Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84765
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃光裕(Kuang-Yuh Huang)
dc.contributor.authorYu-Chun Chenen
dc.contributor.author陳宥君zh_TW
dc.date.accessioned2023-03-19T22:24:33Z-
dc.date.copyright2022-09-06
dc.date.issued2022
dc.date.submitted2022-09-02
dc.identifier.citation[1] Olarte, O.E., Andilla, J., Gualda, E.J., and Loza-Alvarez, P., 'Light-sheet microscopy: a tutorial', Advances in Optics and Photonics Vol. 10, No. 1, 2018, pp. 111-179. [2] Siedentopf, H. and R. Zsigmondy, 'Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser', Annalen der Physik Vol. 315, No. 1, 1902, pp. 1-39. [3] Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., and Stelzer, E.H., 'Optical sectioning deep inside live embryos by selective plane illumination microscopy', Science Vol. 305, No. 5686, 2004, pp. 1007-1009. [4] Keller, P.J., Schmidt, A.D., Wittbrodt, J., and Stelzer, E.H., 'Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy', science Vol. 322, No. 5904, 2008, pp. 1065-1069. [5] Huisken, J. and Stainier, D.Y., 'Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM)', Optics letters Vol. 32, No. 17, 2007, pp. 2608-2610. [6] Wu, Y., Ghitani, A., Christensen, R., Santella, A., Du, Z., Rondeau, G., Bao, Z., Colón-Ramos, D., and Shroff, H., 'Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans', Proceedings of the National Academy of Sciences Vol. 108, No. 43, 2011, pp. 17708-17713. [7] Huisken, J. and Stainier, D.Y., 'Selective plane illumination microscopy techniques in developmental biology', 2009. [8] McGloin, D. and Dholakia, K., 'Bessel beams: diffraction in a new light', Contemporary physics Vol. 46, No. 1, 2005, pp. 15-28. [9] 謝婷羽, '衍射光學元件用於輕便光切片顯微鏡術設計',國立臺灣大學醫療器材與醫學影像研究所碩士論文, 2020. [10] Remacha, E., Friedrich, L., Vermot, J., and Fahrbach, F.O., 'How to define and optimize axial resolution in light-sheet microscopy: a simulation-based approach', Biomedical optics express Vol. 11, No. 1, 2020, pp. 8-26. [11] Fahrbach, F.O. and Rohrbach, A., 'Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media', Nature communications Vol. 3, No. 1, 2012, pp. 1-8. [12] Fahrbach, F.O., Gurchenkov, V., Alessandri, K., Nassoy, P., and Rohrbach, A., 'Light-sheet microscopy in thick media using scanned Bessel beams and two-photon fluorescence excitation', Optics express Vol. 21, No. 11, 2013, pp. 13824-13839. [13] Luo, Y., Gelsinger, P.J., Barton, J.K., Barbastathis, G., and Kostuk, R.K., 'Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters', Optics letters Vol. 33, No. 6, 2008, pp. 566-568. [14] Oh, S.B., Lu, Z.Q. J., Tsai, J.C., Chen, H.H., Barbastathis, G., and Luo, Y., 'Phase-coded volume holographic gratings for spatial–spectral imaging filters', Optics Letters Vol. 38, No. 4, 2013, pp. 477-479. [15] Vyas, S., Wang, P.H., and Luo, Y., 'Spatial mode multiplexing using volume holographic gratings', Optics Express Vol. 25, No. 20, 2017, pp. 23726-23737. [16] Hsieh, T.Y., Vyas, S., Wu, J.C., and Luo, Y., 'Volume holographic optical element for light sheet fluorescence microscopy', Optics Letters Vol. 45, No. 23, 2020, pp. 6478-6481. [17] Chen, M.K., Wu, Y., Feng, L., Fan, Q., Lu, M., Xu, T., and Tsai, D.P., 'Principles, functions, and applications of optical meta‐lens', Advanced Optical Materials Vol. 9, No. 4, 2021, pp. 2001414. [18] Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.P., Capasso, F., and Gaburro, Z., 'Light propagation with phase discontinuities: generalized laws of reflection and refraction', science Vol. 334, No. 6054, 2011, pp. 333-337. [19] Luo, Y., Chu, C.H., Vyas, S., Kuo, H.Y., Chia, Y.H., Chen, M.K., Shi, X., Tanaka, T., Misawa, H., and Huang, Y.Y., 'Varifocal metalens for optical sectioning fluorescence microscopy', Nano Letters Vol. 21, No. 12, 2021, pp. 5133-5142. [20] Durnin, J., Miceli Jr, J., and Eberly, J.H., 'Diffraction-free beams', Physical review letters Vol. 58, No. 15, 1987, pp. 1499. [21] Durnin, J., 'Exact solutions for nondiffracting beams. I. The scalar theory', JOSA A Vol. 4, No. 4, 1987, pp. 651-654. [22] Rosales-Guzmán, C. and Forbes, A., How to shape light with spatial light modulators: SPIE Press, 2017. [23] Veniaminov, A., Goncharov, V., and Popov, A., 'Hologram amplification by diffusion destruction of out-of-phase periodic structures', Optics and spectroscopy Vol. 70, No. 4, 1991, pp. 505-508. [24] Luo, Y., Castro, J., Barton, J.K., Kostuk, R.K., and Barbastathis, G., 'Simulations and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems', Optics Express Vol. 18, No. 18, 2010, pp. 19273-19285. [25] Barker Jr, A. and Ilegems, M., 'Infrared lattice vibrations and free-electron dispersion in GaN', Physical Review B Vol. 7, No. 2, 1973, pp. 743. [26] Chen, W.T., Zhu, A.Y., Khorasaninejad, M., Shi, Z., Sanjeev, V., and Capasso, F., 'Immersion meta-lenses at visible wavelengths for nanoscale imaging', Nano letters Vol. 17, No. 5, 2017, pp. 3188-3194. [27] Wavelength chart of fluorescence filter ET609/34 with mCherry https://www.chroma.com/products/parts/et609-34m?fluorochromes=10424
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84765-
dc.description.abstract螢光顯微鏡於生醫領域已廣泛被用於觀察生物樣本,然而傳統螢光顯微鏡缺少深度解析能力,因此很難從厚生物樣本獲得高解析三維影像。為了實現對活體生物樣本的卓越三維成像,需要精細的光學切片、高速圖像採集和低光損傷。近年來各種光學切片技術相繼被提出,共焦顯微術為光學切片能力的黃金標準,利用針孔阻絕失焦平面的資訊,達到優異光學切片能力,然而點掃描的機制限制其成像速率,且具有高光損傷的缺點;結構光照明技術不須橫向掃描,但存在結構光相移誤差的問題;紙片光螢光顯微鏡 (LSFM) 既不需橫向掃描,光損傷也降到最低,因此成為觀測生物發育過程的主要技術。本論文架設兩種基於折射式光學元件的紙片光螢光顯微鏡 (RLSFM),分別為高斯紙片光螢光顯微鏡 (G-LSFM) 與貝索紙片光螢光顯微鏡 (B-LSFM),並針對其性能進行量測與展示。跳脫傳統折射式光學元件,本論文另外使用兩種繞射光學技術開發繞射式紙片光螢光顯微鏡 (DLSFM)。使用體積全相片 (Volume hologram) 取代照明端的多個光學元件,如圓柱透鏡、物鏡、空間光調製器等,體積全相術具有單一繞射、緊湊的尺寸和設計靈活等特性,是商業發展上的趨勢;第二種繞射光學元件為超穎透鏡 (Metalens),使用超穎透鏡作為偵測端的接收物鏡,其奈米等級的尺寸有助於大幅降低偵測端的工作長度。經過實驗證明本論文所架設之RLSFM中,橫向解析度為0.27 μm,而G-LSFM系統與B-LSFM系統分別具有3 μm及5.08 μm的光學切片能力;在設計開發的DLSFM部份,具有3.92 μm光學切片能力及2.46 μm的橫向解析度,能拍出高對比度的影像。為了全面性驗證系統之效能,本論文對秀麗隱桿線蟲進行活體成像,拍攝其卵母細胞與胚胎細胞的生長關係,以及性腺的發育情形。zh_TW
dc.description.abstractFluorescence microscopy is widely utilized in the field of biomedicine to observe biological sample. However, traditional fluorescence microscopy lacks the ability of depth resolution, and it is difficult to obtain high-resolution three-dimensional images from thick biological samples. To achieve superior three-dimensional (3D) imaging of living biological samples, the main requirements are fine optical sectioning, high-speed image acquisition, and low photo-damage. In recent years, various optical sectioning techniques have been proposed, among them Confocal microscopy is considered the gold standard. It uses a pinhole to remove out-of-focus information and achieves excellent optical sectioning capability. However, due to the point-by-point scanning mechanism, it sacrifices the acquisition rate and leads to high photo-bleaching. Structured light illumination doesn't require lateral scanning, but it faces problems of phase difference error between structured illumination images. Light sheet fluorescence microscopy (LSFM) doesn’t require lateral scanning. In addition, it produces minimal photo-damage, which makes it suitable for observing biological development processes. In the theses, we present two light sheet fluorescence microscopy systems and characterize their imaging performance. Based on refractive optical elements (RLSFM), a Gaussian light sheet fluorescence microscopy (G-LSFM) and a Bessel light sheet fluorescence microscopy (B-LSFM) have been developed and are utilized for biological imaging. Without the traditional refractive optical elements, the thesis presents two diffractive optical techniques to develop a diffractive light sheet fluorescence microscopy (DLSFM). In the illumination part, a volume hologram has been used to replace optical elements such as a cylindrical lens, an objective lens, and a special light modulator to make a compact illumination geometry. Volume hologram has the characteristics of single diffraction order, compact size, and design flexibility, which can help in the commercial development of the microscope. The second type of diffractive optical elements is metalens, which is utilized as the receiving objective lens of the detection part, whose nanoscale dimensions drastically reduces the working distance of the detection part. Experiments show that in the RLSFM set up, the lateral resolution of 0.27 μm can be obtained, while the optical sectioning capabilities of the G-LSFM system and the B-LSFM system are around 3 μm and 5.08 μm, respectively. With our DLSFM system, the optical sectioning capability is 3.92 μm and the lateral resolution of 2.46 μm can be achieved, which can help in acquiring high-contrast images. In order to comprehensively verify the performance of the systems, the thesis uses Caenorhabditis elegans as live biological samples to observe oocytes, embryos, and the development of gonads.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:24:33Z (GMT). No. of bitstreams: 1
U0001-0109202209463600.pdf: 11215731 bytes, checksum: b8b2da0a891c39eb5928d8834415af11 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文審定書 II 致謝 III 摘要 IV ABSTRACT V 目錄 VII 圖目錄 XI 表目錄 XV 符號表 XVI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 紙片光螢光顯微鏡 3 1.2.2 貝索紙片光螢光顯微鏡 5 1.2.3 體積全相片 8 1.2.4 超穎透鏡 10 1.3 研究目標 12 1.4 內容簡介 13 第二章 高斯紙片光螢光顯微鏡 (G-LSFM) 14 2.1 特徵參數 14 2.1.1 照明端參數定義 14 2.1.2 偵測端參數定義 15 2.2 系統架構 17 2.2.1 光學架構 17 2.2.2 深度掃描裝置 18 2.2.3 掃描程式 18 2.2.4 生物樣本容器 19 2.3 性能測試 21 2.3.1 橫向解析度 21 2.3.2 紙片光厚度 23 2.3.3 光學切片能力 25 2.3.4 15 μm螢光球測試 27 2.4 生物觀測應用 29 2.4.1 秀麗隱桿線蟲卵母細胞及胚胎細胞 29 2.4.2 秀麗隱桿線蟲之合胞體性腺 34 2.4.3 老鼠胚胎心臟三維重建 35 第三章 貝索紙片光螢光顯微鏡 (B-LSFM) 38 3.1 貝索光束介紹 38 3.1.1 貝索光束之特性 38 3.1.2 貝索光束之生成方式 40 3.1.3 貝索光束實驗架設 41 3.2 系統架構 45 3.3 性能測試 47 3.3.1 光學切片能力 47 3.3.2 15 μm螢光球測試 48 3.3.3 點擴散函數驗證 48 3.3.4 視野FOV驗證 50 3.4 生物觀測應用 51 3.5 B-LSFM與G-LSFM之比較 54 第四章 繞射光學元件之光學原理及應用 55 4.1 體積全相片 55 4.1.1 體積全相片的基本原理 55 4.1.2 體積全相片製程 56 4.1.3 高斯紙片光及貝索紙片光的錄製裝置 58 4.2 超穎透鏡 63 4.2.1 超穎透鏡相位調控原理 63 4.2.2 超穎透鏡之設計概論 65 4.2.3 超穎透鏡之設計參數 67 4.2.4 超穎透鏡焦長之性能測試 71 第五章 繞射式紙片光螢光顯微鏡 (DLSFM) 之設計開發 74 5.1 整體系統架構與設計概念 74 5.1.1 體積全相片照明裝置 75 5.1.2 超穎透鏡偵測裝置 76 5.1.3 整體DLSFM系統 77 5.2 實體化裝置 78 第六章 DLSFM性能驗證 84 6.1 偵測裝置性能 84 6.1.1 橫向解析度量測 84 6.1.2 放大倍率量測 87 6.2 照明裝置性能 89 6.2.1 紙片光厚度 89 6.2.2 光學切片能力 90 6.3 整體DLSFM之性能 91 6.4 VH-LSFM之性能驗證 94 第七章 結論與未來展望 96 參考文獻 99 附錄 103
dc.language.isozh-TW
dc.subject超穎透鏡zh_TW
dc.subject體積全相術zh_TW
dc.subject貝索光束zh_TW
dc.subject高斯紙片光zh_TW
dc.subject光學切片zh_TW
dc.subject螢光顯微鏡zh_TW
dc.subject秀麗隱桿線蟲zh_TW
dc.subjectFluorescence microscopyen
dc.subjectBessel beamen
dc.subjectMetalensen
dc.subjectC. elegansen
dc.subjectLight sheeten
dc.subjectOptical sectioningen
dc.subjectVolume holographic gratingen
dc.title折射式與繞射式紙片光螢光顯微鏡之設計與性能分析zh_TW
dc.titleDesign and Performance Analysis of Refractive and Diffractive Light Sheet Fluorescence Microscopyen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-9476-4105
dc.contributor.coadvisor駱遠(Yuan Luo)
dc.contributor.oralexamcommittee廖先順(Hsien-Shun Liao),吳瑞菁(Jui-Ching Wu)
dc.subject.keyword螢光顯微鏡,光學切片,高斯紙片光,貝索光束,體積全相術,超穎透鏡,秀麗隱桿線蟲,zh_TW
dc.subject.keywordFluorescence microscopy,Optical sectioning,Light sheet,Bessel beam,Volume holographic grating,Metalens,C. elegans,en
dc.relation.page108
dc.identifier.doi10.6342/NTU202203048
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-02
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
dc.date.embargo-lift2022-09-06-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0109202209463600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved