Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84754
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳維婷(Wei-Ting Chen)
dc.contributor.authorChi-Huan Hsuen
dc.contributor.author徐啟桓zh_TW
dc.date.accessioned2023-03-19T22:23:56Z-
dc.date.copyright2022-09-06
dc.date.issued2022
dc.date.submitted2022-09-05
dc.identifier.citationAdames, Á. F., & Ming, Y. (2018). Moisture and Moist Static Energy Budgets of South Asian Monsoon Low Pressure Systems in GFDL AM4.0. Journal of the Atmospheric Sciences, 75(6), 2107-2123. https://doi.org/10.1175/jas-d-17-0309.1 Bessafi, M., & Wheeler, M. C. (2006). Modulation of South Indian Ocean Tropical Cyclones by the Madden–Julian Oscillation and Convectively Coupled Equatorial Waves. Monthly Weather Review, 134(2), 638-656. https://doi.org/10.1175/mwr3087.1 Chen, W.-T., Wu, C.-M., & Ma, H.-Y. (2019). Evaluating the Bias of South China Sea Summer Monsoon Precipitation Associated with Fast Physical Processes Using a Climate Model Hindcast Approach. Journal of Climate, 32(14), 4491-4507. https://doi.org/10.1175/jcli-d-18-0660.1 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., & Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597. https://doi.org/https://doi.org/10.1002/qj.828 Hong, S.-Y., & Lim, J.-O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129-151. Huffman, G., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., & Jackson, T. (2019). Hung, M.-P., Lin, J.-L., Wang, W., Kim, D., Shinoda, T., & Weaver, S. J. (2013). MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models. Journal of Climate, 26(17), 6185-6214. https://doi.org/10.1175/jcli-d-12-00541.1 Kiladis, G. N., & Wheeler, M. (1995). Horizontal and vertical structure of observed tropospheric equatorial Rossby waves. Journal of Geophysical Research: Atmospheres, 100(D11), 22981-22997. https://doi.org/https://doi.org/10.1029/95JD02415 Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., & Roundy, P. E. (2009). Convectively coupled equatorial waves. Reviews of Geophysics, 47(2). https://doi.org/https://doi.org/10.1029/2008RG000266 Kuo, K.-T., Chen, W.-T., & Wu, C. M. (2020). Effects of convection-SST interactions on the South China Sea summer monsoon onset in a multiscale modeling framework model. Terrestrial Atmospheric and Oceanic Sciences, 31, 211-225. Lee, W. L., Wang, Y. C., Shiu, C. J., Tsai, I., Tu, C. Y., Lan, Y. Y., Chen, J. P., Pan, H. L., & Hsu, H. H. (2020). Taiwan Earth System Model Version 1: description and evaluation of mean state. Geosci. Model Dev., 13(9), 3887-3904. https://doi.org/10.5194/gmd-13-3887-2020 Leppert, K. D., Cecil, D. J., & Petersen, W. A. (2013). Relation between Tropical Easterly Waves, Convection, and Tropical Cyclogenesis: A Lagrangian Perspective. Monthly Weather Review, 141(8), 2649-2668. https://doi.org/10.1175/mwr-d-12-00217.1 Liebmann, B., & Smith, C. A. (1996). Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset. Bulletin of the American Meteorological Society, 77(6), 1275-1277. http://www.jstor.org/stable/26233278 Lin, S.-J. (2004). A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models. Monthly Weather Review, 132(10), 2293-2307. https://doi.org/10.1175/1520-0493(2004)132<2293:Avlfdc>2.0.Co;2 Lubis, S. W., & Jacobi, C. (2015). The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. International Journal of Climatology, 35(7), 1465-1483. https://doi.org/https://doi.org/10.1002/joc.4069 Ma, H.-Y., Chuang, C. C., Klein, S. A., Lo, M.-H., Zhang, Y., Xie, S., Zheng, X., Ma, P.-L., Zhang, Y., & Phillips, T. J. (2015). An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models. Journal of Advances in Modeling Earth Systems, 7(4), 1810-1827. https://doi.org/https://doi.org/10.1002/2015MS000490 Matsuno, T. (1966). Quasi-Geostrophic Motions in the Equatorial Area. Journal of the Meteorological Society of Japan. Ser. II, 44(1), 25-43. https://doi.org/10.2151/jmsj1965.44.1_25 Molinari, J., Lombardo, K., & Vollaro, D. (2007). Tropical Cyclogenesis within an Equatorial Rossby Wave Packet. Journal of the Atmospheric Sciences, 64(4), 1301-1317. https://doi.org/10.1175/jas3902.1 Morrison, H., & Gettelman, A. (2008). A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part I: Description and Numerical Tests. Journal of Climate, 21(15), 3642-3659. https://doi.org/10.1175/2008jcli2105.1 Moseley, C., Berg, P., & Haerter, J. O. (2013). Probing the precipitation life cycle by iterative rain cell tracking. Journal of Geophysical Research: Atmospheres, 118(24), 13,361-313,370. https://doi.org/https://doi.org/10.1002/2013JD020868 Moseley, C., Henneberg, O., & Haerter, J. O. (2019). A Statistical Model for Isolated Convective Precipitation Events. Journal of Advances in Modeling Earth Systems, 11(1), 360-375. https://doi.org/https://doi.org/10.1029/2018MS001383 N. Takayabu, Y. (1994). Large-Scale Cloud Disturbances Associated with Equatorial Waves Part I: Spectral Features of the Cloud Disturbances. Journal of the Meteorological Society of Japan. Ser. II, 72(3), 433-449. https://doi.org/10.2151/jmsj1965.72.3_433 Nakamura, Y., & Takayabu, Y. N. (2022). Convective Couplings with Equatorial Rossby Waves and Equatorial Kelvin Waves. Part I: Coupled Wave Structures. Journal of the Atmospheric Sciences, 79(1), 247-262. https://doi.org/10.1175/jas-d-21-0080.1 Neale, R. B., Richter, J. H., & Jochum, M. (2008). The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events. Journal of Climate, 21(22), 5904-5924. https://doi.org/10.1175/2008jcli2244.1 Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., & Ringler, T. D. (2012). A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering. Monthly Weather Review, 140(9), 3090-3105. https://doi.org/10.1175/mwr-d-11-00215.1 Su, C.-Y., Wu, C.-M., Chen, W.-T., & Chen, J.-H. (2019). Object-based precipitation system bias in grey zone simulation: the 2016 South China Sea summer monsoon onset. Climate Dynamics, 53(1), 617-630. https://doi.org/10.1007/s00382-018-04607-x Su, C.-Y., Wu, C.-M., Chen, W.-T., & Chen, J.-H. (2021). Implementation of the Unified Representation of Deep Moist Convection in the CWBGFS. Monthly Weather Review, 149(10), 3525-3539. https://doi.org/10.1175/mwr-d-21-0067.1 Wang, L., & Chen, L. (2016). Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dynamics of Atmospheres and Oceans, 76, 116-126. https://doi.org/https://doi.org/10.1016/j.dynatmoce.2016.10.004 Wang, Y.-C., Pan, H.-L., & Hsu, H.-H. (2015). Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site. Journal of Geophysical Research: Atmospheres, 120(20), 10,681-610,702. https://doi.org/https://doi.org/10.1002/2015JD023337 Wheeler, M., & Kiladis, G. N. (1999). Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain. Journal of the Atmospheric Sciences, 56(3), 374-399. https://doi.org/10.1175/1520-0469(1999)056<0374:Ccewao>2.0.Co;2 Wheeler, M. C., & McBride, J. L. (2005). Australian-Indonesian monsoon. In Intraseasonal Variability in the Atmosphere-Ocean Climate System (pp. 125-173). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-27250-x_5 Yang, G.-Y., Hoskins, B., & Slingo, J. (2007). Convectively Coupled Equatorial Waves. Part I: Horizontal and Vertical Structures. Journal of the Atmospheric Sciences, 64(10), 3406-3423. https://doi.org/10.1175/jas4017.1 Zhang, C., & Wang, Y. (2017). Projected Future Changes of Tropical Cyclone Activity over the Western North and South Pacific in a 20-km-Mesh Regional Climate Model. Journal of Climate, 30(15), 5923-5941. https://doi.org/10.1175/jcli-d-16-0597.1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/84754-
dc.description.abstract本研究透過拉格朗日觀點(Lagrangian view)來探討赤道羅士比波(equatorial Rossby waves)中的對流耦合過程,利用後報方法(hindcast)來評估四個擁有不同空間解析度與對流呈現方式的全球模式(TaiESM,SPCAM,CWBGFS,MPAS)模擬赤道羅士比波的表現。整組實驗使用ERA-Interim再分析資料以及給定海表面溫度作為模式的初始條件,在約40天的實驗期間內(2017/12/24-2018/02/04)進行每次進行15天的後報模擬。我們對地球長波輻射進行時空間濾波並利用追蹤演算法(tracking algorithm)來診斷實驗期間內出現的九個赤道羅士比波事件。觀測事件與模式模擬的相速度都大約在3-4 m/s,至於模擬的生命週期(7-8天)則是短於觀測中的週期(5-28天)。以觀測中赤道羅士比波事件的對流中心位置進行合成統計,濾波後的地球長波輻射及低層風場呈現赤道羅士比波特有的理論水平特徵結構,且降水與水氣的演進也與地球長波輻射同相位。模式的合成結果中赤道羅士比波的對流活躍區強度略弱於觀測,但在對流抑制區的地球長波輻射/降雨卻有較大的負偏差/正偏差。透過個案分析進行水氣收支計算,顯示事件中水平方向的水氣通量輻合是與降水平衡的主要過程。此外,當模式能夠模擬出足夠強度的水氣通量輻合時,也能產生強降雨事件。反之,在水氣通量輻合偏弱的情境下,模擬中的赤道羅士比波會在3天內減弱並消散。目前的結果顯示追蹤演算法能偵測赤道羅士比波的對流活躍區的位置及強度,也能夠利用此方法比較觀測與模式中強對流與波動耦合的差異。SPCAM與其他模式相比模擬出較多的波動事件,同時從合成場中SPCAM也展現出較強的赤道羅士比波訊號。未來也可以此組後報模擬為基礎對這些波動事件的發展過程進行更多敏感性實驗,系統性探討赤道羅士比波對於SPCAM二維雲模式架構的反應。zh_TW
dc.description.abstractThis study investigates the convective coupling of equatorial Rossby (ER) waves from a Lagrangian view, and we evaluate the simulated ER waves using the hindcast approach with four global models with different convection representation and spatial resolution, namely, TaiESM, SPCAM, CWBGFS, and MPAS. The hindcasts are all initialized with daily ERA-Interim reanalysis data and prescribed sea surface temperature (SST) over the 40 days (2017/12/24-2018/02/04), consisting of 15-day integration for each initialization. We apply a tracking algorithm to diagnose nine ER wave events in this boreal winter through the space-time filtered outgoing longwave radiation (OLR). The simulated ER waves have a reasonable phase speed (3-4 m/s) compared with observed wave events, while the lifetime of simulated waves (7-8 days) is much shorter than observation (5-28 days). The composite of filtered OLR and low-level wind obtained from the enhanced convection centers in observed wave events demonstrate the theoretically horizontal structure of ER waves, and the precipitation and column water vapor (CWV) is in phase with filtered OLR. The models show the slightly weaker intensity of ER waves in the convectively active regions from the composite, while they produce a larger negative/positive bias of OLR/precipitation in the convectively suppressed phase. From the moisture budget in the case study, it is found that the horizontal MFC is the main contributor to balance with the precipitation in the observed wave event. In addition, the models are able to produce strong rainfall events when a comparable amplitude of horizontal MFC is presented in the simulations, whereas in the weak horizontal MFC scenarios for the models, the ER waves quickly weaken and dissipate within 3 days. The current results show that the tracking method can detect the location and intensity of the convectively active phase in ER waves, and the coupling between deep convection in total fields and the wave dynamics for the observation and models can also be compared using this method. SPCAM produces more ER wave events than the other models, and it also demonstrates a strong filtered OLR signal as the observation in the wave composite. To systematically investigate the behavior of simulated ER waves with different configurations in the embedded CRM in the SPCAM, more sensitivity tests about the evolution of these wave events can be conducted in the future based on this hindcast experiment.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:23:56Z (GMT). No. of bitstreams: 1
U0001-0509202210170700.pdf: 4256858 bytes, checksum: 801de92e06277aeee6a5046bd45f5bf8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 中文摘要 ii Abstract iv Contents vi Figure Captions vii Table Captions x 1. Introduction 1 2. Data and Methodology 4 2.1 Hindcast Experiments 4 2.2 Participating Models 4 2.3 Observational Data and Reanalysis Data Sets 5 2.4 Wave Filtering 6 2.5 Tracking Algorithm 7 3. Results 8 3.1 Tracks of the ER Wave Events 8 3.2 Composite Structures of the ER Waves 9 3.3 A Case Study of ER Waves Event 11 4. Discussion 18 5. Conclusion and Future Work 21 References 24 Figures 28 Tables 45
dc.language.isoen
dc.title在四種不同全球模式後報模擬中對流耦合赤道羅士比波之評估zh_TW
dc.titleEvaluating the Convectively Coupled Equatorial Rossby Waves in the Hindcasts of Four Global Models with Different Convection Representations from a Lagrangian Perspectiveen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳健銘(Chien-Ming Wu),蘇世顥(Shih-Hao Su),王懌琪(Yi-Chi Wang)
dc.subject.keyword赤道羅士比波,對流耦合,全球模式,對流呈現方式,後報模擬,追蹤波動,zh_TW
dc.subject.keywordequatorial Rossby waves,convective-coupling,global model,convection representation,hindcast,wave tracking,en
dc.relation.page47
dc.identifier.doi10.6342/NTU202203136
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-09-05
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
dc.date.embargo-lift2022-09-06-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-0509202210170700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved