬體外發酵 29 五、 發酵產物揮發性脂肪酸分析 30 (一) 發酵上清液收集 30 (二) 發酵產物分析 30 六、 近似分析 31 (一) 乾物質 31 (二) 粗蛋白質 31 (三) 中洗纖維 33 (四) 水溶性碳水化合物 34 (五) 總酚與總單寧 35 七、 統計分析 37 參、 結果與討論 38 一、 四季桉樹葉成分分析 38 (一) 主食桉四季成分變化與採食評分 39 (二) 副食桉之四季成分變化與採食評分 44 (三) 稀有桉四季成分變化與採食評分 50 (四) 四季中桉樹葉成分之間相關性 52 (五) 主成分分析 55 二、 四季無尾熊菌相變化 62 (一) 依性別分組 62 (二) 依年齡分組 63 (三) 不同性別與不同年齡之比較 65 三、 四季無尾熊糞便成分分析 67 (一) 糞便成分分析 67 (二) 糞便揮發性脂肪酸分析 68 四、 體外發酵產物揮發性脂肪酸分析 70 肆、 結論 74 伍、 參考文獻 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 無尾熊 | zh_TW |
| dc.subject | 桉樹 | zh_TW |
| dc.subject | 採食偏好 | zh_TW |
| dc.subject | 次級代謝物 | zh_TW |
| dc.subject | 揮發性脂肪酸 | zh_TW |
| dc.subject | volatile fatty acid | en |
| dc.subject | dietary preference | en |
| dc.subject | eucalyptus | en |
| dc.subject | secondary metabolite | en |
| dc.subject | koala | en |
| dc.title | 圈養無尾熊採食偏好與腸道發酵特性之評估 | zh_TW |
| dc.title | Dietary preference and evaluation of hindgut fermentation properties in captive koalas | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李一泓(Yi-Hong Li),余珍芳(Jhen-Fang Yu),王怡敏(Yi-Min Wang) | |
| dc.subject.keyword | 無尾熊,桉樹,採食偏好,次級代謝物,揮發性脂肪酸, | zh_TW |
| dc.subject.keyword | koala,eucalyptus,dietary preference,secondary metabolite,volatile fatty acid, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202203025 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-09-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-10-10 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3108202215481200.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
